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Abstract—Network Service Chaining (NSC) is a service deployment concept that promises 

increased flexibility and cost efficiency for future carrier networks. NSC has received 

considerable attention in the standardization and research communities lately. However, NSC 

is largely undefined in the peer-reviewed literature. In fact, a literature review reveals that 

the role of NSC enabling technologies is up for discussion, and so are the key research 

challenges lying ahead. This paper addresses these topics by motivating our research interest 

towards advanced dynamic NSC and detailing the main aspects to be considered in the 

context of carrier-grade telecommunication networks. We present design considerations and 

system requirements alongside use cases that illustrate the advantages of adopting NSC. We 

detail prominent research challenges during the typical lifecycle of a network service chain in 

an operational telecommunications network, including service chain description, 

programming, deployment, and debugging, and summarize our security considerations. We 

conclude this paper with an outlook on future work in this area. 
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I.  INTRODUCTION  
1
Infrastructure network operators are currently struggling to meet growing user and traffic demands on their 

traditional connectivity services, for example, in terms of providing sufficient capacity and mobility support. 
While subscribers enjoy a constantly (and often drastically) declining “cost per bit”, operator investments 
(CAPEX) and operational costs (OPEX) for the increasingly complex network infrastructure are rising: new 
technologies have to be incorporated while older investments are still operational and will be so for the 
foreseeable future. From a technical point of view, “over-the-top” service providers (OTT) can innovate and 
introduce new technologies at a rapid pace, while vendors close to the physical network enhance access 
technologies by orders of magnitude within a decade. This is only possible because the middle part of the 
protocol stack remains largely unchanged. 

 The price to pay for this approach, which calls for flexibility and innovation concentrating at the edges of 
the protocol stack, is the so-called “network ossification”. Architectural kludges implemented through the 
introduction of middleboxes exacerbate this further: service chains must be carefully crafted from statically-
assembled components chosen at design time. Then, once a network service is defined, little can change: 
operators can mainly perform minor configuration changes (e.g. parameter tuning) and address scalability 
through further infrastructure investment to reach more subscribers. In short, a whole network is purpose-built 
and optimized for a few static services. This modus operandi is advantageous in terms of service quality 
guarantees and has served, up to now, the telecommunications industry well. But it is particularly inflexible in 
the current market and technological conditions. Earlier investments in specialized hardware are difficult to re-
tool and re-deploy with new functionality: network service providers (NSPs) cannot weave together best-of-
breed technologies to form novel full service chains at will. In the end, NSPs operate, manage, and maintain 
costly and monolithic service silos deployed for decades.  
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To some extent, the current network service chaining (NSC) model is reminiscent of how mainframes were 
built in the early years of high-performance computing. For example, deployment models for advanced services, 
such as intrusion detection and prevention systems (IDS/IPS), firewalls, content filters and optimization 
mechanisms, deep packet inspection (DPI), caching, etc., are typically centered on monolithic platforms 
installed at fixed locations in or at the edge of the carrier core network. Besides being rigid and static, 
deployment of advanced network services and connectivity between network and service platforms often lack 
automatic configuration and customization capabilities, leading to significantly stretched deployment times and 
large operational complexity. Operational complexity is further aggravated by NSP organizational “silos” - 
separate teams and software systems manage particular network domains, treating service fulfillment and 
assurance as separate processes. As a result, troubleshoot times may vary greatly (from hours to days or  
even weeks). 

Efforts to overhaul NSC gained significant traction recently in both research and standardization fora as 
NSPs seek to offer advanced services beyond basic connectivity, while optimizing infrastructure use and 
operational efficiency. For example, the IETF contemplates the creation of a dedicated working group on NSC. 
In this case, Quinn et al. [1] define a service chain loosely as “the required functions and associated order that 
must be applied to packets and/or frames.” Conversely, Zhang et al. [2] motivate the need for “steer[ing] traffic 
at the granularity of subscriber and traffic types” and “through the right inline service path” but do not actually 
define NSC formally. In sum, earlier literature sketches the overall NSC context but falls short of providing a 
clear and concise definition of what NSC entails in detail.  

We fill this gap in the following two sections and discuss our considerations regarding NSC in carrier-grade 
infrastructure networks. The remainder of this paper is dedicated to the current research directions in NSC, 
starting with service lifecycle aspects, including service chain description, programming, deployment, and 
debugging. We then introduce a holistic approach for tackling these issues in line with work planned in the EU-
funded FP7 UNIFY project and conclude this paper with an outlook of the NSC area. 

 

II. MOTIVATION  

Several drivers are expected to impact network and service infrastructure evolution in the coming years: 
technological progress in commercial of the shelf (COTS) hardware, cost reductions in processing and storage 
systems, growing availability of open source software defined networking (SDN) solutions, and “intelligence” 
migration towards user devices. These drivers will open new business opportunities and increase the 
competition in the ICT arena. The ossification of IP over transport networks hinders the flexible deployment of 
new network layer functionality (e.g. routing algorithms) or in-network security services (e.g. firewalls). 

Changes to existing network platforms need careful engineering and customizations to address inter-
dependencies between functional components and to meet high expectations on quality. Consequently, 
introducing new functionality into a deployed network is complicated, time-consuming and thus expensive. This 
rigidity provides few, if any, opportunities for re-tooling the network, and inhibits, in practice, the emergence of 
new revenue sources. In this context, reducing the “time-to-market” by minimizing the duration of the current 
network operator innovation cycle is critical. 

Complexity compounds as third-party operators, such as wholesale customers, cellular, and cable network 
operators, call for access to the network platform and demand services beyond what the operator offers in retail. 
By the same token, access/aggregation carriers are no longer the only customer-facing infrastructure substrate 
and seek access to other access/aggregation operator’s platforms in return, e.g. metro or cable  
network providers. 

Significantly higher degrees of automation within management and configuration tasks could reduce both 
OPEX and CAPEX. OPEX reduction can be achieved, for example, by reducing the network touch-points (and 
thus possible configuration mistakes) and by assisting human administrators in configuring and managing 
equipment. CAPEX reduction can be achieved, for instance, by delaying network resource investments (e.g. by 
re-factoring and optimizing the use of available resources), through the virtualization of certain network func-
tions that can run on standard data center hardware, and that can be instantiated in various locations, as 
considered by the ETSI Network Function Virtualization (NFV) [3] effort.  

In today’s network architectures, increasingly more complex services, such as IPTV, security services, and 
delivery optimizations, have been introduced through the deployment of middleboxes, both in the operator-
controlled network as well as beyond the reach of the carrier in the home network environment. One example of 
an increasingly complex network platform is the 3GPP Evolved Packet Core (EPC) and its optimizations for 
content delivery and security. In addition to the typical eNodeB, S/PGW, MME and  other network functions 
[4], an EPC deployment requires the following functions typically installed in independent boxes: i) Network 
Address Translation (NAT) from private IPv4 addresses to public IPv4/v6 addresses; ii) service access policing, 
e.g., for VPN, video platforms and VoIP; iii) infrastructure firewall protection; iv) a content distribution network 
(CDN) solution for efficient popular content distribution; and v) transcoding engines for optimized picture and 
video delivery. 

In this case, customer traffic crosses several middleboxes, which effectively requires operators to define 
statically-provisioned service chains. Each middlebox is a stateful system supporting a very narrow set of 



 

specialized network functions and is based on purpose-built and typically closed hardware. This agglomeration 
of all kinds of middleboxes contributes to network ossification, and is responsible for a significant part of the 
network CAPEX/OPEX. As highlighted above, today an operator cannot re-use any of these middleboxes as 
they are carefully crafted to provide a single service: take one box out and the whole chain breaks. In contrast, 
the introduction of SDN and NFV in operator networks enables flexible allocation, orchestration and 
management of L2-L7 network functions and services and provides the substrate for dynamic network  
service chains. 

Early-stage related work in SDN-based service chains originates in OpenFlow demonstrations. For example, 
OpenPipes [5] explored the possibility of using a modular network component system design in which self-
contained in-network functions, such as digital image filters for video content distribution, could be called upon 
to create a video processing system. However, this work is basically a feasibility study and does not consider a 
carrier-grade network. Bari et al. [6] survey how virtualization can improve flexibility, scalability, and resource 
efficiency for data center operators and point to future research directions in that area, but provide few clues on 
virtualization benefits for telecommunication operators. On the other hand, work such as MobileFlow [7] details 
a possible way forward for introducing carrier-grade virtualization in EPC, but does not delve into NSC to a 
significant extent. 

 

III. NETWORK SERVICE CHAINING  

In general terms, we define dynamic Network Service Chaining as a carrier-grade process for continuous 
delivery of services based on network function associations. In this context, continuous delivery means dynamic 
network function orchestration and automated (re-)deployment used to improve operational efficiency. Carrier-
grade means that the entire process is designed for high availability and fast failure recovery, with reliable 
testing capabilities integrated in every step of the process. 

Fig. 1 illustrates how data travels from source to destination with and without the introduction of a dynamic 
NSC architecture. Today, each and every data  packet has to be processed by a predefined series of (often 
hardware-based) “services” such as a security gateway service, a Deep Packet Inspection service (DPI), a 
firewall (FW), a load balancer, and so on. Fig. 1 is representative of what NSC principles can accomplish, 
resulting in a dynamic, software-configurable and upgradable system. NSC provides the means so that data can 
flow naturally without the intervention imposed by different services residing at different nodes. Network 
services can be implemented as part of a dynamic chain where each flow is processed by various service 
functions thus avoiding the need for deploying different physical network elements. Hence, NSC benefits from 
virtualization, allowing physical entities, whether manually configured or implemented with software, to be 
integrated seamlessly at a higher layers. 

 
 

 
Figure 1: The bold orange line depicts traditional service creation models, following a predefined order of monolithic 

service elements. The dashed black line depicts dynamic NSC, passing physical and virtual service functions embedded into 

different network domains. 
 
 
Another example of the benefits of adopting dynamic NSC is depicted in Fig. 2. When data travels in the 

same network (e.g. communication between two users who belong in the same network) it goes through 
different policy enforcement points, balancers, security gateways, traffic schedulers, etc., which may be in 
software or in hardware depending on the size and the complexity of the network. The goal of these elements is 
to provide better security and fairness to the end users. However, when traffic has to traverse different network 
domains, additional operator investment in terms of software and hardware are required, e.g. in the form of a 
provider edge (PE) gateway which consists of software (different policy elements) and hardware for routing and 
forwarding the traffic. In these cases, things become more complex and data may experience heavy deterioration 
in terms of delay depending on the cross-domain network load and the number of the policy elements through 
which this data is passing. With dynamic NSC implemented in each of the network domains and by exploiting 



 

the NSC functionality on the PE elements, it will lead to more intelligent traffic steering and thus provide traffic 
performance acceleration. Sensitive data and multimedia flows can cross different networks in a reliable and, 
more importantly, predictable manner when NSC is implemented in the edge of the different network domains. 

  

 
Figure 2 Service provider network interconnection 

 

 
However, dynamic service chaining and the evolution of network virtualization from data centers into carrier 

networks do not come without their own challenges. Due to the dynamic nature of the service path, it will no 
longer be feasible to allow for lengthy discovery processes separating the fulfillment and assurance steps. In 
addition, each network service chain could evolve automatically to include new service components, if 
necessary, or shed components that are no longer needed at run time. The flexible bundling of service 
components customized to individual subscribers will lead NSC operators to manage large numbers of services 
and service instances. This is unlike the current operational environment, where carriers manage dozens of 
services, which apply to millions of subscribers. To be able to handle large numbers of flexibly created dynamic 
network services, we define continuous network service delivery as the operator ability to introduce customized 
services at a rapid pace while maintaining carrier-grade end-user quality of experience.  

 

IV. NSC RESEARCH DIRECTIONS  

In order to enable dynamic NSC in future operator networks, several challenges need to be addressed. This 
section follows the lifecycle of a compound service realized via NSC, which includes description and 
programming, service instance deployment, continuous network service delivery, as well as security, and 
identifies the associated research directions. 

 

A. NSC Description and Programming 

Network service chains can be considered as particular cases of service composition. As a research topic, 
service composition has been studied extensively before [8][9]. Research questions which are still open include 
optimization strategies for decomposition and aggregation of services and service blocks, service modeling 
languages, design for personalization, mobility, context awareness and adaptation, modeling and enforcement of 
policies, risk and trust.  

Although every link in the service chain could be treated as a service on its own, it is yet unclear to what 
extent the aggregation of service blocks needs to be performed through interfaces that are highly descriptive or 
whether simple REST-ful interfaces might be more appropriate for the task. There are similarities between 
characteristics that are desirable for chain links and the netlet concept from the NENA architecture [10].  

Recent work in the domain of network programming languages (such as Pyretic [11] and Maple [12]) shows 
how to implement network functionality by controlling the flow space in an SDN/OpenFlow switch in a 
programmatic manner. Netcore [13] allows policies to be described in terms of arbitrary functions that cannot be 
directly realized on physical switches. To handle such policies, the compiler generates an underestimation of the 
overall policy using a simple static analysis, and then uses partial evaluation to refine this underestimation at run 
time using the actual packets seen in the network. Less generic solutions, such as SIMPLE [14], have been 
proposed to address challenges related to mapping towards physical resources and controller visibility into the 
functionality exposed by a middlebox.  

The environment of a dynamic service chain calls for programming languages that address complex policies 
in accordance to the packet processing capabilities in the chain links. For instance, complex functionality, such 
as caching or intrusion detection, needs programmability constructs that go beyond simple manipulation of flow 
tables and address handling. As service chains will be deployed on both physical and virtual infrastructures, it is 
reasonable to believe that virtual switches may in time develop characteristics that are beyond the reach of their 
physical counterparts in terms of flexibility, feature complexity and frequency in release cycles.  

Ways to accurately describe the service characteristics are needed in order to enable automated NSC 
deployment and optimization. Service description needs to cover both the service level and resources involved, 



 

from hardware (or a virtual representation) and software point of view. The problem of accurately describing 
high-level services has been tackled from different angles. The Grid community has focused its efforts on 
Semantic Grid and OGSA [15]. The cloud computing community has been working on the topic too [16]. 
Regarding resource description languages with a network orientation, some work is available in the literature 
(e.g. VXDL[17]). From a NSC perspective, VXDL includes temporal constraints difficult to synchronize 
between orchestration engines, and not directly supported by resources. 

Dynamic service chains are expected to be instantiated in large numbers, likely in the order of the number of 
subscribers to a particular network. Service and resource description languages need to address such scalability 
aspects natively in order to allow for efficient deployment. Beyond simple temporal constraints, other 
constraints related to QoS, resource sharing and mobility, security and energy efficiency need to be supported. 
Particular attention needs to be paid to describing network flows (in OpenFlow terms) that must be forwarded 
between elements. This task is not trivial because the OpenFlow flow-match-action definition is so rich (and 
starting with version 1.2, expandable) that the possibilities for aggregating, dividing and defining flows are 
almost endless. 

Virtualization technologies enable resource sharing in a transparent manner between multiple service chain 
instances. In an OpenFlow context, the OFELIA Control Framework [18], Layer 2 Prefix-based Network 
Virtualization [19], FlowVisor [20] and FlowN [21] are examples in this respect. Dynamic flow reconfiguration 
at the architectural level of the infrastructure by different actors owning different service chain instances will 
have a large impact on scalability requirements (mainly in terms of signaling) which must be addressed. Virtual 
machine migration can, too, impact behavior at the flow level and lead to sub-optimal resource utilization when 
the virtual and physical infrastructure descriptions are not able to encompass all applicable constraints. 
Maintaining optimal resource usage under such dynamic conditions requires adaptive monitoring and 
optimization approaches, crucial for tracking and optimizing resources between multiple service instances 
relative to usage and policy constraints. 

The definition of a dynamic service chain needs to facilitate monitoring and problem troubleshooting for 
chain instances under live operations. Certain steps were made in this direction, ranging from more theoretical 
proposals such as [22], to specifying a set of key performance indicators as part of the Service Measurement 
Index [23] and developing Application Programming Interfaces (API) such as the TMForum Simple 
Management API [24]. The exchange of service monitoring information is generally well understood and 
challenges relate more to the shear amount of information to be provided as well as privacy concerns. However, 
as illustrated by the discussion in the IETF ALTO working group regarding privacy requirements in the 
exchange of topology data [25], certain information that could be used to facilitate troubleshooting is considered 
sensitive by the providers. More than a simple modeling exercise, determining what troubleshooting-related 
information needs to be made available between links in a dynamic service chain requires establishing a balance 
between the utility of every bit exposed versus the potential business risks. However, in order to facilitate 
troubleshooting via automated tools, fairly detailed information as well as troubleshooting-related actuators need 
to become available through programmatic interfaces. 

 

B. Service Instance Deployment 

Datacenter networking is typically based on rather homogeneous platforms. In stark contrast, 
telecommunications gear has traditionally used a mixture of different components, such as network processors, 
ASICs, and a wide variety of processing elements. Heterogeneity limits platform openness to general 
programmers. In practice, it is difficult to allow anyone but the network equipment manufacturer to create, 
install and deploy software on physical devices. 

Future network equipment, suitable for NSC, could follow the SDN datacenter model, i.e. migrate toward a 
universal node paradigm, in which the computation and storage resource architecture is mutated from the 
standard high-volume hardware deployed in datacenters. This would lead the entire path from network edge to 
datacenter to be seen as a homogeneous programmable platform, enabling software deployment at any place of 
this (long) programmable path. Similarly, currently monolithic (and complex) functions can be split into several 
components, each one running at the location that is the best suited for the overall service operation. 

As an illustrative example, consider a complex function running on current networks such as a Broadband 
Remote Access Server (BRAS), which is typically implemented as a dedicated network element with deeply 
integrated monolithic software. NSC based on universal nodes, on the other hand, would allow function 
refactoring into modules, with some of them executed at the network edge (e.g., user session termination), 
others in the core (e.g., content caching), and the rest in the datacenter (e.g., user authentication). From the 
network operator point of view, this NSC-based  BRAS is a unique function, without any reference to the exact 
physical location of different modules. In principle, automatic dispatchers would optimize the location of each 
component of this function by (dynamically) relocating each module based on different parameters such as its 
CPU/memory requirements, the network traffic generated by the communication between different modules, 
and so on. 

While service chaining distributed across the operator network and datacenters is a likely way forward, 
future physical architectures of network devices are not clear yet, which opens up an entire area of research. For 



 

instance, one option is to have virtual network devices that result from the aggregation of several distinct 
components, such as a network switch combined with a set of traditional servers with processing and storage 
resources. A second option would be to integrate diverse resources (e.g., components specifically targeting net-
work tasks such as network processors or ASICs, plus general purpose hardware such as mainstream CPUs, 
memory, etc.) in each device. A third option would avoid altogether network-specific components in deployed 
gear, assuming that the overall performance through the use of solely general purpose hardware is acceptable. In 
fact, it is worth mentioning that network functions may also include data plane components, i.e., modules that 
need to inspect, and potentially modify, large amounts of network traffic and therefore benefit from dedicated 
hardware accelerators in network devices. 

A second important research question is independent from the physical architecture of future network 
devices and relates to the modular design of network functions. For instance, at one end of the spectrum we may 
have a single, monolithic function that can be installed at any network location. On the other end, we can 
imagine a highly granular partition of the same function into very small components such as regular expression 
matching, lookup table processing, etc., with each one operating at a different location of a programmable path. 

Finally, mapping service chain components to available resources in the network is still an open research 
topic. A mapping function needs to determine where certain blocks may be installed. This component may 
require additional performance monitoring models that measure/predict resource state and provide input to the 
mapping functions. When multiple mappings are possible, an optimal solution imposing constraints on the 
amount of resources to be reserved for these blocks (CPU cycles, memory, network interfaces, physical location 
and so on) could be chosen, or some other policy may be selected. Such optimization problems have long been 
known as NP-hard ([26][27][28]) and various heuristics were developed to make them computationally 
tractable. Methods based on probabilistic approaches, capable of accounting for uncertainty and variations in the 
network, are promising in this respect [29][30][31]. 

 

C. Continuous Network Service Delivery 

Service chains may be assembled manually through a user interface or dynamically via algorithmic 
development. Either way, operators can no longer afford extensive field trials before introducing new services 
and changes. Instead, they need to be empowered with a toolbox that facilitates daily operations and 
troubleshooting, in a fashion similar to the DevOps tools gaining popularity in the IT world [32]. DevOps 
includes tools common to both development and operations teams. In SDN, the connection between 
implementing network policies and easily determining the source of performance problems was highlighted by 
Kim and Feamster [33]. 

DevOps borrows from agile software development methodologies in order to facilitate cross-team 
communication and greatly increase infrastructure automation. In this context, workflow definition for testing, 
validation and troubleshooting may be considered a challenge. As discussed in [34], even software-defined 
networks require a fairly complex and time-consuming constructed workflow in order to troubleshoot network 
functionality using state of the art tools. Dynamic service chains need such workflows to be tailored to their 
needs which can evolve dynamically. Therefore we need mechanisms to track and incorporate such changes in 
troubleshooting processes and tools.  

NSC also calls for modern model checking methods as testing must be performed before a service instance is 
activated and delivered to the customer. Due to the dynamic properties of the chain, currently defined static 
methods used today for checking, e.g. connectivity services (ITU T-Y.1564), are not suitable. Software 
development model checking techniques have recently been employed in an SDN context [35]. However, model 
checking for dynamic service chains ought to address a series of challenges in terms of the number of instances 
that could be tested simultaneously on a given infrastructure and duration of tests. The effectiveness of such 
approaches is currently limited by the state-space explosion due to the composition of service chain segments. 
Moreover, it would be natural that such checkers are generated on demand and automatically configured to 
account for policy restrictions for particular chains. This line of work appears very promising as we move 
forward in NSC research. 

As service chains are deployed, we need an infrastructure that dynamically keeps track and can “zoom in” 
on particular components that could be problematic within a chain, i.e. we would like to have programmable 
observation points within each chain covering both network and service components. With programmable, we 
mean that the observation points are embedded within the service chain at service definition time alongside 
other policies. As a result, the infrastructure can perform situation analysis in an autonomic fashion, determine 
the exact context, decide and react to changing conditions, e.g. when to implement the service instance 
migration. 

 Furthermore, programmability also means the possibility to programmatically assemble basic observation 
constructs (such as counters, active measurement capabilities, etc.) into tailor-made tools that can detect specific 
problems at various service chain components. This type of functionality obviously requires tradeoffs between 
security, confidentiality, visibility, and resource consumption when it comes to infrastructure internal 
observation capabilities and the level of exposure toward the customer on the service chain interface. 
Furthermore, the required dynamicity should be implemented with low signaling overhead towards the 



 

infrastructure. Information will be mapped to the troubleshooting workflow, summarized and presented in a 
manner that makes it easier for human operators to take a decision on further actions.  

With respect to the vantage point over the entire set of service chains deployed in the field, scalable 
observability is a major concern. Wide-scale deployment of programmable observation points may potentially 
lead to huge amounts of monitoring data. In practice, for highly dynamic large-scale systems, a reasonable 
tradeoff is to avoid reflecting the exact network state information continuously and at a very fine granularity. 
Network state can be approximated, reaching a balance between estimation accuracy and degree of tolerable 
uncertainty. In other words, capturing the network state in an accurate, efficient and scalable manner requires 
monitoring components that are adaptive to changing network conditions - a promising research area in NSC. 
Scalable and flexible tools for SDN fault management and performance monitoring also require efficient real-
time data processing to handle massive amounts of network data, for example by combining probabilistic 
approaches [36] and big data analytics.  

 

D. Security Considerations 

NSC introduces interesting security research topics for different reasons. From a classic security domain 
point of view, a service chaining process (which takes place in the provider domain) might be triggered by an 
end user (which is in another domain). Note that today the user domain relies on various legacy access networks 
that connect to the core, where connectivity is granted after an authentication process such as PPP or serial 
number matching, with further services requiring additional authentication/authorization processes. These 
techniques are not very well suited to services composed through dynamic NSC as discussed in this paper. 

Short-lived network services, for instance upgrading connectivity performance for a given period (e.g. to 
offer a “premium” service in terms of network delay for supporting online games while one is connecting to a 
game central), bringing the service to targeted users in a single subscriber network (e.g., to benefit only one of 
the home users), or supporting user-service mobility (watching on-demand movies using one’s own subscription 
while visiting friends at their home), are difficult to support with the current schemes. Security demands 
increase if we take into account the deployment of these services not only on the subscriber’s access network, 
but on visited access networks too. Additional services that will rely on a richer definition of security services 
include delegating rights to other users, e.g., granting access to a service bundle to another user while the 
subscriber is travelling.  A security architecture for dynamic NSC will have to deal not only with legacy and 
lower layer protocols used in access networks today, but also shift from a (CPE) device-based authentication 
model to a user identity based one. To support this vision, research around mixed private/public key 
architectures that will be able to cope with the huge number of users and interactions expected in dynamic NSC 
will need to be undertaken. 

In the provider domain, the use of static services with proprietary equipment has been beneficial in the past 
in terms of security. The dynamic aspect of NSC implies that new effort will be needed in deployment design. In 
fact, it is widely recognized that virtualization technologies can help to control the scope in which services are 
deployed. Finally, as Quinn et al [1] already detect, but do not elaborate on, there are clear security implications 
on data and control plane management when deploying NSC which future research ought to consider. 

 

V. FUTURE WORK   

After detailing the relevant research directions in NSC, we take the opportunity to introduce the EU-funded 
FP7 project UNIFY, which sets out to tackle many of the issues mentioned above through a holistic approach 
[37]. The core project aim is to provide the means for flexible service creation within the context of unified 
cloud and carrier networks, especially focusing on network functions. Specifically, UNIFY finds current carrier 
networks to be slow, rigid in terms of functions and resources, and inflexible with respect to service creation. 
Thus, UNIFY envisions an architecture where the entire network from home devices to data centers forms a 
unified production environment. As a consequence, an NSP can distribute functions and state anywhere in the 
network, aided by automated orchestration engines. In other words, UNIFY envisions an automated, dynamic 
service creation platform, leveraging fine-granular NSC. 

To accomplish such a unified production environment, the project will focus on four key aspects. First, 
UNIFY will consider the network services for a converged fixed-mobile network and study the decomposition 
of these traditional network functions into more fine granular components. UNIFY will identify the minimal set 
of components which, once in place, can provide more flexibility for network service chaining. Second, UNIFY 
will define a service abstraction model and a proper service creation language suitable for dynamic NSCs. This 
includes aspects dealing with orchestration and network function placement optimization through novel 
algorithms, enabling the automatic placement of networking, computing and storage components across the 
infrastructure. Third, in the framework of Service Provider DevOps, new management technologies will be 
developed, based on the experience from data centers, and integrated into the orchestration architecture, 
addressing the challenges of dynamic service chaining. Finally, UNIFY will evaluate the applicability of a 
universal node based on commodity hardware in order to support both network functions and traditional data 
center workloads, with an investigation of the need of hardware acceleration. 



 

VI. CONCLUSION  

This paper discussed network service chaining in the context of future infrastructure networks. After 
illustrating how service chains are crafted today, we motivated the need for dynamic NSC and presented how 
service chains can be employed in future operator networks in order to provide cost reductions, increased 
flexibility, and time-to-market acceleration throughout the network. We then went through our design 
considerations for NSC, including the key role it can play in accelerating the design, implementation and 
deployment of novel service offerings in infrastructure networks as well as the potential for carrier CAPEX and 
OPEX reduction. The key contribution of this paper is a detailed array of research directions in the context of 
NSC, including service instance deployment, network service definition, programming, and operations, as well 
as the concept of continuous network service delivery. Finally, we summarized how the EU- FP7 UNIFY 
project aims to address some of the research challenges introduced in this paper. 

Dynamic NSC is a very promising research area with several topics that will need to address challenges 
which hitherto were unknown in telecommunications networks. For example, service chain “debugging” in an 
NSC era and the corresponding network fault isolation processes today entail completely different aspects. 
Therefore, research results towards dynamic NSC will have significant impact in the way we design, operate, 
and maintain networks in the coming years. Furthermore, in contrast to major players in datacenter networking, 
network infrastructure carriers prefer solutions that are interoperable and have global reach and applicability. As 
such, we also expect that as research in NSC matures and is demonstrated to work well in practice, some of the 
NSC focus will be diverted towards interoperable solutions across operator networks and thus international 
standardization.  
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