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Abstract— The energy required to move data accounts for a
significant portion of the energy consumption of a modern super-
computer. To make systems of today more energy efficient and to
bring exascale computing closer to the realm of possibilities, data
motion must be made more energy efficient. Because the motion
of each bit throughout the memory hierarchy has a large energy
and performance cost, energy efficiency will improve if we can
ensure that only the bits absolutely necessary for the computation
are moved through the hierarchy. Toward reaching that end, in
this work we explore the possible benefits of using a software-
managed scratchpad memory for HPC applications. Our goal is
to observe how data movement (and the associated energy costs)
changes when we utilize software-managed scratchpad memory
(SPM) instead of the traditional hardware-managed caches. Using
an approximate but plausible model for the behavior of SPM,
we show via memory simulation tools that HPC applications
can benefit from hardware containing both scratchpad and
traditional cache memory in order to move an average of
39% fewer bits to and from main memory, with a maximum
improvement of 69%.

I. INTRODUCTION

DARPA commissioned report recommends the power wall
for exascale systems to be at 20 MW [1]; this power wall is
already being approached by current petaflops systems (e.g.
Japanese K computer’s power requirement is at 12.6 MW [2]
for 10.5 Linpack petaflops). The 20 MW power envelope for
exascale systems translates to a goal of 50 gigaflops/watt in
efficiency, a jump of at least two orders of magnitude from
the last generation of supercomputers which had an efficiency
of about 0.25 gigaflops/watt [3].

One area to reduce some of the energy consumption is by
focusing on one of the most energy-demanding aspects of
modern day hardware — data movement between the CPU and
memory subsystems. The next generation exascale systems
will have significantly more compute cores per node than
present day systems. This increase in the number of cores
will likely result in reduced shared on-chip cache budgets,
thereby increasing the frequency of data evictions from those
caches. As a result, data movement energy costs will continue
to claim a larger share of the overall energy costs required to
run a supercomputer with current cache-based systems. The
situation will only be exacerbated by a general move of HPC
towards more data intensive applications.

Cache-based systems can also waste energy because they
are managed entirely by hardware. The design of hardware

assumes the principles of spatial locality' and temporal locality
when moving memory. Unfortunately, these assumptions do
not always hold; it is an ongoing problem to attempt to
transform algorithms, implementations, compilers and opti-
mization tools to strengthen them, however the effort required
and sometimes the very nature of many scientific problems
can prevent the development cache friendly applications. If a
program has poor spatial locality, the cache will move more
data than it actually uses thereby incurring unnecessary costs
in terms of both performance and energy.

Software managed on-chip scratchpad memory (SPM) has
the potential to mitigate the problem of expending energy mov-
ing unused bits. SPM allows programmers to optimize data
motion by allowing them to exercise full control over what bits
to move and when to move them. However, such management
also transfers the difficult task of controlling data movement
onto the software. If the programmer must account for this
in writing a program, this can pose a significant productivity
challenge for the programmers of HPC applications and for the
hardware designers looking to investigate the potential benefits
of SPM for HPC applications. Our research seeks to help
address parts of this challenge by answering the following
fundamental questions via simulation — Do HPC workloads
benefit from SPM? If so, are there compute patterns which get
the most benefit? Benefit in this context is quantified in terms
of the raw amount of data movement savings when one uses
SPM vs. traditional caches. This paper presents a preliminary
evaluation of our tools to understand the types of investigations
that are possible with the framework that we are developing.

This work also looks at the possible benefit of a hybrid
system which has both hardware- and software-managed lo-
cal memories. Our results show that such a hybrid system
can result in decreases of as much as 69% of the data
movement of a hardware-managed cache. Finally, we present
some preliminary work on the characterization of compute
patterns or idioms and using those characterizations to guide
the mapping of sections of large-scale application onto either
of the available local memories available in a hybrid system.

IThe fact that majority of the widely used chipsets from both the Intel (e.g.
Nehalem, Xeon, Sandybridge) and AMD (e.g. Shanghai, Istanbul, Interlagos,
Magny Cours) all use 8-word cachelines furthers this claim of how the
principal of spatial locality is very much built into the design of modern
day caches.



II. RELATED WORK

Researchers in embedded systems have extensively inves-
tigated the energy and space benefits of using SPM. Their
research has not only examined the design space parameters
(e.g., optimal SPM size for different types of embedded
applications) but has also looked into developing compiler
and runtime solutions (e.g. data tiling, dynamic allocation of
most used data to SPM) to optimize the usage of SPM [4],
[5], [6], [7]. While HPC workloads differ significantly from
workloads that run on embedded systems, we are encouraged
by the observation that the compiler community is actively
working with the system designers and embedded application
programmers to optimize and automate the usage of SPM.

The HPC community’s interest in SPM is rather new and
is mostly driven by SPM’s memory predictability and power
savings. Optimal use of a SPM is still an ongoing research.
Work presented in [8] profiles sparse matrix multiplication
application for data structures that tend to do poorly on cache.
Those hot-spots are ported to use SPM with an offline staging
algorithm. Our study attempts to paint a general picture of
the utility of SPM for HPC workloads rather than focusing
on a specific problem. We do so by studying the interactions
between key HPC computational patterns and SPM.

SPM has also made its entrance within the HPC realm in the
design of heterogeneous/accelerator architectures. IBMs CELL
processor uses scratchpads for its local storage and researchers
have profiled it for HPC computations and have proposed
optimization strategies [9]. Kondo et al. propose SCIMA,
which is a VLSI architecture that integrates software managed
scratchpad memory on-chip, and analyze its performance on
HPC applications whose data set is too large to fit into on chip
memory [10]. Finally, GPU’s also utilize software managed
scratchpad and efforts have been invested in developing and
optimizing data management techniques to make automate
allocations to SPM and to better use of SPM [11].

Before answering the question of how to better make use
of SPM or before designing specialized HPC architectures
with SPM, there is the basic question of to what extent HPC
workloads really benefit from SPM based systems. In this
work, we answer that question and we do so without limiting
ourselves on any particular application or architecture domain.

III. SIMULATION FRAMEWORK AND METHODOLOGY

This section describes the simulation infrastructure and the
methodology used to compute data movement statistics for the
two on-chip local stores - cache and SPM.

A. Simulation Infrastructure

The memory simulators used to compute data motion statis-
tics are built on-top of the PEBIL [12] toolkit, an open source
binary instrumentation toolkit for x86/Linux. There are two
main components of the simulator infrastructure — an execution
analysis tool and a memory simulation tool. The execution
analysis tool sets the stage for memory simulation by pro-
viding static and dynamic information about the control flow
units of the application including instruction types and counts,

information on loop and function memberships, relationships
to other basic blocks, memory access sizes, and basic block
visit counts. Based on the basic block visit counts, the set
of the most dominant basic blocks are selected as candidates
for memory simulation. The memory simulation tool then in-
struments the application binary to send the memory addresses
from the dominant basic blocks to a series of cache simulation
and memory analysis tools. In particular, these address streams
are simulated through traditional cache, scratchpad memory,
and cache/scratchpad hybrid memory structures that are de-
scribed in greater detail shortly.

In order to perform these simulations on large scale produc-
tion runs of HPC applications, the memory address streams are
simulated on the fly. This keeps the time and space complexity
of dealing with the address streams in check. The simulation
tool works on the application’s binary, enabling the simulation
of multiple memory configurations without touching the ap-
plication’s source code or any other intermediate form of the
application. Therefore this enables cache and SPM simulations
on real production runs of applications. The overhead of the
simulator is also small relative to similarly functioning tools.

B. Methodology

In order to calculate the data movement associated with
SPM, we define a memory structure which is a fully set
associative cache of a given size with a line size of one word
(8 bytes) and uses the least recently used (LRU) replacement
policy. This configuration is compared to a traditional cache
that is defined as an 8-way set associative cache with 8 word
(64 byte) lines and uses the LRU policy. Compared to a
traditional cache, a scratchpad of this form lacks the capacity
to benefit from spatial locality because it loads only individual
words as they are used.

There are a few noteworthy differences between the sim-
ulated scratchpad described above and an actual scratchpad.
In an actual scratchpad, explicit directives are likely to be
required to move important data in bulk prior to the execution
of the section of code that utilizes that data. That data is then
kept in the local memory until all computations on that data
completes. An important consequence of this usage model is
that the size of the program’s working set must be known
in order to take full advantage of the real scratchpad. In our
simulation that utilizes a fully associative 1-word line cache
to mimic the behavior of scratchpad, data is moved at one
word granularity and only when that word is referenced by the
program. If the working set size of the computation is smaller
than the scratchpad structure, our simulated scratchpad will
move the same amount of data as a real scratchpad. However,
if the working set does not fit in the scratchpad our simulated
scratchpad can overestimate the amount of data moved. This
over-estimation is the result of the cache line replacement
policy (LRU) chosen for our simulation. LRU can prematurely
evict words from the simulated scratchpad, only to reload them
at a later time when those words are touched again by the
computation. In a real scratchpad we note that careful memory
and data partitioning (or tiling) and other scratchpad-friendly



loop transformation techniques would be employed by the
compiler [13] or the programmer to minimize this behavior,
though fully understanding how to best to accomplish this
remains an open question.

C. Quantifying Data Motion

In this work, we examine a single-level on-chip cache,
scratchpad and hybrid memory structures and estimate the
data movement to those structures by counting the number of
misses. Data movement for a particular structure is therefore
the product of the size of a line and the number of lines
that are moved, which by definition is the number of cache
misses. To capture the data movement of an HPC application,
we instrument basic blocks accounting for a minimum of
95% of the dynamic memory activity in the application and
simulate the memory behavior of those blocks through cache,
scratchpad and hybrid memory structures. We describe the
results of these quantifications of data motion for a series of
HPC benchmarks and applications in the next section.

D. Hybrid Cache/Scratchpad

In order to simulate the behavior of hardware comprised of
a hybrid of traditional hardware-managed cache and software-
managed cache, we first decide how to apportion memory
work to each of those structures. Here we use a simple scheme
which partitions the memory work by basic block and attempts
to use the structure (SPM or cache) per basic block which
minimizes data movement. During simulation the memory
accesses made by a particular set of basic blocks are handled
by a scratchpad structure while another set of blocks is handled
by a traditional cache structure.

IV. SCRATCHPAD MEMORY AND HPC APPLICATIONS

We first consider the extent to which software-managed
scratchpad cache can actually reduce the data movement re-
quirements of HPC applications. We expect the data movement
benefits of SPM to be most pronounced in cases where
hardware-managed traditional cache unnecessarily moves a
line into memory using the principle that the remainder of
that line is likely to be used before it is evicted. That is,
this question reduces principally to one of recognizing how
well the application in question takes advantage of spatial
locality. To answer this question, we utilize the simulation
tools discussed in Section III-B to understand the effects of
running on either a scratchpad memory device or a traditional
hardware-managed cache.

The HPC applications utilized in this study along with brief
descriptions are given in Table I. These applications include
two implementations of the sequential Graph500 benchmark,
HYCOM, SMG2000 and three Sequoia Benchmark codes —
SPHOT, UMT and AMG2006. These applications are designed
to run on large-scale systems and the analysis of their data
motion behavior on traditional cache and software managed
scratchpad should be of great interest to both the application
scientists and the hardware designers.
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Fig. 1: Total data transferred during an application execution
for hardware-managed cache, software-managed SPM and
cache-scratchpad hybrid memory structures, normalized to the
data transferred for cache.

Figure 1 shows the data movement totals of these applica-
tions for three different memory configurations — a traditional
cache, a scratchpad memory structure and a hybrid config-
uration. Detailed descriptions of these three configurations
are given in Table II. Per application in Figure 1, the data
movement totals are normalized with respect to the total data
transferred using cache. Therefore a value of less than 1 for
scratchpad memory means that scratchpad moves less data
than cache. Ideally, scratchpad-based systems should never
move more data than the cache-based systems. However, as we
discussed in Section III-B, our simulation setup for scratchpad
can overestimate data motion where local memory thrashing
occurs due to the working set size being larger than the size of
the scratchpad. For a line to be precluded from eviction from
cache via LRU policy, referencing only one out of the eight
words in the line is enough. For scratchpad, however, since
it is one word line, LRU can prematurely evict words only
to move them again later when they are referenced again. We
observe this behavior in AMG2006. However, apart from this
case all other applications benefit significantly from scratchpad
— with an average data movement savings of 22%.

Next we turn our attention to the hybrid structure, one in
which each basic block is able to make use of the structure
which minimizes the amount of data that must be moved
on its behalf. As can be seen from Figure 1, the hybrid
system which has half of its memory capacity dedicated to
scratchpad memory shows dramatic reductions in the amount
of data movement required for the entire application. On
average, data movement is reduced by 37%, with a maximum
of 69% reduction in data transferred for sphot. We attribute
this savings to the lack of spatial locality in the memory
references issued by the basic blocks that were mapped to SPM
in a hybrid system. Extending the memory simulation tool
to quantify the spatial locality is an ongoing work. We note
that the locality scores can point towards how to better take
advantage of the hybrid system’s SPM. Based on these scores,
we can rank order application’s basic blocks that benefit the
most from SPM and port only those to use SPM.

These experimental results suggest that there are substantial
portions of HPC applications that can save unnecessary data
movement by utilizing scratchpad memory despite the fact



TABLE I: Names and descriptions of subject applications used for cache and scratchpad experiments.

Application Description
Graph500 [14] Code to construct and traverse weighted undirected graph
HYCOM [15] Hybrid isopycnal-sigma-pressure (generalized) coordinate ocean model code.
SMG2000 [16] Parallel semicoarsening multigrid solver.
SPHOT [17] (Sequoia Tier 3) Monte Carlo scalar photon transport code
UMT [17] (Sequoia Tier 3) Unstructured-mesh deterministic radiation transport code.
AMG2006 [17] (Sequoia Tier 1) Algebraic mult-grid linear system solver for unstructured mesh.

TABLE II: Descriptions of the memory configurations used in data motion experiments.

Title Cache Size (KB) Cache Assoc. Cache Line Size (Bytes) SPM Size (KB) SPM Assoc. SPM Line Size (Bytes)

Cache 64 8 64 - - -
Scratchpad - - - 64 full 8

Hybrid 32 8 64 32 full 8

that our scratchpad simulation model can overestimate data
movement. Moreover, the fact that the data motion reductions
resulting from a scratchpad/cache hybrid are so dramatic
implies that more work is needed in order to fully understand
the types of compute and memory access patterns that benefit
from scratchpad memory. In the next section, we present some
preliminary work which demonstrates a possible methodology
for examining this issue.

V. IDIOM CHARACTERIZATION: EARLY RESULTS

HPC applications can be large and complex and developing
a method to break this complexity into smaller and more
manageable pieces can aid in characterizing the application’s
data movement behavior. One such method is to break an
application down into its constituent idioms, where an idiom
is defined as a local pattern of computation or memory access.
Examples of idioms are matrix-matrix multiplication, matrix
transposition, an array gather/scatter, etc. Understanding where
these idioms are present in an application can help us under-
stand how the application is likely to stress the memory sub-
system while executing those idioms. In particular, predictions
could be made about how different types of memory structures
(cache, SPM or hybrid) are likely to interact with a given
idiom, which can be used as the basis for making judgments
about which of those structures best suits the idiom.

We provide the pseudocode for the gather and scatter idioms
in Figure 2. The gather idiom “gathers” data from a potentially
random series of memory addresses over a particular range.
In the pseudocode, the random accesses are created using an
index array C. The scatter idiom can be thought of as the con-
verse of gather, meaning results are sequentially scattered from
an array into potentially random memory locations covering
a particular range. In this work we focus exclusively on the
gather and scatter idioms due to their ability to stress memory
performance (caused by randomness and indirection in the
address stream) and their prevalence in HPC applications.

for i= 1 to N, stride for i= 1 to N, stride
A[i] = B[C[1]] A[C[i]] = BI[1i]
(a) Gather (b) Scatter

Fig. 2: Psedocode for Gather/Scatter Idioms

Characterizing the idioms involves studying different ways
these idioms can interact with the system components. For
gather/scatter, we select a working set size (or memory foot-
print) that exceeds the size of the available on-chip memory
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Fig. 3: Amount of data transferred to scratchpad during the
gather idiom as a fraction of the amount data transferred to

cache during the same code. X-axis shows different values for
stride variable in Figure 2.

and vary the stride pattern (see st ride loop stepping variable
in Figure 2). For each stride pattern, we simulate the address
stream through the cache and scratchpad simulation tools.
Figure 3 presents the amount of data transferred to scratchpad
during the gather idiom as a fraction of the amount data trans-
ferred to cache for the same code. Recall that a smaller ratio
than one favors scratchpad because it moved less data than
cache. We vary the stride pattern in the x-axis (“R” is random
access pattern). The simulations produced the expected results
with a significant reduction in data motion for the scratchpad
with large strides and random access patterns. The lowered
data movement translates directly in energy saving. Despite
the strided or random access, with a cache the data transfer is
always done at line granularity, whereas with the scratch pad
only the relevant data is transferred from memory. The figure
shows how data transfers increase for the cache as the stride
increases, until only one word out of eight per line is utilized.
The results for the same experiment using scatter idiom are
almost identical.

We now explain how idiom characterization can fit into
the broader goal of optimizing data movement for large scale
applications on a cache/SPM hybrid system. To do that, we
utilize the GCC plugin PIR [18], [19]. PIR is a source code
analysis tool that automatically identifies user-defined compute
and memory access patterns within application source code.
We used PIR to identify the gather and scatter idioms within
HYCOM, an ocean modeling code. PIR identified 33 instances
of gather and scatter in the source code for HYCOM. We



then isolated the basic blocks in the HYCOM binary asso-
ciated with these recognitions, used the memory simulation
tools to examine their memory behavior and data movement
characteristics. The results of this study show that by using
a scratchpad memory instead of cache for all instances of
gather/scatter within HYCOM we could reduce the amount
of data movement by 20%. When we simulate HYCOM’s
gather/scatter idioms on traditional cache configuration, total
data moved is 94 MB as opposed to 74.5 MB when those
idioms’ data motion is simulated on a scratchpad.

VI. DISCUSSION AND ONGOING WORK

Our goal in this paper was to investigate if HPC workloads
benefit from the availability of SPM and if so, quantify the
data movement savings. The results show that large scale HPC
applications can reduce the amount of data moved substantially
with the use of scratchpad as the on-chip memory. While there
are still many research challenges that need to be addressed
before a hybrid system becomes a reality, we believe that
the results that we have presented in this paper should spark
a dialogue between the hardware and software communities
within HPC towards tackling the challenges.

The preliminary results that we have presented in this paper
give us multiple avenues to extend this work. Our ultimate goal
is to provide a simulation framework that can automatically
isolate data motion sensitive idioms from large scale appli-
cations and use the idiom characterization to identify what
sections of code run well on cache and scratchpad. Below, we
itemize some of the ongoing work.

o Extending the simulation framework to more closely
mimic the behavior of the real scratchpad and remedy its
data movement over-estimation problems for scratchpad.

o Adding locality quantification ability to the current frame-
work to provide porting hints to application programmers
in terms of which code-sections to port to SPM. This
reduces the amount of labor required to port the code to
use software managed caches. Note that porting hints can
also be provided utilizing the idiom characterization data.

o Extending the framework to automate the breaking down
of large scale applications to their constituent idioms and
then using the idiom characterization data as the basis
for making judgments about which on-chip memory best
suits the idioms.

VII. CONCLUSION

The path to exascale is laden with hard challenges. Of
these challenges energy efficiency is perhaps the most difficult
challenge. In this work, we studied the viability of software
managed on-chip memory for HPC workloads. We showed the
evidence that having both software managed and the traditional
hardware managed caches can benefit HPC applications in
optimizing and reducing the overall the data motion. Reduction
of data movement should translate directly to saving energy.

Our results show that scratchpad can be beneficial to data
intensive HPC applications. Running a set of HYCOM idioms

that exhibit highly indirect memory access patterns on scratch-
pad reduced the data movement for those patterns by 20%.
Hybrid systems also showed promise for data intensive HPC
workloads and, on average, saved 39% in data movement.
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