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ABSTRACT

This paper describes two different automatic transcription systems
developed for judicial application domains for the Polish and Ital-
ian languages. The judicial domain requires to cope with several
factors which are known to be critical for automatic speech recog-
nition, such as: background noise, reverberation, spontaneous and
accented speech, overlapped speech, cross channel effects, etc.

The two automatic speech recognition (ASR) systems have been
developed independently starting from out-of-domain data and, then,
they have been adapted using a certain amount of in-domain audio
and text data.

The ASR performance have been measured on audio data ac-
quired in the courtrooms of Naples and Wroclaw. The resulting word
error rates are around 40%, for Italian, and around between 30% and
50% for Polish. This performance, similar to that reported for other
comparable ASR tasks (e.g. meeting transcriptions with distant mi-
crophone), suggests that possible applications can address tasks such
as indexing and/or information retrieval in multimedia documents
recorded during judicial debates.

Index Terms— Automatic transcription, judicial domain, do-
main adaptation, cross-channel effects

1. INTRODUCTION

A challenging transcription scenario has been investigated within
the European Project JUMAS (Judicial Management by Digital Li-
braries Semantics, EU contract FP7-214306, see http://www.
jumasproject .eu/ for more information). The most important
goal of JUMAS project is to collect, enrich and share multimedia
(audio/video) documents, annotated with embedded semantic, mini-
mizing manual transcription activities. Actually, since the automatic
audio transcription system can produce the uttered word sequence
with the related time instants, it is possible to construct a flexible
and effective indexing and retrieval system, even despite the pres-
ence of recognition errors, for the multimedia documents recorded
during judicial debates.

Hence, JUMAS system will be used for managing the work flow
and supporting information sharing and retrieving in all the different
phases of the investigation and judicial decision process.

Within the JUMAS project, a set of audio recordings were car-
ried out in the courtrooms of Naples and Wroclaw, during several
trial sessions, and made available for ASR experiments. The record-
ings have been done using different fixed microphones located on
desktops inside the room: each actor of the trial (i.e. judge, prosecu-
tor, witness and lawyer) is assigned a particular microphone. Given
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this acquisition setup, the overall signal intensity, as well as the re-
verberation level in the audio signal, vary according to the source-
microphone distances, that in turn can largely change due to the
movements of the bodies of the speakers. This type of audio record-
ing environment, as well as the particular linguistic application do-
main, presents many critical factors for ASR. More specifically, after
a preliminary analysis we identified the following major issues to ad-
dress:

1. evaluate and try to reduce the effects of both background
noise and reverberation;

2. evaluate and try to reduce the effects of cross microphone
interference;

3. cope with spontaneous speech and non-native speech;

4. adapt, possibly dynamically, the Language Model (LM) using
domain data and information specific of a trial (e.g. proper names,
dates, etc).

Above all, it is important to note that the level of reverberation,
in relation to the actual signal level is often high. This latter condi-
tion is known to be severely detrimental to good ASR performance.

In this paper we will describe the automatic transcription sys-
tems developed for both Polish and Italian languages and the related
recognition results obtained after having adapted them to the judicial
domain.

The performance of the Italian transcription system has been
evaluated on audio data, formed by about 7 hours of multiple tracks
recordings, acquired in two different dates in the Court of Naples.
In particular, each single audio track contains the voice of one of
the actors of the trial (i.e. judge, prosecutor, lawyer and witness),
where each actor can be represented by more than one speaker. This
acquisition setup can induce cross-channel effects, e.g. the speech
uttered by a speaker is captured, with a significant level of intensity,
by more than one microphone. In this latter case the transcription
system should be able to detect and discard the interfering speech
segments recorded by secondary microphones.

The Polish transcription system was evaluated on about 6.5
hours of courtroom recordings. The Polish trials were also recorded
using four microphones, one for each actor, but in contrast to the
Italian data, the recordings were only available as mix-downs of all
four microphones. This generates a significant amount of overlapped
speech which poses severe problems for correct recognition.

Another issue with this setup is that since the signal from all
the microphones are used at the same time, the already prominent
reverberation is made more severe, since the room signal is recorded
on all microphones and added in the mix-down. This is detrimental
to the error rate of the system, since reverberation is known to pose
problems for automatic speech recognition.
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Table 1. Italian IT-Apr09 development set

# utterances | net duration | # running words

judge 1330 54.4min 3900

prosecutor 666 40.3min 8880

witness 915 52.0min 5814

lawyer 459 24.6min 8175

total 3370 171.4min 26769
Table 2. Italian IT-Nov09 test set

# utterances | net duration | # running words

judge 554 40.4min 1109

prosecutor 554 37.4min 5454

witness 966 66.4min 5739

lawyer 104 7.9min 8640

total 2178 152.1min 20942

2. ACQUISITION OF THE AUDIO DATA

The acquisition of the Italian audio data has been carried out in
the following two different recording sessions, in the courtroom of

Naples:

o IT-Apr09: consists of about 4 hours of multi-track audio
recordings acquired in April 2009;

e IT-Nov09: consists of about 3 hours of multi-track audio
recordings acquired in November 2009.

Each audio track corresponds to one of the actors of the judicial
trial, i.e.: judge, prosecutor, witness and lawyer.
Tables 1 and 2 report some statistics of each audio track and in

total.

The reference transcriptions have been produced in FBK using
a multi-track displaying system that helps to exclude from the refer-
ence itself the cross-channel echoes (see section 3.1.1).
The available Polish in-domain audio data was divided into

about 6.5 hours of recognition corpora, and about 24 hours of
acoustic training data. In Table 3 the different corpora used for
system evaluation and model estimation are described. Corporas
PL-Dev08 and PL-Eval08 were recordings provided by the Court
of Wroclaw, and transcribed by native Polish speakers at RWTH.
The training corpus was also provided by Court of Wroclaw; it was
also transcribed at the Court of Wroclaw. The corpus PL-Dev(09
was recorded as part of the Jumas project; in addition to the audio
recording videos were also recorded, for use by other partners of the
project. This corpus was also transcribed at RWTH.

Table 3. Polish in-domain acoustic data (WCC)
[ PL-Dev08 [ PL-Eval08 [ PL-Dev09 | Train |

net duration | 2.66h 3.13h 0.85h 23.8h
#segments | 1904 2720 528 22866
# speakers 49 44 22 176

# running 22318 29395 6709 184502
words

3. ITALIAN AUTOMATIC TRANSCRIPTION SYSTEM

For the development of the automatic transcription system no in-
domain acoustic data are still available. Hence, as will be seen be-
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Fig. 1. Example of cross-talk effect: the same speech is present both
in the primary and in the secondary channel

low, we have trained the acoustic models on data recorded in other
different application domains. Instead, a significant set of text re-
sources, mainly consisting of official transcripts of judicial trials per-
formed in several Italian courtrooms are available: this allowed to
train different language models using in-domain text corpora.

The automatic transcription system used in this work is the one
developed in FBK during the past years. It works according to the
following processing steps.

3.1. Audio Segmentation and Classification

In the current version of the automatic transcription system the seg-
menter just identifies the regions of the audio stream with high ener-
gies through the application of the multiple channel start-end point
detector module described below. The detected speech segments are
then classified in terms of broad acoustic classes (e.g. telephone
bandwidth speech, wide band speech, music, male, female, etc). To
this purpose a set of Gaussian Mixture Models (GMMs), one for
each broad class, is used.

3.1.1. Cross-channel Effects

In quite all of the acquired courtroom recordings we have observed
cross-channel effects: two actors can speak at the same time, each
one in a different microphone, but the voices appear with a consid-
erable volume in different channels. Sometimes the volume of the
cross channel signal is so high that, when listening to a single audio
track, it is hard to understand if the voice is a cross-channel effect or
not. Figure 1 exemplifies this phenomenon.

Since we want to transcribe only the speech segments uttered
by the primary speakers, i.e. the ones uttered by the main actor at
a given time, we need to develop a system that can detect “echoes”
along the primary audio tracks and remove them before sending the
tracks themselves to the ASR engine for decoding.

Using a standard energy based start-end-point detector (i.e. a
module that identifies inside a single audio track the time intervals
where speech is present), not only the primary voice but also the
cross talks can be detected.

To reduce the effects of these latter ones, since we have avail-
able multiple parallel channels, an algorithm has been implemented
which loads all of the channels, computes the energy contour for
each of them and, frame by frame, detects the channel having the
highest energy. Basically, a local decision identifies the primary
channel, which ideally corresponds to the sole channel to transcribe.



Unfortunately, there is often overlapped speech, and in these cases
more than one channel should be taken into account. Furthermore,
sometimes nobody is really speaking, so none of the channels should
be transcribed. To cope with these phenomena, a number of param-
eters were introduced into the algorithm, which allow a secondary
channel to be considered for transcription, or a primary channel to
be discarded. These parameters are listed below:

1. number of frames per second
. minimum accepted energy
. accept based on min/max energy ratio
. discard based on min/max energy ratio
. accept based on energy percent wrt the max
. discard based on energy percent wrt the max
. discard based on cross-correlation.
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Table 4. Performance of the multiple channel automatic voice de-
tection algorithm

cost function precision | recall | f-measure
f-measure 84.9 84.7 84.8
f-measure + recall 76.8 90.5 83.1

To estimate parameters above we adopted a greedy procedure
that minimizes a given cost function (e.g. f-measure) on a manually
labeled (in terms of speech/non speech) set of data. The performance
reported in Table 4, in terms of frame-by-frame precision, recall, and
f-measure has been computed with a resolution of 0.1 seconds and
using two different cost functions in the optimization step.

3.2. Segment clustering

Acoustically homogeneous segments, previously classified, are clus-
tered employing a method [1] based on the Bayesian Information
Criterion (BIC). At the end of this process, each audio file to tran-
scribe has assigned a set of temporal segments, each having associ-
ated a label that indicates the cluster to which it belongs (e.g. “fe-
male_1”, “male_1", etc). Note that since different speakers can play
the role of a given actor, e.g. different witnesses are recorded by the
same microphone, speaker clustering has to be performed on each
audio track.

3.3. Decoding Process

For each cluster of speech segments, the system, which makes use
of continuous density Hidden Markov Models (HMMs), generates
a word transcription by performing two decoding passes interleaved
by acoustic feature normalization and acoustic model adaptation.
Best word hypotheses, generated by the first decoding pass, are ex-
ploited for performing cluster-wise acoustic feature normalization,
based on Constrained Maximum Likelihood Linear Regression
(CMLLR) [2] and acoustic model adaptation. For this latter pur-
pose, just Gaussian means of triphone HMMs are adapted through
the application of up to 4 full matrix transforms estimated in the
MLLR framework [3].

3.4. Acoustic Models

In both decoding passes AMs are state-tied, cross-word, speaker-
independent triphone HMMs. Each HMM is characterized by a 3
state left-to-right topology, with the exception of the model associ-
ated to the background noise, which has a single state. In addition to
triphones, several spontaneous speech phenomena are also modeled.
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Output probability distributions are modeled by mixtures of Gaus-
sian probability density functions (PDF) having diagonal covariance
matrices. A phonetic decision tree is used for tying states and for
defining the context-dependent allophones.

The set of modeled speech units is based on the Italian SAMPA
phonetic alphabet, and includes a total of 48 phone-like units.

Each speech frame is parametrized into a 52-dimensional ob-
servation vector composed of 13 mel frequency cepstral coefficients
(MFCCs) plus their first, second and third order time derivatives.
Cepstral mean subtraction and variance normalization is performed
on static features on a cluster-by-cluster basis. A projection of acous-
tic feature space, based on heteroscedastic linear discriminant anal-
ysis (HLDA), is embedded in the feature extraction process as fol-
lows [4]. A GMM with 1024 Gaussian components is first trained
on the original 52-dimensional observation vectors. Acoustic ob-
servations in each, automatically determined, cluster of speech seg-
ments, are then normalized by applying an affine transformation es-
timated w.r.t. the GMM through CMLLR [2]. After normaliza-
tion of training data, an HLDA transformation is estimated w.r.t. a
set of state-tied, cross-word, gender-independent triphone Hidden
Markov Models (HMMs) with a single Gaussian per state, trained
on the normalized 52-dimensional observation vectors. The HLDA
transformation is then applied to project the set of 52 normalized
features into a 39-dimensional feature space. Recognition models
used in the first and second decoding pass are trained on these nor-
malized, HLDA projected, acoustic features. HMMs for the first
decoding pass are trained through a conventional maximum likeli-
hood procedure. HMMs used in the second decoding pass are trained
through a speaker adaptive procedure [5]: for each cluster of speech
segments an affine transformation is estimated through CMLLR
exploiting as target-models triphone HMMs with a single Gaussian
density per state trained on the HLDA projected acoustic features.
The estimated affine transformation is then applied on the cluster
data [5]. Acoustic models are finally trained from scratch on the
obtained normalized acoustic data.

For the Jumas project we decided to use and compare HMMs
trained on different sets of out-of-domain audio data, namely:

1. an Italian Broadcast News (“IBN”) corpus, about 130 hours
of audio recordings mostly acquired from TV and radio broadcast
news programs. The resulting triphone HMM set used in the sec-
ond decoding pass has about 5,500 tied-states, for a total of about
169,300 Gaussian densities (note that similar number of parameters
were allocated for the corresponding HMM set used in the first de-
coding pass);

2. a corpus consisting of audio recordings of Italian politi-
cal speeches acquired in the Italian Parliament, about 93 hours of
recordings. In the following we will refer to this corpus as: Italian
Parliament Political Speeches (“IPPS”). Both HMM sets, used in
the first and second decoding pass, have about 3,700 tied-states, for
a total of about 120,000 Gaussian densities;

3. a corpus formed by the union of IBN and IPPS data, i.e.
about 223 = 130 + 93 hours of speech. Both HMMs sets, used in
the first and second decoding pass, have about 6,900 tied-states, for
a total of about 212,000 Gaussian densities. We will call this corpus
“IBN+IPPS”.

Table 5 shows some statistics of IBN and IPPS audio databases.

3.5. Language Models

As previously seen, for LM, differently from AM training, we have
at our disposal a certain amount of in-domain text data coming from
the proceedings of trials performed in some Italian courtrooms,



Table S. [talian audio training databases

IBN IPPS
# hours 129h:30m | 92h:48m
# utterances 115,024 27,041
# words 1.3M 711k
# speakers 9,542 1,744

Table 6. Statistics of the Italian LMs

LM | #running | #4-grams | OOV(%) | PP | # unique
words words
oD 606M 23.5M 0.49 471 1.2M
ID 25M 2.3M 1.50 250 150k
AD - 12.4M 0.43 272 1.2M

namely: Florence, Naples, Nola and Lecce. In addition, we have
a large set of out-of-domain texts, collected in the past years from
several sources such as: newswire and newspaper articles, broadcast
news, web news and web in general, ecc. With all of this available
text data we trained three different “4-gram” based LMs.

The first one was trained on an Out-of-Domain (OD) news cor-
pus. The corpus is mainly formed by newswire and newspaper arti-
cles.

A second LM was trained on an In-Domain (ID) corpus mainly
formed by judicial proceedings.

A third LM was estimated by adapting the OD LM with the in-
domain judicial data. The adopted adaptation method is the one that
weighs and mix [6] the 4-gram counts of both OD and ID sources.

Table 6 reports some statistics, including perplexity (PP) and
Out-Of-Vocabulary (%0O0V) rate measured on “IT-Apr09” develop-
ment set, for out-of-domain, in-domain and adapted (AD) LMs.

Preliminary experiments have shown that both ID and AD LMs
give similar results and outperform OD LM (as one can expect),
hence, all of the results given in the next section refer to the usage of
AD LM.

The lexicon of the judicial domain was first generated with an
automatic phonetic transcription tool, that produces the phone se-
quence (based on the previously mentioned 48 units) of each of the
words in the recognition dictionary, then it was manually checked to
correct possible errors in the transcription of acronyms and foreign
words. Finally, the LM, together with the lexicon, has been used to
compile a Finite State Network (FSN) that defines the search space
of the decoder.

4. POLISH AUTOMATIC TRANSCRIPTION SYSTEM

The Polish transcription system is a two pass recognition system,
based on HMM acoustic models, with GMM emission probabilities.
The feature extraction front-end is based on vocal tract length nor-
malized (VTLN) MFCC features, using cepstral mean normalization
and linear discriminant analysis, resulting in a 45 dimensional fea-
ture vector. The system uses classification and regression tree state
tying, with 4500 generalized triphone states. The HMMs use pooled
covariances. A fully trained model consist of approximately 900k
Gaussian densities in total.

The processing steps of the Polish system are similar to those of
the Italian system:

1. Segmentation and Clustering

2. First Pass Recognition
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3. CMLLR Estimation
4. MLLR Estimation
5. Adapted Recognition

In the following, the details of the development of the Polish
system is given.

4.1. Audio Segmentation and Clustering

The audio segmentation of the Polish system is based on the output
of a run of a speech recognition decoder on the complete audio file
to be transcribed. The length of each speech pause, recognized as
sequences of non speech events, is determined. Segment boundaries
are then defined at each pause, starting with the longest pause, and
continuing until no segment is longer than 30 seconds.

The clustering was performed in the same way as for the Italian
system.

4.2. Lexicon and Language Model

Since Polish is a highly inflected language, the OOV rate is typically
much higher than that for a language such as English for the same
vocabulary size. Since good ASR performance requires an OOV rate
of about one percent or better, it is thus necessary to use an increased
vocabulary size when working with Polish.

To achieve this, four different vocabularies were used, with
approximate sizes of 75, 150, 300 and 600 thousand words, re-
spectively. For each of the vocabulary sizes, a three-gram language
model using modified Kneser-Ney smoothing was produced. Sep-
arate models were trained for each of the text data sources given
in Table 7, and were combined using interpolation. Interpolation
weights were tuned by optimizing the perplexity on the text of the
development set corpus.

As seen in Table 7, the amount of in-domain text data (rows 1
and 2) is very limited. Nevertheless, the inclusion of even such a
small amount of data is beneficial, although it is expected that the
availability of larger amounts of in-domain text data would improve
performance noticeably.

Table 7. Text data used for Polish language modeling.

| Source [ # running words ‘
Wroclaw Audio Transcripts 185k
Wroclaw Reports 170 k
European Parliament 481k
EU Legal Documents 29,425 k
Kurier Lubelski (News) 15,364 k
Nowosci (News) 27,720 k

For the pronunciation lexicon the Polish SAMPA phoneme set,
consisting of 37 phonemes were used. The pronunciations for the
vocabulary were generated using letter to sound rules.

4.3. Acoustic Model

The basis of the acoustic model was the cross-language unsupervised
trained acoustic model described in [7]. This model was originally
trained on 128 hours of untranscribed recordings of Polish, from the
European Parliament.

For the development of the Polish transcription system, in con-
trast to the Italian system, a small amount of in-domain acoustic
data was available. Due to the limited amount of data available



Table 8. %WER achieved on both "IT-Apr09” dev set and "IT-
Nov09” test set for each audio track (and in total). The HMMs used
are those trained on Broadcast News (IBN)

Table 9. %WER achieved on both "IT-Apr09” dev set and "IT-
Nov09” test set for each audio track (and in total). The HMMs used
are those trained on Italian Parliament Political Speeches (IPPS)

IT-Apr09 | IT-Apr09 | IT-Nov09 | IT-Nov09 IT-Apr09 | IT-Apr09 | IT-Nov09 | IT-Nov09
pass 1 pass 2 pass 1 pass 2 pass 1 pass 2 pass 1 pass 2
lawyer 44.1 44.0 41.8 40.6 lawyer 49.1 47.8 42.8 40.0
judge 37.7 37.5 334 31.5 judge 40.7 39.8 42.1 37.8
prosecutor | 47.5 474 40.4 39.7 prosecutor | 56.2 53.8 44.4 41.9
witness 39.1 374 41.3 41.3 witness 41.3 39.0 50.4 46.8
all 41.1 40.6 39.0 38.3 all 45.4 43.7 46.1 42.8

(c.f. Table 3) it was decided to use maximum a-posteriori adapta-
tion (MAP) [8] to adapt the model to the judicial domain.

As for the Italian system, the second pass acoustic model of the
Polish system was trained using speaker adaptive training (SAT).
The system uses three acoustic models:

e First-pass model: Speaker independent model used in first
recognition pass.

e Target model: Single Gaussian model, used to estimate CM-
LLR matrices.

o SAT model: Used for second pass adapted recognition.

Both of the recognition models need to be adapted. Since it is
not a problem if the target model is not a close match to the data
at hand, it was decided to keep the target model from the baseline
system. Thus, the following process was used to arrive at the MAP
models for the system:

1. MAP adapt the first-pass model to the in-domain acoustic

training data.

Estimate SAT CMLLR matrices for each speaker on the new
acoustic training data using the original target model.

Using the estimated CMLLR matrices, adapt the SAT model
to the new training data.

In this way, the complete SAT based recognition system has been
adapted to the new acoustic condition.

5. EXPERIMENTS AND RESULTS

5.1. Italian test data

As mentioned above, the performance of the Italian automatic tran-
scription system has been measured on both “IT-Apr09” develop-
ment set and “IT-Nov09” test set.

Table 8 gives the WERs obtained using the IBN acoustic mod-
els while results obtained with IPPS acoustic models, i.e. the ones
trained on political speeches, are given in Table 9. Comparing the
results reported in the two tables, it can be observed that the use
of IBN models results in better performance than using the IPPS
models. Overall, with the IBN models, 40.6% and 38.3% WER are
achieved on the development and and evaluation sets, respectively.
For both model sets, the two pass decoding system ensures a reduced
margin of improvements over the one pass decoding system, espe-
cially in case of the IBN models. A possible explanation is that the
acoustic models used in the first decoding pass are speaker adap-
tively trained, through cluster-wise acoustic feature normalization
based on CMLLR, which leads to pretty good recognition models
for the first decoding pass leaving a reduced margin of improvement
to the second pass [9]. Furthermore, in all cases significant perfor-
mance differences can be observed among the different actors.
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Table 10. %WERs obtained on the whole test set (IT-Apr09 + IT-
Nov09) with: IBN acoustic models, IPPS acoustic model, with their

ROVER combination and with IBN+IPPS acoustic models
IBN | IPPS | ROVER IBN+IPPS
(IBN,IPPS)
lawyer 434 | 463 | 434 434
judge 352 | 39.0 | 35.1 35.1
prosecutor | 43.5 | 47.8 | 434 45.1
witness 394 | 39.0 | 38.7 40.6
all 395 | 433 | 394 40.3

Since we have at disposal two different sets of acoustic models
(IBN and IPPS) we can also perform combination of the correspond-
ing ASR outputs. It is known from the literature [10, 11, 12] that
combining the outputs of individual systems can significantly im-
prove the overall WER, assuming that the outputs themselves have
comparable WERs and provide, at the same time, complementary
word hypotheses (i.e. they contain different errors). To this purpose
we decided to use ROVER [13], taking into account both mutual
agreement between word hypotheses and related confidence scores.
Confidence scores (i.e. word posterior probabilities) were estimated,
using a method similar to the one proposed in [14], from word graphs
generated in the second decoding pass.

Output combination using ROVER was then compared with the
performance provided by the system that uses HMMs trained on the
combined audio training database “IBN+IPPS” (see section 3.4).

Table 10 gives the results achieved on the whole test set (IT-
Apr09+IT-Nov09) with: IBN models (same of Table 8), IPPS mod-
els (same of Table 9), ROVER combination between IBN and IPPS
and IBN+IPPS models.

As can be seen, the effects of combination with ROVER is neg-
ligible while the union of both IPPS and IBN training sets does not
result into any performance improvements with respect to use the
IBN training set alone. This trend of results is not observed on other
application domains where, in general, ROVER combination and the
addition of training data is somehow beneficial. Although a deeper
analysis of the ASR errors is necessary, a possible explanation of
the inefficiency of ROVER is that the separate systems entering the
combination provide large numbers of similar errors and, hence, lit-
tle complementary information is provided.

5.2. Polish Test Data

The evaluation of the recognition performance of the Polish system
was performed on the data sets described in Table 3. Table 11 shows
the performance of the system before the inclusion of in-domain
acoustic data. The Table shows the WER of the first pass recog-
nition, as well as of the second pass CMLLR SAT recognition, with



and without MLLR adaptation.

Table 11. Results with out-of-domain AM — WER [%].

[ System [[ PL-Dev08 | PL-Eval08 | PL-Dev09 ]
1st Pass 46.3 68.1 82.1
+ SAT 36.5 58.3 61.7
+ MLLR 352 56.2 59.8

In Table 12, the effect of the vocabulary size on the (first pass)
recognition performance is presented. The Table also includes the
OOV rate for each vocabulary size. We see that although the OOV
rate continues to improve for each vocabulary increase, the error rate
does not significantly improve over a vocabulary size of 300k words.

Table 12. Effect of vocabulary size [%]

System PL-Dev08 PL-Eval08 PL-Dev09
OOV | WER || OOV | WER || OOV | WER
75k 8.16 | 49.2 10.1 | 69.4 770 | 834
150k 527 | 469 754 | 684 3.14 | 81.8
300k 386 | 464 6.05 | 68.1 1.99 | 82.0
600k 1.54 | 463 2.55 | 68.1 0.59 | 82.1

Table 13 shows the performance of the final system. Here the
acoustic model MAP adapted to the judicial domain, as described
in Section 4.2, is used. We see that the inclusion of the in-domain
acoustic data give a sizable improvement over the out-of-domain
case. The final error rates of the system are in the range of 30%
to 50%.

Table 13. Final system, in-domain adapted AM — WER [%].

| System H PL-Dev08 [ PL-Eval08 [ PL-Dev09 ‘
1st Pass 37.7 57.0 79.4
+ SAT 334 48.9 56.4
+ MLLR 32.7 47.4 523

6. CONCLUSIONS AND FUTURE WORK

In this paper, automatic speech transcription in the judicial domain
has been investigated by targeting two languages, Italian and Pol-
ish, for which acoustic data have been acquired in the courtrooms of
Naples and Wroclaw. Several factors make this transcription tasks
difficult, such as: distant talk microphone, cross channel effects,
overlapped speech, spontaneous and accented speech, speech under
stress and background noise. In addition, the scarcity of in-domain
data, both textual and acoustic, makes the adaptation of existing tran-
scription system very challenging.

The initial results achieved by exploiting a small amount of in-
domain data for system adaptation, that is around 40% WER for
the Italian language and varying between 30% and 50% WER for
Polish, show that the transcription systems need to be customized
for the specific task in order to ensures adequate performance.

For Italian, current work is mostly devoted to exploit in-domain
lightly supervised audio data with the aim of improving acoustic
models.

To cope with the high OOV rates for Polish, future activities
on the Polish system will include morphological decomposition and
hybrid language modeling [15].
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