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Abstract

We explore the dependence structure in the sampled sequence of complex networks.
We consider randomized algorithms to sample the nodes and study extremal
properties in any associated stationary sequence of characteristics of interest like node
degrees, number of followers, or income of the nodes in online social networks, which
satisfy two mixing conditions. Several useful extremes of the sampled sequence like the
kth largest value, clusters of exceedances over a threshold, and first hitting time of a
large value are investigated. We abstract the dependence and the statistics of extremes
into a single parameter that appears in extreme value theory called extremal index (EI).
In this work, we derive this parameter analytically and also estimate it empirically. We
propose the use of EI as a parameter to compare different sampling procedures. As a
specific example, degree correlations between neighboring nodes are studied in detail
with three prominent random walks as sampling techniques.

Keywords: Network sampling; Extreme value theory; Extremal index; Random walks
on graph

Introduction
Data from real complex networks shows that correlations exist in various forms, for
instance the existence of social relationships and interests in social networks. Degree cor-
relations between neighbors, correlations in income, followers of users, and number of
likes of specific pages in social networks are some examples, to name a few. These kind of
correlations have several implications in network structure. For example, degree-degree
correlation manifests itself in assortativity or disassortativity of the network [1].
We consider very large complex networks where it is impractical to have a complete

picture a priori. Crawling or sampling techniques can be employed in practice to explore
such networks by making the use of application programming interface (API) calls or
HTML scrapping. We look into randomized sampling techniques which generate sta-
tionary samples. As an example, random walk-based algorithms are in use in many cases
because of several advantages offered by them [2, 3].
We focus on the extremal properties in the correlated and stationary sequence of char-

acteristics of interest X1, . . . ,Xn which is a function of the node sequence, the one actually
generated by sampling algorithms. The characteristics of interest, for instance, can be
node degrees, node income, number of followers of the node in online social networks
(OSN), etc. Among the properties, clusters of exceedances of such sequences over high
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thresholds are studied in particular. The cluster of exceedances is roughly defined as
the consecutive exceedances of {Xn} over the threshold {un} between two consecutive
non-exceedances. For more rigorous definitions, see [4–6]. It is important to investi-
gate stochastic nature of extremes since it allows us to collect statistics or opinions more
effectively in the clustered (network sampling) process.
The dependence structure of sampled sequence exceeding sufficiently high thresholds

is measured using a parameter called extremal index (EI), θ . It is defined in extremal value
theory as follows.

Definition 1. ([7], p. 53) The stationary sequence {Xn}n≥1, with F as the marginal dis-
tribution function andMn = max{X1, ...,Xn}, is said to have the extremal index θ ∈ [ 0, 1]
if for each 0 < τ < ∞ there is a sequence of real numbers (thresholds) un = un(τ ) such
that

lim
n→∞ n(1 − F(un)) = τ and (1)

lim
n→∞P{Mn ≤ un} = e−θτ . (2)

The maximaMn is related to EI more clearly as ([4], p. 381)1

P{Mn ≤ un} = Fnθ (un) + o(1). (3)

When {Xn}n≥1 is independent and identically distributed (i.i.d.) (for instance, in uniform
independent node sampling), θ = 1 and point processes of exceedances over threshold
un converges weakly to homogeneous Poisson process with rate τ as n → ∞ ([4], chapter
5). But when 0 ≤ θ < 1, point processes of exceedances converges weakly to compound
Poisson process with rate θτ and this implies that exceedances of high threshold values
un tend to occur in clusters for dependent data ([4], chapter 10).
EI has many useful interpretations and applications like

• Finding distribution of order statistics of the sampled sequence. These can be used to
find quantiles and predict the kth largest value which arise with a certain probability.
Specifically for the distribution of maxima, Eq. 3 is available and the quantile of
maxima is proportional to EI. Hence in case of samples with lower EI, lower values of
maxima can be expected. When sampled sequence is the sequence of node degrees,
these give many useful results.

• Close relation to the distribution and expectation of the size of clusters of
exceedances (see for e.g. [4, 6]).

• Characterization of the first hitting time of the sampled sequence to (un,∞). Thus in
case of applications where the aim is to detect large values of samples quickly, without
actually employing sampling (which might be very costly), we can compare different
sampling procedures by EI: smaller EI leads to longer waiting of the first hitting time.

These interpretations are explained later in the paper. The network topology as well as the
sampling method determine the stationary distribution of the characteristics of interest
under a sampling technique and is reflected on the EI.

Our contributions

The main contributions in this work are as follows. We associated extremal value theory
of stationary sequences to sampling of large complex networks, and we study the extremal
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and clustering properties of the sampling process due to dependencies. In order to
facilitate a painless future study of correlations and clusters of samples in large networks,
we propose to abstract the extremal properties into a single and handy parameter, EI.
For any general stationary samples meeting two mixing conditions, we find that knowl-
edge of bivariate distribution or bivariate copula is sufficient to compute EI analytically
and thereby deriving many extremal properties. Several useful applications of EI (first
hitting time, order statistics, and mean cluster size) to analyze large graphs, known only
through sampled sequences, are proposed. Degree correlations are explained in detail
with a random graph model for which joint degree distribution exists for neighbor nodes.
Three different random walk-based algorithms that are widely discussed in literature
(see [2] and the references therein) are then revised for degree state space, and EI is
calculated when the joint degree distribution is bivariate Pareto. We establish a general
lower bound for EI in PageRank processes irrespective of the degree correlation model.
Finally, using two estimation techniques, EI is numerically computed for a synthetic graph
with neighbor degrees correlated and for two real networks (Enron email network and
DBLP network).
The paper is organized as follows. In section “Calculation of extremal index (EI)”, meth-

ods to derive EI are presented. Section “Degree correlations” considers the case of degree
correlations. In section “Description of the configuration model with degree-degree cor-
relation”, the graph model and correlated graph generation technique are presented.
Section “Description of random walk-based sampling processes” explains the different
types of random walks studied and derives associated transition kernels and joint degree
distributions. EI is calculated for different sampling techniques later in section “Extremal
index for bivariate Pareto degree correlation”. In section “Applications of extremal index
in network sampling processes”, we provide several applications of EI in graph sampling
techniques. In section “Estimation of extremal index and numerical results”, we esti-
mate EI and perform numerical comparisons. Finally, section “Conclusions” concludes
the paper.
A shorter version of this work has appeared in [8].

Calculation of extremal index (EI)
We consider networks represented by an undirected graph G with N vertices and M
edges. Since the networks under consideration are huge, we assume it is impossible to
describe them completely, i.e., no adjacency matrix is given beforehand. Assume any
randomized sampling procedure is employed and let the sampled sequence {Xi} be any
general sequence.
This section explains a way to calculate EI from the bivariate joint distribution if the

sampled sequence admits two mixing conditions.

Condition (D(un)).∣∣P(Xi1 ≤ un, . . . ,Xip ≤ un,Xj1 ≤ un, . . . ,Xjq ≤ un)

−P(Xi1 ≤ un, . . . ,Xip ≤ un)P(Xj1 ≤ un, . . . ,Xjq ≤ un)
∣∣≤ αn,ln ,

where αn,ln → 0 for some sequence ln = o(n) as n → ∞, for any integers i1 ≤ . . . < ip <

j1 < . . . ≤ jq with j1 − ip > ln.
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Condition (D′′(un)).

lim
n→∞ n

rn∑
m=3

P(X1 > un ≥ X2,Xm > un) = 0,

where (n/rn)αn,ln → 0 and ln/rn → 0 with αn,ln , ln as in Condition D(un) and rn as o(n).

Let C(u, v) be a bivariate copula [9] ([ 0, 1]2 →[ 0, 1]) and 1 · ∇C(u, v) is its directional
derivative along the direction (1, 1). Using Sklar’s theorem ([9], p. 18), with F as the
marginal stationary distribution function of the sampling process, the copula is given by

C(u, v) = P(X1 ≤ F−1(u),X2 ≤ F−1(v)),

where F−1 denotes the inverse function of F . This representation is unique if the
stationary distribution F(x) is continuous.

Theorem 1. If the sampled sequence is stationary and satisfies conditions D(un) and
D′′(un), and the limits in Eqs. 1 and 2 take place, then the extremal index is given by

θ = 1 · ∇C(1, 1) − 1, (4)

and 0 ≤ θ ≤ 1.

Proof. For a stationary sequence {Xn} holding conditionsD(un) andD′′(un), if the limits
in Eqs. 1 and 2 take place, θ = limn→∞ P(X2 ≤ un|X1 > un) [10]. Then, we have

θ = lim
n→∞

P(X2 ≤ un,X1 > un)
P(X1 > un)

= lim
n→∞

P(X2 ≤ un) − P(X1 ≤ un,X2 ≤ un)
P(X1 > un)

= lim
n→∞

P(X2 ≤ un) − C
(
P(X1 ≤ un), P(X2 ≤ un)

)
1 − P(X1 ≤ un)

= lim
x→1

x − C(x, x)
1 − x

= 1 · ∇C(1, 1) − 1,

which completes the proof.

Remark 1. Condition D′′(un) can be made weaker to D(k)(un) presented in [11],

lim
n→∞ nP

(
X1 > un ≥ max

2≤i≤k
Xi, max

k+1≤j≤rn
Xj > un

)
= 0,

where rn is defined as in D′′(un). For the stationary sequence, D(2)(un) is identical to
D′′(un). If we assume D(k) is satisfied for some k ≥ 2 along with D(un), then following the
proof of Theorem 1, EI can be derived as

θ = 1 · ∇Ck(1, . . . , 1) − 1 · ∇Ck−1(1, . . . , 1),

where Ck(x1, . . . , xk) represents the copula of k-dimensional vector (x1, . . . , xk), Ck−1 is its
(k − 1)th marginal, Ck−1(x) = Ck−1(x1, . . . , xk−1, 1), and 1 · ∇Ck(x1, . . . , xk) denotes the
directional derivative of Ck(x1, . . . , xk) along the k-dimensional vector (1, 1, . . . , 1).
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In some cases, it is easy to work with the joint tail distribution. Survival copula Ĉ(·, ·)
which corresponds to

P(X1 > x,X2 > x) = Ĉ(F(x), F(x)),

with F(x) = 1 − F(x), can also be used to calculate θ . It is related to copula as Ĉ(u,u) =
C(1 − u, 1 − u) + 2u − 1 ([9], p. 32). Hence, θ = 1 · ∇C(1, 1) − 1 = 1 − 1 · ∇ Ĉ(0, 0).
Lower tail dependence function of survival copula is defined as [12]

λ(u1,u2) = lim
t→0+

Ĉ(tu1, tu2)
t

.

Hence, 1 · ∇ Ĉ(0, 0) = λ(1, 1). λ can be calculated for different copula families. In par-
ticular, if Ĉ is a bivariate Archimedean copula, then it can be represented as Ĉ(u1,u2) =
ψ

(
ψ−1(u1) + ψ−1(u2)

)
, where ψ is the generator function and ψ−1 is its inverse with

ψ : [ 0,∞]→[ 0, 1] meeting several other conditions. If ψ is a regularly varying distri-

bution with index −β , β > 0, then λ(x1, x2) =
(
x−β−1

1 + x−β−1

2

)−β

and (X1,X2) has a
bivariate regularly varying distribution [12]. Therefore, for Archimedean copula family,
EI is given by

θ = 1 − 1/2β . (5)

As an example, bivariate Pareto distribution of the form P(X1 > x1,X2 > x2) = (1 +
x1 + x2)−γ , γ > 0 has Archimedean copula with generator function ψ(x) = (1 + x)−γ .
This gives θ = 1 − 1/2γ . Bivariate exponential distribution of the form

P(X1 > x1,X2 > x2) = 1 − e−x1 − e−x2 + e−(x1+x2+ηx1x2),

0 ≤ η ≤ 1, also admits Archimedean copula.

Check of conditions D(un) and D′′(un) for functions of Markov samples

If the sampling technique is assumed to be based on a Markov chain and the sampled
sequence is a measurable function of stationary Markov samples, then such a sequence is
stationary and [13] proved that anothermixing condition AIM(un)which impliesD(un) is
satisfied. Condition D′′(un) allows clusters with consecutive exceedances and eliminates
the possibility of clusters with upcrossing of the threshold un (Xi ≤ un < Xi+1). Hence in
those cases, where it is tedious to check the condition D′′(un) theoretically, we can use
numerical procedures to measure ratio of number of consecutive exceedances to num-
ber of exceedances and the ratio of number of upcrossings to number of consecutive
exceedances in small intervals. Such an example is provided in section “Extremal index
for bivariate Pareto degree correlation”.

Remark 2. The EI derived in [14] has the same expression as in Eq. 4. But [14] assumes
{Xn} is sampled from a first-order Markov chain. We relax the Markov property require-
ment to D and D′′ conditions, and the example below demonstrates a hiddenMarkov chain
that can satisfy D and D′′.

Let us consider a hidden Markov chain with the observations {Xk}k≥1 and the
underlying homogeneous Markov chain as {Yk}k≥1 in stationarity. The underlying
Markov chain is finite state space, but the conditional distributions of the observations
P(Xk ≤ x|Yk = y) = Fy(x) have infinite support and condition Eq. 1 holds for
Fy(x).
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Proposition 1. When condition Eq. 1 holds for Fy(x), the observation sequence {Xk}k≥1
of the hidden Markov chain satisfies Condition D′′.

Proof. Let the transition probability matrix of {Yk}k≥1 be P (with P(Y2 = j|Y1 = i) = Pij)
and the stationary distribution be π (with P(Y1 = i) = πi). We have,

P(X1 > un ≥ X2,Xm > un)

=
∑
i,j,k

P(Y1 = i,Y2 = j,Ym = k)P(X1 > un ≥ X2,Xm > un|Y1,Y2,Ym)

=
∑
i,j,k

πiPijP(m−2)
jk Pi(X1 > un)Pj(X2 ≤ un)Pk(Xm > un)

∼
∑
i,j,k

πiPijP(m−2)
jk

τ

n

(
1 − τ

n

) τ

n
, n → ∞.

Thus

lim
n→∞ n

rn∑
m=3

P(X1 > un ≥ X2,Xm > un) = 0,

since rn = o(n), which completes the proof.

Proposition 1 essentially tells that if the graph is explored by aMarkov chain-based sam-
pling algorithm and the samples are taken as any measurable functions of the underlying
Markov chain, satisfying Condition (1) then Condition D′′ holds. Measurable functions,
for example, can represent various attributes of the nodes such as income or frequency of
messages in social networks.

Degree correlations
The techniques established in section “Calculation of extremal index (EI)” are very gen-
eral, applicable to any sampling techniques and any sequence of samples which satisfy
certain conditions. In this section, we illustrate the calculation of EI for dependen-
cies among degrees. We revise different sampling techniques. We denote the sampled
sequence {Xi} as {Di} in this section, since the sampled degree sequence will be a case
study in this section.

Description of the configuration model with degree-degree correlation

To test the proposed approaches and the derived formulas, we use a synthetically gen-
erated configuration type random graph with a given joint degree-degree probability
distribution, which takes into account correlation in degrees between neighbor nodes.
The dependence structure in the graph is described by the joint degree-degree probabil-
ity density function f (d1, d2) with d1 and d2 indicating the degrees of adjacent nodes or
equivalently by the corresponding tail distribution function F(d1, d2) = P(D1 ≥ d1,D2 ≥
d2) with D1 and D2 representing the degree random variables (see e.g., [1, 15, 16]).
The probability that a randomly chosen edge has the end vertices with degrees d1 ≤ d ≤

d1 + �(d1) and d2 ≤ d ≤ d2 + �(d2) is (2 − δd1d2)f (d1, d2)�(d1)�(d2). Here δd1d2 = 1
if d1 = d2, otherwise δd1d2 = 0. The multiplying factor 2 appears on the above expression
when d1 
= d2 because of the symmetry in f (d1, d2), f (d1, d2) = f (d2, d1) due to the
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undirected nature of the underlying graph and the fact that both f (d1, d2) and f (d2, d1)
contribute to the edge probability under consideration.
The degree density fd(d1) can be related to the marginal of f (d1, d2) as follows:

f (d1) =
∫
d2
f (d1, d2)d(d2) ≈ d1fd(d1)

E[D]
, (6)

where E[D] denotes the mean node degree,

E[D]=
[∫ ∫ (

f (d1, d2)
d1

)
d(d1)d(d2)

]−1
.

f (.) can be interpreted as the degree density of a vertex reached by following a randomly
chosen edge. The approximation for f (d1) is obtained as follows: in the right-hand side
(R.H.S.) of Eq. 6, roughly, d1fd(d1)N is the number of half edges from nodes with degree
around d1 and E[D]N is the total number of half edges. For discrete distributions, Eq. 6
becomes equality.
From the above description, it can be noted that the knowledge of f (d1, d2) is sufficient

to describe this random graph model and for its generation.
Most of the results in this paper are derived assuming continuous probability distribu-

tions for f (d1, d2) and fd(d1) because an easy and unique way to calculate EI exists for
continuous distributions in our setup (more details in section “Calculation of extremal
index (EI)”). Also the EI might not exist for many discrete valued distributions [7].

Randomgraph generation

A random graph with bivariate joint degree-degree distribution can be generated as
follows ([17]):

1. Degree sequence is generated according to the degree distribution, fd(d) = f (d)E[D]
d

2. An uncorrelated random graph is generated with the generated degree sequence
using configuration model ([1, 18])

3. Metropolis dynamics is now applied on the generated graph: choose two edges
randomly (denoted by the vertex pairs (v1,w1) and (v2,w2)) and measure the
degrees, (j1, k1) and (j2, k2), that correspond to these vertex pairs and generated a
random number, y, according to uniform distribution in [ 0, 1]. If
y ≤ min(1,

(
f (j1, j2)f (k1, k2)

)
/
(
f (j1, k1

)
f (j2, k2))), then remove the selected edges

and construct news ones as (v1, v2) and (w1,w2). Otherwise, keep the selected
edges intact. This dynamics will generate an instance of the random graph with the
required joint degree-degree distribution. Run Metropolis dynamics well enough to
mix the generating process.

As an example, we shall often use the following bivariate Pareto model for the joint
degree-degree tail function of the graph,

F̄(d1, d2) =
(
1 + d1 − μ

σ
+ d2 − μ

σ

)−γ

, (7)

where σ , μ, and γ are positive values. The use of the bivariate Pareto distribution can be
justified by the statistical analysis in [19].
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Description of randomwalk-based sampling processes

In this section, we explain three different randomwalk-based algorithms for exploring the
network. They have been extensively studied in previous works [2, 3, 20] where they are
formulated with vertex set as the state space of the underlying Markov chain on graph.
The walker in these algorithms, after reaching each node, moves to another node ran-
domly by following the transition kernel of the Markov chain. However, the quantity of
interest is generally a measurable function of the Markov chain. As a case study, let us
again take the degree sequence. We use fX and PX to represent the probability den-
sity function and probability measure under the algorithm X with the exception that fd
represents the probability density function of degrees.

Randomwalk (RW)

In a random walk, the next node to visit is chosen uniformly among the neighbors of the
current node. LetV1,V2, . . . be the nodes crawled by the RW andD1,D2, . . . be the degree
sequence corresponding to the sequence V1,V2, . . ..

Theorem 2. The following relation holds in the stationary regime

fRW(d1, d2) = f (d1, d2), (8)

where f (d1, d2) is the joint degree-degree distribution and fRW(d1, d2) is the bi-variate joint
distribution of the degree sequences generated by the standard random walk.

Proof. We note that the sequence {(Vi,Vi+1)}i≥1 also forms a Markov chain. With the
assumption that the graph is connected, the ergodicity holds for any function g, i.e.,

1
T

T∑
i=1

g(Vi,Vi+1) → Eπ

[
g(Vξ ,Vξ+1)

]
, T → ∞,

where Eπ is the expectation under stationary distribution π of {(Vi,Vi+1)} (which is
uniform over edges) and (Vξ ,Vξ+1) indicates a randomly picked edge. The ergodicity
can then be extended to functions of the degree sequence {(Di,Di+1)} corresponding to
{(Vi,Vi+1)}, and in particular

1
T

T∑
i=1

1 {Di = d1,Di+1 = d2} → Eπ

[
1{Dξ = d1,Dξ+1 = d2}

]
, T → ∞

= 1
M

∑
(p,q)∈E

1
{
Dp = d1,Dq = d2

}
= f (d1, d2), (9)

where 1{A} denotes the indicator function for the eventA. L.H.S. of (9) is an estimator of
fRW(d1, d2). This means that when the RW is in stationary regime E[ 1{Di = d1,Di+1 =
d2}]= Eπ [ 1{Dξ = d1,Dξ+1 = d2}] and hence Eq. 8 holds.

PageRank (PR)

Using Eq. 6, we can approximate the degree sequence by a random walk on degree space
with the following transition kernel:

fRW(dt+1|dt) = E[D] f (dt , dt+1)

dtfd(dt)
, (10)
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where the present node has degree dt and the next node is with degree dt+1. The above
relation holds with equality for discrete degree distribution, but some care needs to be
taken if one uses continuous version for the degree distributions.
If the standard random walk on the vertex set is in the stationary regime, its stationary

distribution (probability of staying at a particular vertex i) is proportional to the degree
(see e.g., [20]) and is given by di/2M,M being the number of edges. Then in the standard
random walk on degree set, the stationary distribution of staying at any node with degree
around d1 can be approximated asNfd(d1) (d1/2M), withN as the number of nodes. Thus

fRW(d1) = d1
E[D]

fd(d1).

Check of the approximation

We provide comparison of simulated values and theoretical values of transition kernel
of RW in Fig. 1. To be specific, we use the bivariate Pareto distribution given (7). In the
figure, N is 5,000. μ = 10, γ = 1.2 and σ = 15. These choices of parameters provide
E[D]= 21.0052. At each instant Metropolis dynamics will choose two edges and it has
run 200,000 times (provides sufficient mixing). The figure shows satisfactory fitting of the
approximation.
PageRank is a modification of the random walk which with a fixed probability 1 − c

samples a random node with uniform distribution and with a probability c, it follows
the random walk transition [3]. Its evolution on degree state space can be described as
follows:

fPR(dt+1|dt) = c fRW (dt+1|dt) + (1 − c)
1
N
Nfd(dt+1)

= c fRW (dt+1|dt) + (1 − c) fd(dt+1). (11)

Here the 1/N corresponds to the uniform sampling on vertex set and 1
NNfd(dt+1)

indicates the net probability of jumping to all the nodes with degree around dt+1.

Consistency with PageRank value distribution

Wemake a consistency check of the approximation derived for transition kernel by study-
ing tail behavior of degree distribution and PageRank value distribution. It is known that

Fig. 1 Transition kernel comparison
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under some strict conditions, for a directed graph, PageRank and Indegree have same
tail exponents [21]. In our formulation in terms of degrees, for uncorrelated and undi-
rected graph, PageRank for a given degree d, PR(d), can be approximated from the basic
definition as,

PR(d) = fPR(d) = c fRW(d) + (1 − c) fd(d).

This is a deterministic quantity. We are interested in the distribution of the random
variable PR(D), PageRank of a randomly chosen degree class D. PageRank PR(d) is also
the long term proportion or probability that PageRank process ends in a degree class
with degree d. This can be scaled suitably to provide a rank-type information. Its tail
distribution is

P(PR(D) > x) = P
(
c.fRW(D) + (1 − c).fd(D) > x

)
,

where D ∼ fd(.). The PageRank of any vertex inside the degree class d is PR(d)/(Nfd(d)).
The distribution of PageRank of a randomly chosen vertex i, P(PR(i) > x) after appro-
priate scaling for comparison with degree distribution is P(N .PR(i) > d̂), where d̂ = Nx.
Now

P(N .PR(i) > d̂) = P
(
N

PR(D)

Nfd(D)
> d̂

)
= P

(
D >

E[D]
c

[
d̂ − (1 − c)

])
.

This of the form P(D > Ad̂ + B) with A and B as appropriate constants and hence will
have the same exponent of degree distribution tail when the graph is uncorrelated.
There is no convenient expression for the stationary distribution of PageRank, to the

best of our knowledge, and it is difficult to come up with an easy to handle expression
for the joint distribution. Therefore, along with other advantages, we consider another
modification of the standard random walk.

Randomwalk with jumps (RWJ)

RW sampling leads to many practical issues like the possibility to get stuck in a discon-
nected component, biased estimators etc. RWJ overcomes such problems [2].
In this algorithm, we follow random walk on a modified graph which is a superposition

of the original graph and complete graph on same vertex set of the original graph with
weight α/N on each artificially added edge, α ∈ [ 0,∞] being a design parameter [2].
The algorithm can be shown to be equivalent to select c = α/(dt + α) in the PageRank
algorithm, where dt is the degree of the present node. The larger the node’s degree, the less
likely is the artificial jump of the process. This modificationmakes the underlyingMarkov
chain time reversible, significantly reduces mixing time, improves estimation error, and
leads to a closed form expression for stationary distribution.
Before proceeding to formulate the next theorem, we recall that the degree distribution

fd(d1) is different from the marginal of f (d1, d2), f (d1).

Theorem 3. The following relation holds in the stationary regime

fRWJ(d1, d2) = E[D]
E[D]+α

f (d1, d2) + α

E[D]+α
fd(d1) fd(d2), (12)
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where f (d1, d2) is the joint degree-degree distribution, fd(d1) is the degree distribution, and
fRWJ(d1, d2) is the bi-variate joint distribution of the degree sequences generated by the
random walk with jumps.

Proof. On the similar lines in the analysis of RW, fRWJ(d1, d2) can be calculated as fol-
lows. The stationary distribution, fRWJ(p), for node p (on the vertex set) is (dp+α)/(2M+
Nα). The transition probability from node p to node q, fRWJ(q|p), is (α/N + 1)/(dp + α)

when there is a link from p to q, and when there is no link, it is (α/N)/(dp + α) [2]. Then,
the joint distribution between nodes is given by

fRWJ(p, q) = fRWJ(q|p)fRWJ(p) =
{ α

N +1
2M+Nα

if p has link to q,
α
N

2M+Nα
if p does not have link to q.

Therefore

fRWJ(d1, d2)

= Eπ

[
1

{
Dξ = d1,Dξ+1 = d2

}]
(a)= 2

α
N + 1

2M + Nα

∑
(p,q)∈E

1
{
Dp = d1,Dq = d2

}
+2

α
N

2M + Nα

∑
(p,q)/∈E

1
{
Dp = d1,Dq = d2

}
(b)= 2

α
N + 1

2M + Nα
Mf (d1, d2)

+2
α
N

2M + Nα

⎛⎝1
2

∑
p∈V

1{Dp = d1}
∑
q∈V

1{Dq = d2} − Mf (d1, d2)

⎞⎠
= E[D]

E[D]+α
f (d1, d2) + α

E[D]+α
fd(d1)fd(d2).

Here E[D]= 2M/N . The multiplying factor 2 is introduced in (a) because of the sym-
metry in the joint distribution fRWJ(p, q) over the nodes, terms outside the summation in
the R.H.S. The factor 1/2 in R.H.S. in (b) is to take into account the fact that only half of
the combinations of (p, q) is needed.

We also have the following. The stationary distribution on degree set by collecting all
the nodes with same degree is

fRWJ(d1) =
(

d1 + α

2M + Nα

)
Nfd(d1)

= (d1 + α) fd(d1)
E[D]+α

. (13)

Moreover, the associated tail distribution has a simple form,

fRWJ(Dt+1 > dt+1,Dt > dt) = E[D] F(dt+1, dt) + αFd(dt+1)Fd(dt)
E[D]+α

. (14)

Remark 3. Characterizing Markov chain-based sampling in terms of degree evolution
has some advantages.
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• In the different random walk algorithms considered on the vertex set, all the nodes
with same degree have same stationary distribution. This also implies that it is more
natural to formulate the random walk evolution in terms of degree.

• For uncorrelated networks, fRW(d1, d2) = fRW(d1)fRW(d2),
fPR(d1, d2) = fPR(d1)fPR(d2) and fRWJ(d1, d2) = fRWJ(d1)fRWJ(d2).

Extremal index for bivariate Pareto degree correlation

As explained in the “Introduction” section, EI is an important parameter in characterizing
dependence and extremal properties in a stationary sequence. We assume that we have
waited sufficiently long that the underlying Markov chain of the three different graph
sampling algorithms are in stationary regime now. Here, we derive EI of RW and RWJ for
the model with degree correlation among neighbors as bivariate Pareto (7).
The two mixing conditions D(un) and D′′(un) introduced in section “Calculation of

extremal index (EI)” are needed for our EI analysis. Condition D(un) is satisfied as
explained in section “Check of conditions D(un) and D′′(un) for functions of Markov
samples.” An empirical evaluation of D′′(un) is provided in section “Check of condition
D′′”.

EI for randomwalk sampling

We use the expression for EI given in Theorem 1. As fRW(x, y) is same as f (x, y), we have,

Ĉ(u,u) = P(D1 > F̄−1(u),D2 > F̄−1(u))

= (
1 + 2(u−1/γ − 1)

)−γ

1 · ∇ Ĉ(u,u) = 2(2 − u1/γ )−(γ+1).

Thus θ = 1 − 1 · ∇ Ĉ(0, 0) = 1 − 1/2γ . For γ = 1, we get θ = 1/2. In this case, we can
also use expression obtained in Eq. 5.

EI for randomwalk with jumps sampling

Although it is possible to derive EI as in RW case above, we provide an alternative way
to avoid the calculation of tail distribution of degrees and inverse of RWJ marginal (with
respect to the bivariate Pareto degree correlation). We assume the existence of EI in the
following proposition.

Proposition 2. When the bivariate joint degree distribution of neighboring nodes are
Pareto distributed as given by Eq. 7 and randomwalk with jumps is employed for sampling,
the EI is given by

θ = 1 − E[D]
E[D]+α

2−γ , (15)

where E[D] is the expected degree, α is the parameter of the random walk with jumps, and
γ is the tail index of the bivariate Pareto distribution.

Proof. Under the assumption of D′′,

θ = lim
n→∞

P(D2 ≤ un,D1 > un)
P(D1 > un)

= lim
n→∞

P(D1 ≥ un) − P(D2 ≥ un,D1 ≥ un)
P(D1 > un)

(16)
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Now using the Condition 1 on the marginal and joint tail distribution of RWJ in Eq. 14,
we can write2

P(D1 ≥ un) − P(D2 ≥ un,D1 ≥ un)
P(D1 > un)

= τ/n + o(1/n) − E[D]
E[D]+α

PRW(D2 ≥ un,D1 ≥ un) − α
E[D]+α

O(τ/n)O(τ/n)

τ/n + o(1/n)

The asymptotics in the last term of the numerator is due to the following:

FRWJ(un) = E[D]
E[D]+α

F(un) + α

E[D]+α
Fd(un) = τ/n + o(1/n),

and hence Fd(un) = O(τ/n). Therefore, Eq. 16 becomes

θ = 1 − E[D]
E[D]+α

lim
n→∞PRW(D2 ≥ un,D1 ≥ un)n/τ

Then in the case of the bivariate Pareto distribution in Eq. 7, we obtain Eq. 15.

Lower bound of EI of the PageRank

We obtain the following lower bound for EI in the PageRank processes.

Proposition 3. For the stationary PageRank process on degree state space Eq. 10 with
EI θ , irrespective of the degree correlation structure in the underlying graph, the EI is
bounded by

θ ≥ (1 − c),

where c is the damping factor in the PageRank algorithm.

Proof. From [13], with another mixing condition AIM(un) which is satisfied for func-
tions of stationary Markov samples (e.g., degree samples) the following representation of
EI holds,

lim
n→∞P{M1,pn ≤ un|D1 > un} ≤ θ , (17)

where {pn} is an increasing sequence of positive integers, pn = o(n) as n → ∞ and
M1,pn = max{D2, ...,Dpn}. LetA be the event that the node corresponding toD2 is selected
uniformly among all the nodes, not following random walk from the node for D1. Then,
PPR(A) = 1 − c. Now, with Eq. 11,

PPR(M1,pn ≤ un|D1 > un) ≥ PPR(M1,pn ≤ un,A|D1 > un)

= PPR(A|D1 > un)PPR(M1,pn ≤ un|A,D1 > un)
(i)= (1 − c)PPR(M1,pn ≤ un),
(ii)= (1 − c)P(pn−1)θ

PR (D1 ≤ un) + o(1)

≥ (1 − c)P(pn−1)
PR (D1 ≤ un) + o(1)

(iii)∼ (1 − c)(1 − τ/n)pn−1, (18)

where {pn} is the same sequence as in Eq. 17 and (i) follows mainly from the observation
that conditioned onA, {M1,pn ≤ un} is independent of {D1 > un}, and (ii) and (iii) result
from the limits in Eqs. 3 and 1, respectively.
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Assuming pn − 1 = n1/2 and since (1 − τ/n)pn−1 ∼ e−τ/
√
n → 1 as n → ∞, from

Eqs. 17 and 18,

θ ≥ 1 − c.

The PageRank transition kernel (Eq. 11) on the degree state space does not depend
upon the random graph model in section “Description of the configuration model with
degree-degree correlation”. Hence, the derived lower bound of EI is useful for any degree
correlation model.

Applications of extremal index in network sampling processes
This section provides several applications of EI in inferring the sampled sequence. This
emphasizes that the analytical calculation and estimation of EI are practically relevant.
The limit of the point process of exceedances,Nn(.), which counts the times, normalized

by n, at which {Xi}ni=1 exceeds a threshold un provides many applications of EI. A cluster
is considered to be formed by the exceedances in a block of size rn (rn = o(n)) in n with
cluster size ξn = ∑rn

i=1 1(Xi > un) when there is at least one exceedance within rn. The
point process Nn converges weakly to a compound poisson process (CP) with rate θτ

and i.i.d. distribution as the limiting distribution of cluster size, under Condition 1 and a
mixing condition, and the points of exceedances in CP correspond to the clusters (see [4],
Section 10.3 for details). We also call this kind of clusters as blocks of exceedances.
The applications below require a choice of the threshold sequence {un} satisfying Eq. 1.

For practical purposes, if a single threshold u is demanded for the sampling budget B, we
can fix u = max{u1, . . . ,uB}.
The applications in this section are explained with the assumption that the sampled

sequence is the sequence of node degrees. But the following techniques are very general
and can be extended to any sampled sequence satisfying conditions D(un) and D′′(un).

Order statistics of the sampled degrees

The order statistics Xn−k,n, (n − k)th maxima is related to Nn(.) and thus to θ by

P(Xn−k,n ≤ un) = P(Nn((0, 1] ) ≤ k),

where we apply the result of convergence of Nn to CP ([4], Section 10.3.1).

Distribution ofmaxima

The distribution of the maxima of the sampled degree sequences can be derived as Eq. 3
when n → ∞.
Hence if the EI of the underlying process is known then from Eq. 3, one can approximate

the (1 − η)th quantile xη of the maximal degreeMn as

P{Mn ≤ xη} = Fnθ (xη) = Pnθ {X1 ≤ xη} = 1 − η,

i.e.,

xη ≈ F−1
(
(1 − η)1/(nθ)

)
. (19)

In other words, quantiles can be used to find the maxima of the degree sequence with
certain probability.
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If the sampling procedures have same marginal distribution, with calculation of EI, it
is possible to predict how much large values can be achieved. Lower EI indicates lower
value for xη and higher represents high xη.
For the random walk example in section “EI for random walk sampling” for the degree

correlation model, with the use of Eq. 19, we get the (1− η)th quantile of the maximaMn

xη ≈ μ + σ

((
1 − (1 − η)1/(nθ)

)−1/γ − 1
)
.

The following example demonstrates the effect of neglecting correlations on the pre-
diction of the largest degree node. The largest degree, with the assumption of Pareto
distribution for the degree distribution, can be approximated as KN1/δ with K ≈ 1, N
as the number of nodes and γ as the tail index of complementary distribution function
of degrees [22]. For Twitter graph (recorded in 2012), δ = 1.124 for out-degree distribu-
tion and N = 537, 523, 432 [23]. This gives the largest degree prediction as 59,453,030.
But the actual largest out-degree is 22,717,037. This difference is because the analysis in
[22] assumes i.i.d. samples and does not take into account the degree correlation. With
the knowledge of EI, correlation can be taken into account as in Eq. 3. In the following
section, we derive an expression for such a case.

Estimation of largest degree when themarginals are Pareto distributed

It is known that many social networks have the degree asymptotically distributed as
Pareto [18]. We find that in these cases, the marginal distribution of degrees of the ran-
domwalk basedmethods also follow Pareto distribution (though we have derived only for
the model with degree correlations among neighbors, see section “Degree correlations”.)

Proposition 4. For any stationary sequence with marginal distribution following Pareto
distribution F̄(x) = Cx−δ , the largest value, approximated as the median of the extreme
value distribution, is given by

Mn ≈ (nθ)1/δ
(

C
log 2

)1/δ
.

Proof. From extreme value theory [4], it is known that when {Xi, i ≥ 1} are i.i.d.,

lim
n→∞P

(
Mn − bn

an
≤ x

)
= Hγ (x), (20)

where Hγ (x) is the extreme value distribution with index γ and {an} and {bn} are appro-
priately chosen deterministic sequences. When {Xi, i ≥ 1} are stationary with EI θ , the
limiting distribution becomes H ′

γ ′(x) and it differs from Hγ (x) only through parameters.

Hγ (x) = exp(−t(x)) with t(x) = (
1 + ( x−μ

σ

)
γ
)−1/γ . With the normalizing constants

(μ = 0 and σ = 1), H ′
γ ′ has the same shape as Hγ with parameters γ ′ = γ , σ ′ = θγ and

μ′ = (θγ − 1)/γ ([4], Section 10.2.3).
For Pareto case, F(x) = Cx−δ , γ = 1/δ, an = γCγ nγ , and bn = Cγ nγ . From Eq. 20,

for large n,Mn is stochastically equivalent to anχ +bn, where χ is a random variable with
distribution H ′

γ ′ . It is observed in [22] that median of χ is an appropriate choice for the

estimation ofMn. Median of χ = μ′ + σ ′
(

(log 2)−γ ′−1
γ ′

)
= (θγ (log 2)−γ − 1)γ −1. Hence,
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Mn ≈ an
(

θγ (log 2)−γ

γ
− 1

)
+ bn

= (nθ)1/δ
(

C
log 2

)1/δ

Relation to first hitting time and interpretations

Extremal index also gives information about the first time {Xn} hits (un,∞). Let Tn be this
time epoch. As Nn converges to compound poisson process, it can be observed that Tn/n
is asymptotically an exponential random variable with rate θτ , i.e., limn→∞ P(Tn/n >

x) = exp(−θτx). Therefore, limn→∞ E(Tn/n) = 1/(θτ). Thus, the smaller EI is, the
longer it will take to hit the extreme levels as compared to independent sampling. This
property is particularly useful to compare different sampling procedures. It can also be
used in quick detection of high degree nodes [22, 24].

Relation to mean cluster size

If Condition D′′(un) is satisfied along with D(un), asymptotically, a run of the consecutive
exceedances following an upcrossing is observed, i.e., {Xn} crosses the threshold un at a
time epoch and stays above un for some more time before crossing un downwards and
stays below it for some time until next upcrossing of un happens. This is called cluster of
exceedances and is more practically relevant than blocks of exceedances at the starting
of this section and is shown in [10] that these two definitions clusters are asymptotically
equivalent resulting in similar cluster size distribution.
The expected value of cluster of exceedances converges to inverse of EI ([4], p. 384), i.e.,

θ−1 = lim
n→∞

∑
j≥1

jπn(j),

where {πn(j), j ≥ 1} is the distribution of size of cluster of exceedances with n samples.
Asymptotical cluster size distribution and its mean are derived in [6].

Estimation of extremal index and numerical results
This section introduces two estimators for EI. Two types of networks are presented:
synthetic correlated graph and real networks (Enron email network and DBLP network
(http://dblp.uni-trier.de/)). For the synthetic graph, we compare the estimated EI to its
theoretical value. For the real network, we calculate EI using the two estimators.
We take {Xi} as the degree sequence and use RW, PR, and RWJ as the sampling tech-

niques. Themethodsmentioned in the following are general and are not specific to degree
sequence or random walk technique.

Empirical copula-based estimator

We have tried different estimators for EI available in literature [4, 14] and found that the
idea of estimating copula and then finding value of its derivative at (1, 1) works with-
out the need to choose and optimize several parameters found in other estimators. We
assume that {Xi} satisfiesD(un) andD′′(un), and we use Eq. 4 for calculation of EI. Copula
C(u, v) is estimated empirically by

http://dblp.uni-trier.de/


Avrachenkov et al. Computational Social Networks  (2015) 2:12 Page 17 of 21

Cn(u, v) = 1
n

n∑
k=1

I

(
RX
ik

n + 1
≤ u,

RY
ik

n + 1
≤ v

)
,

with RX
ik indicates rank of the element Xik in {Xik , 1 ≤ k ≤ n} and RY

ik is defined respec-
tively. The sequence {Xik } is chosen from the original sequence {Xi} in such a way that
Xik and Xik+1 are sufficiently apart to make them independent to a certain extent and
Yik = Xik+1. The large sample distribution of Cn(u, v) is normal and centered at copula
C(u, v). Now, to get θ , we use linear least squares error fitting to find the slope at (1, 1) or
use cubic spline interpolation for better results.

Intervals estimator

This estimator does not assume any conditions on {Xi} but has the parameter u to choose
appropriately. LetN = ∑n

i=1 1(Xi > u) be the number of exceedances of u at time epochs
1 ≤ S1 < . . . < SN ≤ n and let the interexceedance times be Ti = Si+1 − Si. Then
intervals estimator is defined as ([4], p. 391),

θ̂n(u) =
{
min(1, θ̂1n (u)), if maxTi : 1 ≤ i ≤ N − 1 ≤ 2,
min(1, θ̂2n (u)), if maxTi : 1 ≤ i ≤ N − 1 > 2,

where

θ̂1n (u) =
2

(∑N−1
i=1 Ti

)2
(N − 1)

∑N−1
i=1 T2

i
,

and

θ̂2n (u) =
2

(∑N−1
i=1 (Ti − 1)

)2
(N − 1)

∑N−1
i=1 (Ti − 1)(Ti − 2)

.

We choose u as δ percentage quantile thresholds, i.e., δ percentage of {Xi, 1 ≤ i ≤ n}
falls below u,

kδ = min
{
k :

n∑
i=1

1{Xi ≤ Xk}
n

≥ δ

100
, 1 ≤ k ≤ n

}
, u = Xkδ

.

We plot θn vs δ for the intervals estimator in the following sections. The EI is usually
selected as the value corresponding to the stability interval in this plot.

Fig. 2 RW sampling (synthetic graph). a Empirical and theoretical copulas. b Interval estimate and theoretical
value
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Fig. 3 RWJ sampling (synthetic graph): intervals estimate and theoretical value

Synthetic graph

The simulations in the section follow the bivariate Pareto model and parameters intro-
duced in Eq. 7. We use the same set of parameters as for Fig. 1, and the graph is generated
according to the Metropolis technique in section “Random graph generation”.
For the RW case, Fig. 2a shows copula estimator, and theoretical copula-based on the

continuous distribution in Eq. 7, and is given by

C(u,u) = (
1 + 2((1 − u)−1/γ − 1)

)−γ + 2u − 1.

Though we take quantized values for degree sequence, it is found that the copula esti-
mated matches with theoretical copula. The value of EI is then obtained after cubic
interpolation and numerical differentiation of copula estimator at point (1, 1). For the the-
oretical copula, EI is 1−1/2γ , where γ = 1.2. Figure 2b displays the comparison between
the theoretical value of EI and intervals estimate.
For the RWJ algorithm, Fig. 3 shows the interval estimate and theoretical value for dif-

ferent α. We used Eq. 15 for theoretical calculation. The small difference in theory and
simulation results is due to the assumption of continuous degrees in the analysis, but the
practical usage requires quantized version. Here α = 0 case corresponds to RW sampling.
Figure 4 displays the interval estimate of EI with PR sampling. It can be seen that the

lower bound proposed in Proposition 3 gets tighter as c decreases. When c = 1, PR
sampling becomes RW sampling.

Fig. 4 PR sampling (synthetic graph): intervals estimate
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Table 1 Test of Condition D′′ in the synthetic graph

rup (%) rcluster (%)

RW 4 89

PR 7 91

RWJ 5 86

Check of condition D′′

The mixing conditions D(un) and D′′(un) need to be satisfied for using the theory in
section “Calculation of extremal index (EI)”. Though intervals estimator does not require
them, these conditions will provide the representation by Eq. 4. ConditionD(un)works in
this case as explained in previous sections and for D′′(un), we do the following empirical
test. We collect samples for each of the techniques RW, PR, and RWJ with parameters
given in respective figures. Intervals are taken of duration 5, 10, 15, and 20 time samples.
The ratio of number of upcrossings to number of exceedances rup and ratio of number
consecutive exceedances to number of exceedances rcluster are calculated in Table 1. These
proportions are averaged over 2000 occurrences of each of these intervals and over all
the different intervals. The statistics in the table indicates strong occurrence of Condition
D′′(un). We have also observed that the changes in the parameters does not affect this
inference.

Real network

We consider two real-world networks: Enron email network and DBLP network. The
data is collected from [25]. Both the networks satisfy the check for Condition D′′(un)
reasonably well.
For the RW sampling, Fig. 5a shows the empirical copula, and it also mentions corre-

sponding EI. Intervals estimator is presented in Fig. 5b. After observing plateaux in the
plots, we took EI as 0.25 and 0.2 for DBLP and Enron email graphs, respectively.
In case of RWJ sampling, Fig. 6a, b presents the intervals estimator for email-Enron and

DBLP graphs, respectively.

Conclusions
In this work, we have associated extreme value theory of stationary sequences to sam-
pling of large networks. We show that for any general stationary samples (function of
node samples) meeting two mixing conditions, the knowledge of bivariate distribution
or bivariate copula is sufficient to derive many of its extremal properties. The parameter

Fig. 5 RW sampling (real networks). a Empirical copulas. b Interval estimate
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Fig. 6 RWJ sampling (real networks). a Email-Enron. b DBLP

extremal index (EI) encapsulates this relation. We relate EI to many relevant extremes in
networks like order statistics, first hitting time, and mean cluster size. In particular, we
model dependence in degrees of adjacent nodes and examine random walk-based degree
sampling. Finally, we have obtained estimates of EI for a synthetic graph with degree cor-
relations and find a good match with the theory. We also calculate EI for two real-world
networks. In future, we plan to investigate the relation between assortativity coefficient
and EI and intends to study in detail the EI in real networks.

Endnotes
1Fk(.) kth power of F(.) throughout the paper except when k = −1 where it denotes

the inverse function.
2∼’ stands for asymptotically equal, i.e., f (x) ∼ g(x) ⇔ f (x)/g(x) → 1 as x → a, x ∈ M

where the functions f (x) and g(x) are defined on some setM, and a is a limit point ofM.
f (x) = o(g(x)) means limx→a f (x)/g(x) = 0. Also f (x) = O(g(x)) indicates that there
exist δ > 0 andM > 0 such that |f (x)| ≤ M|g(x)| for |x − a| < δ.
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