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Abstract—The demand for accurate food quantification has
increased in the recent years, driven by the needs of applica-
tions in dietary monitoring. At the same time, computer vision
approaches have exhibited great potential in automating tasks
within the food domain. Traditionally, the development of ma-
chine learning models for these problems relies on training data
sets with pixel-level class annotations. However, this approach
introduces challenges arising from data collection and ground
truth generation that quickly become costly and error-prone
since they must be performed in multiple settings and for
thousands of classes. To overcome these challenges, the paper
presents a weakly supervised methodology for training food
image classification and semantic segmentation models without
relying on pixel-level annotations. The proposed methodology is
based on a multiple instance learning approach in combination
with an attention-based mechanism. At test time, the models are
used for classification and, concurrently, the attention mechanism
generates semantic heat maps which are used for food class
segmentation. In the paper, we conduct experiments on two meta-
classes within the FoodSeg103 data set to verify the feasibility of
the proposed approach and we explore the functioning properties
of the attention mechanism.

I. INTRODUCTION

As the world’s population percentage that suffers from
the prevalence of overweight and obesity increases, the role
of digital self-monitoring of diet, as well as of physical
activity, has a significant effect in maintaining a healthy
weight, with tailored, personalised advising having a key role
in effective interventions [1]. Computer vision methods for
dietary motoring have seen increased use for the tasks of food
recognition and volume estimation, with a rapidly growing
number of technology-assisted dietary studies relying on deep
learning models to perform food recognition [2]. Nevertheless,
challenges persist in this domain, including the ones caused by
occlusions, illumination, shape, and structure variation of food
[3] as well as differences from food preparation and cooking
styles across regions or cultures [2]. While the demand for
large-scale and diverse food image data sets is growing, and
large-scale benchmarks are becoming available, the availability
of pixel-level annotations remains fairly scarce [4].

In relation to the problem of dietary monitoring, Yogaswara
et at. [5] proposed the use of instance-aware semantic classifi-
cation and segmentation for the task of estimating the caloric
content of images captured by a smartphone camera. In their
approach, they first use the Mask Region-based Convolutional
Neural Networks (Mask R-CNN) [6] to identify different in-

stances of each object, then they estimate the area and the vol-
ume of each food type, and finally they provide an estimation
of the caloric content. The models are trained and evaluated
on images with pixel annotations taken in a controlled lab
environment, where the different food types/instances do not
overlap in the plates. Freitas et al. [7] proposed a nutritional
monitoring system based on classification and segmentation
accessible via a smartphone app. In their experiments, they
trained five supervised learning models using pixel annotations
and evaluated their performance on Brazilian food types, with
Fully Convolutive Networks (FCN) [6] and Mask R-CNN
achieving the top performance in the target domain. Similarly,
Wu et al.[8] evaluate their method called ReLeM against
common baselines for the task of semantic segmentation,
including Dilated Convolution based [9], Feature Pyramid
based [10], and Vision Transformer based [11], all of which
require pixel-level annotations for training images.

Contrary to previous approaches, Weakly Supervised Ma-
chine Learning (WSML) methodologies reduce reliance on
pixel-level annotations and have been successfully employed
for image segmentation in other domains, such as medical
imaging [12], [13], [14], [15]. In the food domain, the seminal
work of Shimoda and Yanai [16] uses CNNs trained on image-
level annotations – without use of pixel-level annotations – and
the predictions are combined with the GrabCut algorithm [17]
to identify regions for various food categories. Their objective
is not to provide precise segmentations, but to achieve a good
bounding box with at least 50% overlap with the ground
truth. Notably, subsequent approaches of WSML in the food
domain have focused in identifying the area of food (i.e., to
distinguish it from the plate and other background), rather than
classification and segmentation for separate food classes [18],
[19].

To overcome the restrictions of the previous approaches,
in this paper we present and evaluate an attention-based,
multiple instance learning (MIL) methodology for semantic
food image classification and segmentation, applicable to
distinct food classes. In each model, the attention mechanism
is used to detect the target food class and to create a heatmap
that highlights the areas of the class in the images. Image
segmentations are then provided by applying a threshold on the
heatmap values. Experiments conducted on two meta-classes
created within the FoodSeg103 [8] data set demonstrate the
feasibility of our approach.
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Fig. 1. High-level overview of the proposed methodology, previously used for diabetic retinopathy detection [12]. A multiple instance model with attention
is trained for the classification problem for the target food class, without the use of pixel-level annotations. At test time, the model predictions are used to
detect whether the target food class is available in the image and, concurrently, the attention mechanism is used to produce heatmaps that localise the area of
the target class in the test images.

The rest of the paper is organised as follows. Section II first
presents the methodology for model training, then explains
how to acquire class predictions and semantic segmentations
at test time. Section III gives an overview of the used data
set and describes the meta-classes created from it. Then,
Section IV describes the experimental details, presents the
classification results and provides illustrations of the heatmaps
and segmentation produced by the attention-mechanism at test
time. Finally, Section V concludes the paper.

II. PROPOSED METHODOLOGY

Figure 1 illustrates on overview of the model’s architecture
and methodology which is used to train binary classification
models. At test time, the models detect the existence of a target
food class and, simultaneously, perform semantic segmentation
for this class using the heatmaps generated by accumulating
the output of the attention mechanism.

A. Model Architecture and Model Training

The proposed methodology is based on the work of Pa-
padopoulos et al. [12], who tackled the detection of refer-
able diabetic retinopathy in eye fundus images by using the
paradigm of multiple-instance learning. In their work, they
demonstrated that their approach achieved high classification
performance. Additionally, they explored the idea of providing
interoperability of the results based on the heatmaps produced
using the attention mechanism.

Briefly, the network’s architecture consists of three compo-
nents: a Residual Network 34 (ResNet-34) [20], an attention
mechanism [21] and a classifier responsible for categorizing
the original images into distinct food categories. Within the
framework of multiple instance learning, every training in-
stance is represented as a bag of patches extracted from the
original image, and the labels are defined in the bag level. A

bag is labeled as positive, if its constituent patches originate
from an image that depicts food of the target class. Conversely,
it is labeled as negative when its patches do not contain any
food of the target category.

Specifically, each image is divided using square patches
of dimensions d × d with an overlap rate t ∈ [0, 1). Dur-
ing training, for each training image, K random patches
{x1, x2, ..., xK}, xk ∈ Rd×d×3, are selected from the set of
all possible patches to form the bag X , that will be fed into
the network. Since each image is represented using only a
small subset of the available patches, this technique enhances
the training acceleration and the data variation. Additionally,
between epoch iterations the bag for an image will contain
different random patches. Thus, this approach augments the
training set, making the model training more robust to potential
overfitting challenges.

After the bag creation from the original images, each bag
passes through the ResNet-34 network and we use its last
layer for feature extraction. This leads to the transformed set
of vectors H = {h1, h2, ..., hK}, containing K feature vectors
of M = 128 dimensions, which serve as input to the attention
mechanism.

The attention mechanism used in this network was inspired
by Ilse et al. [21], who proposed a trainable weighted mean
to obtain a one-dimensional, image embedding vector z ∈
RM . The attention weights are determined by a neural network
consisting of two fully connected layers with the trainable
parameters represented by the vectors w and V . Furthermore,
the attention weights are normalized into the range [0, 1] and
sum up to one, ensuring that the mechanism remains invariant
to changes in bag dimensions. Specifically, z is calculated as:

z =

K∑
k=1

akhk (1)



where

ak =
exp(wT tanh(V hT

k ))∑K
j=1 exp(wT tanh(V hT

j ))
(2)

and w ∈ RL×1, V ∈ RL×M .
Subsequently, the embedding z, obtained after the attention

mechanism, is propagated to the classifier ρ : RM → R, which
is a single fully connected layer. The output is a scalar which,
after being propagate via a sigmoid function, represents the
probability that the original image belongs to the positive food
category.

In a nutshell, the network determines this prediction prob-
ability as:

p(y|X) = σ (ρ(z)) (3)

where

ρ(z) = ρ

(
K∑

k=1

akhk

)
= ρ

(
K∑

k=1

akϕ(xk)

)
(4)

with σ denoting the sigmoid function, ϕ denoting the feature
extraction of ResNet-34, and the weights {ak} calculated by
the attention mechanism.

B. Classification and Segmentation for New Images

Regarding the classification of a new, test image, the net-
work generates the prediction ŷ at the image level. Considering
the binary nature of the problem, the classifier’s output for a
test image is the probability yprob = P(y = 1|X) that the
image belongs to the positive class. The final step involves
converting this probability into a predicted label, ŷ, by com-
paring it to the threshold of 0.5 .

For the segmentation of a test image, the bag of patches
is generated using a different policy than when in training.
Particularly, each bag is formed by densely sampling square
patches throughout the image. Again, square patches with the
same dimensions, d×d, are used but with an a higher overlap
rate of t′ > t. Consequently, the count Ktest of patches in an
image with dimensions D ×D is determined as:

Ktest =

⌈(
1 +

D − d

d(1− t′)

)2
⌉

(5)

Then, for each test image, we create a heatmap that localises
the predicted class by accumulating the attention scores for
each patch. The heatmap has the same dimensions as the
input image, D×D, and is constructed based on the attention
weight values, ak, assigned to each part of the image within
the densely-sampled bag. More precisely, each weight ak
is normalized and aggregated in the pixel coordinates of
the heatmap from which each patch originates. Finally, a
threshold a is applied on the heatmap values to determine
the segmentations.

Notably, as the overlap rate t′, the number of patches Ktest

also increases and the heatmap tends to be more informative
at the pixel level, thus leading to a more granular and com-
prehensive final representation and resulting segmentations.

III. DATA SET

For our experiments, we use the FoodSeg103 data set
[8] which encompasses 103 distinct food categories in a
set of 7,118 images with pixel-level annotated segmentation
masks. Each image contains on average six different food
categories. The authors divided the images into training and
test sets, maintaining a ratio of 7:3 between them. Overall, the
training set consists of 4,983 images, accompanied by 29,530
segmentation masks, while the test set includes 2,135 images
with 12,567 segmentation masks. The same train and test sets
are used in our experiments. It is worth noting, however, that
in this work the segmentation masks in the training set are
solely used to create binary classes at image level.

Given that the data set contains numerous food categories,
we have the limitation that there are not abundant images of
each individual class in the training set. Moreover, consider-
ing the MIL aspect, the difficulty of the problem increases.
Consequently, we formed meta-classes in FoodSeg103, by
merging relevant individual classes into broader ones. The two
meta-classes created are referred to as ”Bakery” and ”Meat”.
The ”Bakery” contains the individual categories: egg tart,
biscuit, cake, bread, while the ”Meat” includes the classes:
steak, pork, chicken duck, sausage, fried meat, lamb. After the
consolidation, the total number of images for ”Bakery” turned
out to be 2.163 and for ”Meat” 3.562 images. The distribution
in the individual categories are presented in Tables I and II.

TABLE I
CLASS DISTRIBUTION IN THE ”BAKERY” META-CLASS.

Bread Cake Biscuit Egg tart

1.405 459 295 4

TABLE II
CLASS DISTRIBUTION IN THE ”MEAT” META-CLASS.

Steak Pork Chicken duck Sausage Fried meat Lamb

1.065 669 1.242 249 238 99

A common pre-processing stage is applied to all images
before they are entered into the network during training or
testing. Since the size of the patches forming the bags remains
constant throughout each training iteration, it is essential to
maintain uniformity in the image dimensions. Therefore, all
images are resized to dimensions 512 × 512 using bilinear
interpolation.

Having established a common reference point concerning
the size, the next stage involves excluding certain images
both from the training and test sets, based on a threshold
for the number of pixels belonging to the positive class.
Specifically, when the total number of pixels belonging to the
positive category in an image is less than 20.000, the image is
discarded and not utilized by the network at any stage. That is,
given the total number of pixels of each image after resizing
to 512 × 512, an image is considered ”positive” if the target
food class covers at least 7.6% of the image area.



IV. EXPERIMENTS

We conducted two experiments to evaluate the effective-
ness of the proposed method for semantic classification and
segmentation of the target meta-classes ”Meat” and ”Bakery”
within food images.

During the training process, for the ”Meat” category we
utilized 2,048 positive images and 2,627 negative images.
Similarly, for the ”Bakery” category, the training set consisted
of 1,330 positive instances and 3,464 negative instances. Given
that the ratio of positive to negative class for the ”Bakery”
meta-class is approximately 1 : 3, we employed oversampling
of the positive images to achieve class-balanced mini-batches.
For testing, the ”Meat” test set includes 917 positive images
and 2,015 negative images, while the test set for the category
”Bakery” contains 543 positive and 1,514 negative images.

Regarding the training parameters, each input image is
transformed to its bag of patches representation by randomly
selecting K = 50 random patches with dimensions 64 × 64
from the pool of image patches created with an overlap
t = 75%. The model is trained for 130 epochs in total. We
initialized ResNet-34 with pre-trained ImageNet weights. The
ResNet-34 weights are immutable for the initial 50 epochs
and are fine-tuned in the subsequent 80 epochs. In contrast to
train time, the input image representation in testing is resulting
from a patch extraction with same dimensions 64× 64 but on
a regular grid with higher overlap rate of 0.875.

First we evaluate the models for the task of image-level
classification. Table III presents the confusion matrix for
the ”Meat” class and Table IV summarizes the confusion
matrix for the ”Bakery” category. The quantitative results of
accuracy, precision, recall and F1-score for both meta-classes,
are reported in Table V.

TABLE III
THE CONFUSION MATRIX FOR CLASS ”MEAT”

Positive Negative
Positive 711 206
Negative 193 905

TABLE IV
THE CONFUSION MATRIX FOR CLASS ”BAKERY”

Positive Negative
Positive 287 256
Negative 58 1466

In the second stage, the trained models are evaluated pixel-
wise for the generated heatmaps, in terms of localizing the
region of the target food classes in the positive images of the
test sets. The metric of Average Precision (AP) evaluates the
ranking of the pixels based on the values contained in the
heatmaps, while the metric Intersection over Union (IoU) is
computed by comparing the ground-truth masks of the images
with the corresponding heatmaps, after applying the threshold
of a = 0.3 in the heatmaps’ pixel values. Table V reports the
results of IoU and AP for the categories ”Meat” and ”Bakery”.

TABLE V
CLASSIFICATION AND SEGMENTATION METRICS FOR ”MEAT” AND

”BAKERY”

Accuracy Precision Recall F1-score IoU AP
Meat 80.2% 78.6% 77.5% 78% 53.4% 77.5%

Bakery 84.8% 83.1% 52.8% 64.5% 47.4% 71.4%

Figure 2 presents illustrative images from the test set
depicting food of the class ”Meat,” which the final model
accurately classified as positive instances. The testing images
from FoodSeg103 (first column) and the respective ground-
truth masks (second column) are shown after the resizing
transformation of 512 × 512, along with the corresponding
heatmaps (third column). The segmentation masks (fourth col-
umn) are displayed after the applied threshold a = 0.3 to the
heatmaps’ pixel values. Similarly, Figure 3 presents indicative
images from the test set of the category ”Bakery” that the
trained model accurately predicted as positive instances.

V. CONCLUSIONS

This paper demonstrates a multiple-instance, attention-based
methodology for food image classification and semantic seg-
mentation. The weakly supervised models are trained using
only class labels for the images and without any individual

Fig. 2. Indicative examples of heatmaps and segmentation masks for positive
images in the ”Meat” meta-class. The first and second column contain
the resized RGB images and the corresponding resized binary ground-truth
masks, respectively. The third column displays the generated heatmaps, while
the fourth column shows the segmentation masks, after having applied the
threshold a = 0.3 to the heatmaps’ pixel values.



Fig. 3. Indicative examples of heatmaps and segmentation masks for positive
images in the ”Bakery” meta-class. The first and second column contain
the resized RGB images and the corresponding resized binary ground-truth
masks, respectively. The third column displays the generated heatmaps, while
the fourth column shows the segmentation masks, after having applied the
threshold a = 0.3 to the heatmaps’ pixel values.

pixel annotations. For new, unseen images the trained mod-
els are able to achieve high classification performance and,
notably, they are able to localise the area of the target food
class using the heat map produced by the attention mechanism.
The results show that the used model architecture, previously
evaluated for diabetic retinopathy classification in eye fundus
images, can be extended to perform semantic segmentation in
the food domain. Moreover, the results suggest that weakly su-
pervised machine learning approaches can address the complex
tasks of semantic food image classification and segmentation,
which are crucial for dietary monitoring and other applications
in the food domain. In the future, we plan to extend our
methodology and produce models for more specific food
categories (e.g., the ones that are included in each meta-class)
and other types of food images.
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