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ABSTRACT

Self-supervised speech models are powerful speech representa-
tion extractors for downstream applications. Recently, larger mod-
els have been utilized in acoustic model training to achieve better
performance. We propose Audio ALBERT, a lite version of the
self-supervised speech representation model. We apply the light-
weight representation extractor to two downstream tasks, speaker
classification and phoneme classification. We show that Audio AL-
BERT achieves performance comparable with massive pre-trained
networks in the downstream tasks while having 91% fewer parame-
ters. Moreover, we design probing models to measure how much the
latent representations can encode the speaker’s and phoneme’s infor-
mation. We find that the representations encoded in internal layers
of Audio ALBERT contain more information for both phoneme and
speaker than the last layer, which is generally used for downstream
tasks. Our findings provide a new avenue for using self-supervised
networks to achieve better performance and efficiency.

Index Terms— Self-supervised learning, Weight sharing, Net-
work compression, transformer, Speech representation learning

1. INTRODUCTION

Recently, pre-trained models [[1} 12113} 4], especially BERT, dominate
Natural Language Processing (NLP) world. The models learn pow-
erful and universal representation by utilizing self-supervised learn-
ing at the pre-training stage to encode the contextual information.
The representation is beneficial to performance, especially when the
data of the downstream task is limited. As of late, BERT-like models
are also applied to the speech processing domain. The pre-trained
model learns the robust speech representations for speech process-
ing tasks, such as Automatic Speech Recognition (ASR) and speaker
recognition, with the self-supervised learning. approaches [} 16} [7,
8, 9]

However, since the size of these BERT-like pre-trained models is
usually prohibitively large, these models require a significant amount
of memory for computation, even at the fine-tuning stage. The re-
quirement hinders the application of pre-trained models from differ-
ent downstream tasks.

ALBERT [10] addresses the challenge of efficiency. ALBERT
is a lite version of BERT for text by sharing one layer parameters
across all layers and factorizing the embedding matrix to reduce
most parameters. Although the number of parameters is reduced,
the representations learned in ALBERT are still robust and task ag-
nostic, such that ALBERT can achieve similar performance in the
same downstream tasks comparing to BERT.
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In this paper, we first examine the knowledge encoding in each
layer of Mockingjay, a pre-trained model utilizing BERT architec-
ture to encode speech information. We found the learned parameters
are redundant across layers. Thus, we bring the idea of sharing pa-
rameters from ALBERT to the speech processing domain and pro-
pose a novel self-supervised model, Audio ALBERT (AALBERT),
for parameter-efficient representation learning.

We show that AALBERT yields comparable performance to
other pre-trained models in downstream tasks, but with much
smaller networks. To understand how to use the pre-trained net-
works properly in downstream tasks, we also analyze represen-
tations extracted from different layers of AALBERT. We use a
simple classifier to probe each layer, and we find that the repre-
sentations of the intermediate layers contain more phonetic and
speaker information than that of the last layer. The finding indi-
cates that the representations from the last layer fit the pre-training
task too much, and the intermediate layers may be more suitable
for adapting to downstream tasks. To our best knowledge, this is
the first study to bring the idea of model compression in ALBERT
to speech processing, to show the benefits in the efficiency of the
novel architecture, AALBERT, for speech-related tasks, and to an-
alyze learned latent representations for better usage of pre-trained
networks in downstream tasks. The code will be available soon
(https://github.com/pohanchi/AALBERT)

2. RELATED WORK

2.1. Self-supervised learning representation

In recent years, works related to self-supervised learning spring up
in Computer Vision (CV), NLP, speech processing, etc. In CV, some
works [11}12]] incorporate contrastive objective and self-supervised
learning for learning visual representation. Self-supervised learning
is also utilized to learn language representations for NLP tasks.
ELMo [2] is the first work introducing the concept of contextualized
embeddings and the weighted sum application. BERT [1]] further
presents the concept of Masked Language Model (MLM). Deep
transformer encoder architecture is trained with MLM to reconstruct
the masked input sequences in the pre-training stage. The resulting
networks show substantial performance gain in downstream NLP
tasks. XLNet [13], introduces the Permutation Language Model
and outperforms both autoregressive models and MLM. However,
Roberta [14], achieves performance comparable with XLNet by
training with more data, larger batch size, and the better hyper-
parameter settings. For parameter efficiency, ALBERT [10] is
proposed to reduce the model size without losing performances
in NLP tasks compared to BERT. Self-supervised learning is also
gaining attention in the speech field. Contrastive Predictive Cod-
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ing (CPC) incorporates contrastive objective in self-supervised
learning to learn powerful representations for speech processing
tasks. Autoregressive Predictive Coding (APC) utilizes the idea
of an autoregressive model from ELMo to learn stronger speech rep-
resentations. Inspired by MLM, Mockingjay [3] masks frame from
input acoustic feature and pre-trains the networks to reconstruct
the corresponding linear spectrogram or mel spectrogram in the
pre-training stage. Similarly, Masked Predictive Coding (MPC) [6]
uses the idea of MLM to pre-train a model for speech recognition.
Speech-XLNet is the audio version of XLNet. vq-wav2vec [18]]
incorporates vector quantization and BERT to improve the perfor-
mance on downstream tasks. Finally, DeCoAR [7], a model built
with a deep LSTM module, adopts pre-training tasks similar to
Mockingjay and MPC and yields significant performance gain in
speech recognition. All of these pre-trained networks are large in
model size and focus on improving performance with more param-
eters or pre-training data. To make the models more compact for
training and deployment, we build a lite version of a pre-trained
network that yields comparable performance with fewer parameters
and memory footprint.

2.2. Weight sharing

The previous work [19] ties the input and output embeddings to re-
duce parameters without harming the performance. Tong Xiao et
al. proposes a method [20], which reuses the attention weights of
previous layers in the adjacent layers on the transformer model for
faster inference and keeps performance in neural machine transla-
tion. Some works build compact transformer models [211, [10], which
apply weight sharing mechanisms across layers to reduce parame-
ters and achieve comparable performance in their tasks. Dehghani et
al. proposed Universal Transformer [22]], which utilizes the benefit
of the transformer and recurrent neural network, and it also incorpo-
rates weight sharing across layers to reduce a great number of param-
eters but keep performance in the different tasks. In general, weight
sharing mechanism across layers can be viewed as an RNN applied
in the direction of the layer-axis. To sum up, weight sharing can
not only bring faster inference and training speed but keep similar
performance in previous works. It is a kind of network-compression
mechanism to reduce parameters heavily in transformer models.

2.3. Probing task

Probing is a technique to measure whether the encoder embeds spe-
cific information in representation 241 23]). The probing is done
by extracting representation to be examined, building a simple clas-
sifier based on the representation for a downstream probing task, and
measuring the classifier’s performance. Synthesizing audio from the
ASR hidden state is also proposed [24], as another way of probing.

3. METHOD

3.1. Mockingjay

Mockingjay [3]] is a pre-trained model that utilizes the architec-
ture of BERT model. In pre-training, Mockingjay takes a masked
spectrogram as the input to reconstruct the original one. There are
three common model architectures for Mockingjay by adopting 3, 6,
and 12 layers of transformer encoders (denoted as Mockingjay-3L,
Mockingjay-6L, and Mockingjay-12L respectively). The previous
study [3] showed that the representation of Mockingjay possesses
both rich phonetic and speaker information.
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Fig. 1: The JS divergence of attention distribution between different
layers in Mockingjay-6L. (a) is the average case, while (b)(c)(d)(e)
represent different attention heads.
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Fig. 2: Difference between Mockingjay and AALBERT

We further investigate the parameter usage in Mockingjay (due
to space limitations, we only show results for the most commonly
used architecture, Mockingjay-6L. Our findings here also apply to
the other two variations). Inspired by Fast Transformer [20] Ex-
periments, we use the Jensen-Shannon (JS) divergence to evaluate
the difference between the attention distribution of each transformer
encoder layer. For the multi-head attention, we calculate the JS di-
vergence within each head, then average them to obtain the JS di-
vergence between every layer. Figure [Ta] shows the JS divergence
of attention distribution between layers in Mockingjay-6L. Here we
can see that JS divergence between layers in Mockingjay-6L is sig-
nificant. Furthermore, we randomly pick one attention head every
layer and do the same experiment. We show them in Fig[Tb] Fig[Ic]
Fig[Id] and Fig[Te] Although some attention heads are very different
from those in other layers (dark blue cells), most layers are similar
(light blue cells). The result shows that for a specific attention head
in Mockingjay-6L, there is usually some similar attention distribu-
tion over different layers.

Although the parameters of each layer are different, they still
generate similar attention distribution. This phenomenon indicates
the existence of redundancy in parameter usage and the possibility
to compress models via weight-sharing across layers without sacri-
ficing model expressiveness.



Table 1: pre-trained Models

Model Layer Params Param Sharing
AALBERT-12L 12 7.4M True
AALBERT-6L 6 7.4M True
AALBERT-3L 3 7.4M True
Mockingjay-12L 12 84.3M False
Mockingjay-6L 6 44.4M False
Mockingjay-3L 3 21.6M False
3.2. AALBERT

We propose AALBERT, or audio ALBERT, for a more compact pre-
trained network. Similar to Mockingjay, AALBERT also takes mel-
spectrogram as the input acoustic features. We mask the input fea-
tures with zero and pre-train the network to reconstruct the corre-
sponding log-linear spectrogram after applying Cepstral Mean and
Variance (cmvn) from the masked input. We apply the masking
to features of each utterance by first downsampling one out of ev-
ery three frames and then randomly selecting 15% of the resulting
frames for adding noises. The noises are introduced as the follow-
ing. We zero out 80% of the selected frames, replace the frames with
other frames randomly sampled from the same utterance with 10%
probability, and keep the original frames for the remaining cases.

As compared to Mockingjay, we introduce weight tying for re-
ducing parameters. As visualized in Fig[2] both Mockingjay and
AALBERT are built with the architecture of the Transformer en-
coder, where each layer of the encoder consists of components in-
cluding self-attention, feed-forward, and layer normalization. How-
ever, in AALBERT, parameters of each component are shared over
all the layers. To illustrate the gain in efficiency, in Table 1, we com-
pare the numbers of parameters for all pre-trained models studied
in this paper. As we can see, AALBERT requires much fewer pa-
rameters than Mockingjay for the same depth of Transformer. All
our experiments are modified from Mockingjay Large model, which
is 12 layers and utilizes linear spectrogram reconstruction as a pre-
training task. We do not use the Mockingjay base model because we
want to compress the size of the original model, and the base model
is only 3 number of layers, which limit the space of compression.

3.3. Application to downstream tasks

We investigate two popular ways of applying pre-trained networks
to downstream tasks: feature extraction and fine-tuning.

3.3.1. Feature extraction

In feature extraction, all parameters in the pre-trained models are
frozen when training on the downstream tasks. We utilize the rep-
resentations extracted from the pre-trained model as fixed features
and feed them into a simple, trainable layer. Following the typical
setting, we use the representations of the last layer as the features.
We also investigate a weighted sum approach proposed by ELMo [2]
to fuse representations from various layers rather than the last one in
the pre-trained networks and learn the weights along with the pre-
diction layer from downstream tasks.

3.3.2. Fine-tuning

As for fine-tuning, we also build the classifier with a pre-trained net-
work followed by a simple prediction layer. However, in fine-tuning,
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Fig. 3: Phoneme classification accuracy vs amount of labeled data.
3L, 6L, 12L: the number of layers, FT: fine-tune, WS: weighted sum,
Input acoustic feature: input acoustic feature as baseline.

the parameters of the entire model are further trained on the down-
stream tasks. This technique boosts the classifier’s performance, es-
pecially on difficult downstream tasks such as phoneme classifica-
tion, but requires longer training time, more task-specific parame-
ters, and a larger memory footprint.

3.4. Probing

We also propose probing tasks to understand how knowledge is
encoded in pre-trained networks. For the probing tasks, we built
classifiers with three different prediction layers: linear, one fully-
connected, and two fully-connected layers. We explore several
variations of the prediction layers to mitigate the possible bias intro-
duced by network architectures. The prediction layers take represen-
tations from each layer of a pre-trained network as the input features
and are trained on downstream tasks with the pre-trained model
frozen. With the probing, we measure the information richness for
each layer’s representation based on the classifiers’ performance.
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Table 2: Hyperparameter for different downstream tasks, LR: Learn-
ing rate, SPK: speaker, PH: phoneme

Downstream # PH /SPK Detail LR
Phoneme 72 weighted-sum  le-3
classification 72 fine-tune le-4
Utterance-level 921 weighted-sum  1e-3
speaker classification 251 weighted-sum  1e-3

Such analysis allows us to interpret how information is encoded
in the pre-trained networks and provides a new avenue to achieve
better performance by using the networks more efficiently.

4. EXPERIMENT RESULTS AND DISCUSSIONS

4.1. Experimental setup

We evaluate the pre-trained networks with one phoneme classifica-
tion task and three speaker classification tasks as the downstream
tasks. In our experiment, we use a 160-dimension acoustic feature,
i.e., an 80-dimension log mel-spectrogram and its delta and apply
Cepstral Mean and Variance normalization (cmvn), as the input for
the pre-trained networks. At the pre-training stage, we train our
models with learning rate Se-5, batch size 50, and AdamW opti-
mizer [26] for 500k steps. The models are pre-trained on a single
NVIDIA Tesla V100 32GB. We apply different hyperparameters to
train classifiers for each downstream task and show the detailed set-
tings in Table 2}

We utilize LibriSpeech [27] for our experiments. LibriSpeech
contains three subsets with 500, 360, and 100 hours of speech (de-
noted as train-other-500, train-clean-360, and train-clean-100) and
the transcription and speaker labels. We pre-train our networks on
the train-clean-360 set without using any annotation. The train-
clean-360 and train-clean-100 sets are used as downstream tasks
for evaluating performance in phoneme and speaker classification.
The two sets are further split into training, development, and test
subset in the ration of 8:1:1 for our experiment. To obtain frame-
level phoneme labels to benchmark phoneme classification results,
we adopt Montreal Forced Aligner [28] to force align transcription

to phoneme sequences containing 72 phoneme classes.
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Fig. 5: Speaker classification accuracy on different models and
settings with their model parameters. "AALBERT / Mockingjay
(251)”: settings of utterance-level speaker classification on 251
speaker, "TAALBERT / Mockingjay (921)”: settings of utterance-
level speaker classification on 921 speaker

4.2. Phoneme classification

To measure pre-trained networks’ performance on phoneme classifi-
cation, we build phoneme classifiers with the pre-trained networks
followed by two fully-connected layers for prediction. Two pre-
trained networks, Mockingjay [5] and AALBERT, are investigated
here, with the former as the baseline.

In Fig[d] we show the performance of our models with differ-
ent layers and settings and compare them to the baseline model
(Mockingjay). The vertical axis is the phoneme classification accu-
racy, while the horizontal axis is the number of network parameters.
For both fine-tuning and weighted-sum case, AALBERT shows
comparable classification accuracy compared to Mockingjay, but
with much fewer network parameters. We also note that both 12-
layer AALBERT and Mockingjay (denoted as AALBERT-12L and
Mockingjay-12L) does not provide performance gain as compared



to the 3- and 6- layer counterpart. We conjecture that the saturation
in performance is because we use a limited amount of pre-training
data. The 6-layer AALBERT and Mockingjay are sufficient to
encode knowledge in our 360 hours of pre-training data.

In Fig[3aland Fig[3b] we show the performance on phoneme clas-
sification tasks of both feature-extraction case and fine-tuning case
versus different proportions of training data being used. Here are
two observations. First of all, not only Mockingjay but AALBERT
outperforms the input acoustic feature (shown in Fig Fig [3b).
Secondly, these figures show that the representations extracted from
Mockingjay and AALBERT have similar performance on phoneme
classification tasks.

4.3. Speaker classification

Then, we evaluate the model performance with utterance-level
speaker classification in train-clean-100 and train-clean-360 subsets.
There are 251 and 921 speakers in the two subsets, respectively. We
only use the weighted-sum representations in this part due to space
limitation.
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Fig. 6: Visualization of 25 speakers representations (last layer) via
t-SNE in train-clean-100 dataset. Different colors represent different
speakers.

On top of the representation, we utilize a linear layer followed
by a mean-pooling layer for the classification. In Fig[3] we visual-
ize the performance of speaker classification using Mockingjay and
AALBERT representations. The performance of the baseline using
the input acoustic feature is not shown in the figure, where the accu-
racy is 0.6%. The results suggest that both AALBERT and Mock-
ingjay encode more abundant speaker information than the raw input

of the two pre-trained networks and yield nearly perfect classifica-
tion results, while AALBERT leverages much fewer parameters than
Mockingjay.

Furthermore, we use t-SNE [29] to visualize the utterance rep-
resentations extracted from input acoustic feature and AALBERT in
Fig[6a]and Fig[6c| In the figures, each point represents an utterance
with its embeddings generated by mean-pooling; we encoder each
speaker with a different color. The utterance representations from
AALBERT for each speaker are clustered together, while we cannot
observe the same phenomenon from the input acoustic features. The
result shows that AALBERT better encodes speaker information.

In conclusion, AALBERT shows comparable results on speaker
classification tasks against Mockingjay, yet using 91% fewer param-
eters.
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4.4. Probing task

We utilize two probing tasks, phoneme classification and frame-level
speaker classiﬁcatior{ﬁ to examine how much phoneme and speaker
information contain in the representations of each layer. In both
tasks, we use train-clean-100 dataset, which is unseen at the pre-
training stage. We probe AALBERT-6L and Mockingjay-6L since
the average performances of them are the best. We utilize three dif-
ferent classifiers as the probing models, linear, one hidden layer, and
two hidden layers, to probe each layer of the pre-trained models for
the speaker information and the phoneme information. We use sev-
eral probing models with different network architectures to mitigate
the possible bias from the probing models.

Fig [/] shows the result of probing tasks. For the probing of
phoneme information, the three different probing models show the
same trends among the same pre-training model. In both pre-training
models, as the depth increases, the phoneme information increases
first and then decreases. Comparing the two pre-training models,
the peak of the Mockingjay-6L is closer to the input layers than
AALBERT-6L. On the other hand, when comparing the absolute
performance of Mockingjay-6L. and AALBERT-6L, the conclusion
from different probing models would be different. Mockingjay-6L

ISince we want to analyze an individual representation instead of the
whole utterance, we choose frame-level instead of utterance-level.
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Fig. 8: The JS divergence of attention distribution between different
layers in AALBERT-6L. (a) is the average case, while (b)(c)(d)(e)
represent different attention heads.

achieves better phoneme classification accuracy for the shallower
probing model, whereas AALBERT-6L obtains better performance
of the deeper probing model. For speaker information, the 5 layer
of AALBERT-6L contains the most speaker information, while the
4™ layer is the best for Mockingjay-6L.

The results in Fig |Z| further indicate that the intermediate rep-
resentations outperform the representations from the last layer in
all four different probing tasks regardless of Mockingjay-6L or
AALBERT-6L model. This might indicate that the last layer fits the
pre-training tasks too much; therefore, the representations extracted
from the intermediate layers may be more suitable for downstream
tasks.

4.5. Attention distribution in AALBERT

Here we repeat section [3.1] experiments on AALBERT-6L. Fig [8a]
shows that the JS divergence of attention distribution is very small
between layer 1, 2, layer 3, 4, and layer 5, 6. Fig @ shows that
the JS divergence are small in diagonal and its neighbor area. On
the contrary, the first and the last layer differ a lot. In Fig the
JS divergence between first three layers are small, and so do the last
three ones. However, the JS divergence between these two parts are
large. In Fig[8d] [8¢] the JS divergence of layer 1,2, layer 3,4 and
layer 5,6 are small, but the JS divergences between every two layers
of them are large. These results show that the same parameters may
still cause totally different attention distribution over different layers.
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6. CONCLUSION

In this paper, we present a novel model, Audio ALBERT (AAL-
BERT). AALBERT is a pre-trained model for extracting latent rep-
resentations that encode the audio information. The model is learned
by reconstructing the masked input acoustic features to the linear
spectrogram. We show that AALBERT can achieve comparable
performances against Mockingjay, a BERT-like pre-trained audio
model, yet with much fewer parameters. Besides, we show promis-
ing results in encoding audio information with much smaller pre-
trained models. For our future work, we will investigate various
model architectures to improve further the efficiency of pre-trained
models in computation and parameter usage.
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