
HAL Id: hal-01245751
https://inria.hal.science/hal-01245751v1

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Towards an Environment for doing Data Science that
runs in Browsers

Leila Abidi, Christophe Cérin, Gilles Fedak, Haiwu He

To cite this version:
Leila Abidi, Christophe Cérin, Gilles Fedak, Haiwu He. Towards an Environment for doing Data
Science that runs in Browsers. International Conference on Big Data Intelligence and Computing
(DataCom 2015), Dec 2015, Chengdu, China. �hal-01245751�

https://inria.hal.science/hal-01245751v1
https://hal.archives-ouvertes.fr

1

Towards an Environment for doing Data Science
that runs in Browsers

Leila Abidi1, Christophe Cérin1, Gilles Fedak2 and Haiwu He3

1Université de Paris 13, LIPN UMR CNRS 7030, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
2 Laboratoire de l’Informatique du Parallélisme, ENS Lyon, 46 avenue d’Italie, 69364 LYON CEDEX 07, France
3 China Sciences & Technology Network, Computer Network Information Center, Chinese Academy of Sciences,

4 Zhongguancun Nansijie, Haidian District, Beijing 100190, ChinaP.O. Box 349
{leila.abidi,christophe.cerin}@lipn.univ-paris13.fr, gilles.fedak@inria.fr, haiwuhe@cstnet.cn

Abstract—This article proposes a path for doing Data Science
using browsers as computing and data nodes. This novel idea is
motivated by the cross-fertilized fields of desktop grid computing,
data management in grids and clouds, Web technologies such as
Nosql tools, models of interactions and programming models in
grids, cloud and Web technologies. We propose a methodology
for the modeling, analyzing, implemention and simulation of a
prototype able to run a MapReduce job in browsers. This work
allows to better understand how to envision the big picture of
Data Science in the context of the Javascript language for pro-
gramming the middleware, the interactions between components
and browsers as the operating system. We explain what types of
applications may be impacted by this novel approach and, from a
general point of view how a formal modeling of the interactions
serves as a general guidelines for the implementation. Formal
modeling in our methodology is a necessary condition but it is not
sufficient. We also make round-trips between the modeling and
the Javascript or used tools to enrich the interaction model that
is the key point, or to put more details into the implementation. It
is the first time to the best of our knowledge that Data Science is
operating in the context of browsers that exchange codes and
data for solving computational and data intensive programs.
Computational and data intensive terms should be understand
according to the context of applications that we think to be
suitable for our system.

Index Terms—System design using formal modeling, Desktop
grids, Data management, Web ecosystem.

I. INTRODUCTION

The increasing number of intelligent devices such as smart-
phones, tablets, watches and sensors in a broad sense, are
new business opportunities but they also put a pressure to
make existing applications to support these new devices and
to remain competitive. Ten years ago, who could predict
that Google Drive will going to supplement supplant desktop
office suites? New Web and cloud technologies now provide
feasible means to push almost any desktop functionality "on
the Internet" and in most cases to run them in the user’s
browser. For instance, OfficeJS1 is an open-source project
similar to Google Drive to offer office suite. The development
is with Javascript and it runs using the sesources of your Web
browser. OfficeJS is partly using J-IO2, a Javascript library

1http://www.erp5.com/officejs/documentation
2http://www.j-io.org/

that can be used to synchronize text files and that takes into
account the offline mode.
Will it be possible soon to do Data Science in browsers? We
mean here, to do computing and data management inside the
user’s browser, not in using the browser as a presentation
interface. We do believe that an effort should be done earlier in
the design stage for the interactions between the components
of the system to be build to get confidence in the Internet-
centric system. This paper proposes a methodology, illustrated
by a concrete prototype for going into the direction of a full
Data Science environment that runs in browsers, reaching in
this way some form of universality. The main assumptions
made in this paper are the following.
First, the browser is the ’universal’ operating system and
Javascript is the programming language for that operating
system. This option is realistic regarding the number, types
and of systems that are currently developed by the Web
communities. Many efforts has been done for instance to
secure the browser with some confinement mecanisms such
as the ones presented in [1]. As a consequence, the browsers
can run codes in a mode at least as secure than the mode using
virtual machines.
Second, there is a class of applications that can benefit from
the use of browsers for doing Data Science. In our case, we
are working with medical doctors under the framework of
the IDV Life Imaging framework3. One use case consider
crowdsourcing for the annotation of images coming from
scanners in the radioly field. Young doctors are invited to
annotate images under the supervision of an expert. We could
imagine to offer to the medical doctors the possibility to
annote, but also to process images on the client side, i.e., in
the browsers. In our case, the images are not very large in size.
Another use case that we are working on is in the context of
another project on context aware combuting, and as follows.
Most of the mobile users now have multiple devices which
further increases the opportunity to share their resources.
However, these devices can be used only if they meet certain
context requirements which come from requirements of the
app that is running or from limits on the resource usage of
the volunteered device. Imagine that you are watching a live

3See: http://idv.parisdescartes.fr

2

match in the stadium. The allocated seat in the stadium only
allows us one angle view. In case of specic event (a goal if
you are watching a football game), you would like to view a
360o video that is composed from the video feed from video
cameras in all the four angles of the stadium.
Third, beyong the technology we need first a high level of
abstraction, at least for reasoning about the system we are
building, but also to guide the develoment. In this paper we
focus on a very high level of abstraction for the modeling of
the components and actors of the system we envision. We use
Petri Nets for that purpose. We do not use them to prove some
requirements of our systems because of the page limit but we
have accomplished such work in [2] for instance. We illustrate
how to get a smooth transition from the Petri Net to a more
functional view of the system, then to a concrete prototype.

The first contribution is a methodology that considers the
problem specification, analysis, implementation and simula-
tion of the core components that the community consider as
important for computing and managing data on the Internet,
making real the opportunity for Data Science in the browser.
The second contribution is a prototype demonstrating that
the abstraction can be implemented in JavaScript in order to
make the system universal (nowadays every devices are able to
run JavaScript). We also isolate the limitations of the current
JavaScript technologies in order to fully execute the System
only inside the browser. Throughout this paper we would like
to demonstrate that we are in search of a high level description
for the interactions between components required for doing
Data Science, that is somehow universal because it has been
implemented yet for traditionnal computing platforms (grids,
clusters, clouds) as well as on mobile computing platforms
soon. Note that the work [2] is concurrently running for
demonstrating the usefulness of our scheme for grids and
clouds.

The organization of the paper is as follows. In section II we
explain our abstraction for the main components of our system.
We also provide with a discussion about the functional view
and, according to this view we explain an execution of an
application and how the components interact. In section III
we give technical details about the prototype implementation.
We also give some examples of the current limitations in the
technology that lead to run some code outside the browser.
The different classes that compose the system are documented.
Section IV is about related works and it mainly focusses on
grid data management because of the lack of researches, to the
best of our knowledge, on using browsers for Data Science.
Section V concludes the paper and draw some perspectives

II. REDISDG AS THE ABSTRACTION FOR INTERACTIONS

The Publish-Subscribe paradigm is an asynchronous mode for
communicating between entities [3], [4]. Some users, namely
the subscribers or clients or consumers, express and record
their interests under the form of subscriptions, and are notified
later by another event produced by other users, namely the
producers.
This communication mode is multipoint, anonymous and
implicit. Thus, it allows spatial decoupling (the interacting

entities do not know each other), and time decoupling (the
interacting entities do not need to participate at the same
time). This total decoupling between the production and the
consumption of services increases the scalability by eliminat-
ing many sorts of explicit dependencies between participating
entities. Eliminating dependencies reduces the coordination
needs and consequently the synchronizations between entities.
These advantages make the communicating infrastructure well
suited to the management of distributed systems and simplify
the development of a middleware for the coordination of
components in a Data Science context.
We also use Redis4, hence the name RedisDG which is
a no-SQL advanced key-value store with Publish-Subscribe
functionality.

A. RedisDG modeling

Our work started by performing a formal modeling, based on
our initial modeling of the publish-subscribe paradigm [2] but
adapted to Redis interactions for the Pub-Sub subsystem. In
this former work we have studied an interaction scheme based
on Bonjour from Apple which is a little bit different in the
approach for publishing and subscribing to events.
The figure 1 illustrates the colored Petri net of the Re-
disDG system. We distinguish, in the center, the publish-
subscribe paradigm based on the three transitions Publish,
Subscribe, Notify. With Redis, if an event is published
and there are no components that have previously subscribed
to be notified by this event, then the event is lost forever. To
achieve a faithful model of this behavior, we have adapted
our basic publication-subscription model, to which we added
control places in order to block a publication that has no sub-
scription. The two control places are: SubscribeControl
and ModRedis. Their roles consist to generate, update and
compare the lists of published events and subscribed events.
When implementing RedisDG, it was necessary to take into
consideration this Redis specificity. The idea behind adding
the control places was to always have the subscribers awaiting
to be notified. This idea is a guideline for the development
of RedisDG. Therefore, the potential workers in RedisDG, as
soon as they join the system, must subscribe to an event. When
we switch from the modeling to the code, a worker in RedisDG
consists concretely into two Threads: the first manages the
execution of tasks and the second manages the subscriptions
to ensure the functioning of the system.

B. RedisDG protocol

In this subsection, we introduce the coordination algorithm
of RedisDG system. It is the highest view possible. Some
technical details are given in the experiments section. The
algorithm is entirely based on the publication-subscription
paradigm. The middleware obtained offers the same features
as the majority of desktop grid middleware such as Condor
and BOINC. It manages scheduling strategies especially the
dependencies between tasks, the execution of tasks and the ver-
ification/certification of the results; since the results returned

4See http://redis.io

3

Fig. 1. Formal medeling of RedisDG

by the workers can be manipulated or altered by malicious
workers. The general objectives for the RedisDG protocol are:

• Using an asynchronous paradigm (publish-subscribe) that
ensures, as much as possible, a complete decoupling
between the coordination steps (for performance reasons);

• Ensuring the system resilience by duplicating tasks and
actors. Even if the system is asynchronous and the tasks
are duplicated, we need to ensure the progress of tasks
execution. We also assume that actors are duplicated for
resilience reasons;

In Figure 2, we present the steps of an application exe-
cution. In RedisDG, a task may have five states: Waiting-
Tasks, TasksToDo, TasksInProgress, TasksToCheck and Fin-
ishedTasks. These states are managed by five actors: a broker,
a coordinator, a worker, a monitor and a checker. Taken
separately, the behavior of each component in the system may
appear simple, but we are rather interested in the coordination
of these components, which makes the problem more difficult
to solve.
The key idea is to allow the connection of dedicated com-
ponents (coordinator, checker, . . .) in a general coordination
mechanism in order to avoid building a monolithic system. The
behavior of our system as shown in Figure 2 is as follows:

1) Tasks batches submission. Each batch is a series-parallel
graph of tasks to execute.

2) The Broker retrieves tasks and publishes them on the
channel called WaitingTasks.

3) The Coordinator is listening on the channel Waiting-
Tasks.

4) The Coordinator begins publishing independent tasks on
the channel TasksToDo.

5) Workers announce their volunteering on the channel
VolunteerWorkers.

6) The coordinator selects Workers according to SLA cri-
teria.

7) The Workers, listening beforehand on the channel
TasksToDo start executing the published tasks. The event
’execution in progress’ is published on the channel
TasksInProgress.

8) During the execution, each task is under the supervision
of the Monitor whose role is to ensure the correct
execution by checking if the node is alive. Otherwise
the Monitor publishes again, tasks that do not arrive at
the end of their execution. It puplishes, on the channel
TasksToDo, in order to make the execution of the task
done by other Workers.

9) Once the execution is completed, the Worker publishes
the task on channel TasksToCheck.

10) The Checker verifies the result returned and publishes
the corresponding task on the channel FinishedTasks.

11) The Coordinator checks dependencies between com-
pleted tasks and those waiting, and restarts the process
in step (4).

12) Once the application is completed (no more tasks),

4

WaitingTasks

TasksToDo

TasksInProgress

TasksToCheck

FinishedTasks

Volunteer
Workers

Select
Volunteers

Emergency

Monitor

Checker

Broker

Workers

Coordinator

Fig. 2. Interactions between components of the RedisDG system

the Coordinator publishes a message on the channel
Emergency to notify all the components by the end of
the process.

III. DETAILS ABOUT THE PROTOTYPE

Our prototype is based on Redis and developed in Javasrcipt.
It is organized into the following pseudo classes:

• ServerClass: there are three cases for servers; a
main server for the Redis protocol itself through the
publication-subscription interface, a data server for stor-
ing the input/output data, and a code server to retrieve
the necessary code for the execution of an application.

• DataManager: it defines an instance of the class Server-
Class. It also defines the methods for loading files
on/from the Redis servers, for the execution of a code
(binaries or scripts).

• MachineClass: it defines the properties of a machine
(operating system, available memory, processor type,. . .)

• BrokerClass, CoordinatorClass, WorkerClass, Monitor-
Class and CheckerClass define respectively the behav-
ior of the broker, the coordinator, worker, monitor and
checker.

The application that serves to validate our prototype is the
well known MapReduce word-count. The application with
the dependencies between tasks is depicted by an acyclic
graph. Each node in the graph represents a task and each
edge between two nodes represents a dependency between two

tasks. A node is described in terms of inputs, outputs and code
to execute. The input text file is split in 4 pieces according
to a Shell script, then four mappers count for the number of
times each word appears, then two reducers merge the partial
result one time, and at last a final reducer step produces the
final result. Both the reducer and the mapper are Python codes.
These codes, as well as the Shell script are downloaded, on
the fly by the workers (reducers and mappers) from the Redis
code server. The workers also download the input files from
the Redis data server and produce output files that are also put
into the Redis data server. Note that the interaction protocol
is written in Javascript that call external scripts in Python and
Shell.
The javascipt libraries used by our prototype are:

• jsnetworkx: JSNetworkX is a port of the popular Python
graph library NetworkX. It’s a software package for
the creation, manipulation, and study of the structure,
dynamics, and function of complex networks. With Net-
workX you can load and store networks in standard and
nonstandard data formats, generate many types of random
and classic networks, analyze network structure, build
network models, design new network algorithms, draw
networks. In our case, we use the package to depict
our application graph as a di-graph and we also use
the methods for retrieving the source/sink of a node for
instance.

• redis and redis-cli (for the tests of the databases of the

5

Redis servers). This is the javascrip modules that imple-
ment the javascript interface with the Redis server. The
libraries encapsulate the Redis commands to interrogate
the Redis databases;

• fs and exec: these modules provide an interface for file
handling and process handling. For instance, we need to
fork a new process (by an equivalent of an unix exec
commmand) to start the computation that a worker have
to accomplish (Shell or Python scripts)

• zlib: this module is used to compress the files before we
send them to the redis servers in order to save room;

The simulation of the Javascipt word count application that
run under our framework requires Nodejs. Node.js is an open-
source, cross-platform runtime environment for developing
server-side web applications. Node.js applications are written
in JavaScript and can be run within the Node.js runtime on
OS X, Microsoft Windows, Linux, FreeBSD. . . That means
that our current prototype is not self-content, meaning that
the javascript do not fully run in the browser, interpreted by
the browser. However, the prototype is written in standard
Javascript and we made this choice because it is easily, from
our point of view, to debug under Nodejs rather than under
the browser. We are also waiting that all the required module
for our prototype will be available as full Javascript codes and
not pre-compiled librairies for Nodejs. It is just a question of
time.
The most interesting part of Node.js is that it provides an
event-driven architecture and a non-blocking I/O API designed
to optimize an application’s throughput and scalability for real-
time web applications. It uses Google V8 JavaScript engine to
execute code, and a large percentage of the basic modules are
written in JavaScript but not all the ones required by our pro-
totype. The event-driven architecture of Nodejs calls for round
trips with the formal modeling. In fact the modeling with
Petri nets may takes into account such consideration. With a
Petri net you define actions that take place simultaneously and
correspond to tokens that are fired at the same time. Guards
can also be associated to transitions to simulate the event-
driven nature of a problem. However, the graphical nature
of Petri nets does not translate immadiately to a Javascript
code and a programmer has to check many points that require
good skill in programming and also in Petri nets modeling.
At least, the non-blocking nature of javascript function lead to
implementations where the differents calls of a function need
to be encapsulated into a callback, that is not really obvious
for the development and tricky.

IV. RELATED WORKS

In this section we mainly summarize works related to data
management with a focus on desktop grid data management
systems. Grid computing researchers have developed data
management systems such as Stork [5], SRM [6], JuxMem [7],
Freeloader [8]. These systems have demonstrated their ro-
bustness and reliability in grid environments. In addition,
Bitdew [9] and GatorShare [10] provide a programmable
framework for data management in desktop grids. In this paper
we argue that these systems should be part of a more general

interaction scheme that remains to be built because we are
focussing on scheduling, monitoring, certifying the results.
The data management is through Redis servers than deal with
the Pub-Sub paradigm for the first one, the code app store for
the second one and the input/output data store pour the third
one.
BitDew [9]
Active Data []
*** Others work related to the two previous one come here.

In [2] authors focussed on the BonjourGrid [11], [12], [13]
meta desktop-grid middleware and demonstrated how a user
can select on demand, his favorite computing middleware
(BOINC, Condor, XtremWeb) as well as his favorite data man-
ager (Stork, Bitdew) under the supervision of an interaction
scheme implemented on top of Redis. In this paper we start
with a new interaction scheme, RedisDG, introduced in [14]
which is also implemented on top of Redis but it revisits the
interactions in order to facilitate the development in Python
as well as in Javascript, two popular languages in the Web
ecosystem.
According to Fedak et al. in chapter 11 of [15], in Desktop
Grid environments, basic data-management tasks such as re-
liably storing large data-sets are very difficult to accomplish,
first because of the volatility of nodes. Second, data privacy
and security must be enforced on Desktop Grids because we
deal with untrusted computers. The data protection mechanism
may add non-trivial overhead when processing large volumes
of data. Third, since the resources are geographically dis-
tributed, the design of a scalable data-intensive solution on
these systems is an issue. In this work, we also focus on the
latter issue, but at a MODESTE scale since we have built a
prototype and not a production system. The other ones are left
as part of either the computing or data exchange sub-systems.

V. CONCLUSION AND FUTURE WORK

In this article we have explained our motivations and initial
work for doing Data Science in using browsers as data
and computing nodes. We assume that a large collection
of devices (smartphones, tablets, connected watches. . .) can
be ’federated’ as we have done in the past with PCs to
form the desktop grid paradigm. We also assume that the
federation will happen because all these devices can run a web
browser such as Google Chrome or Firefox and because these
browsers implement all the functionalities, inherited from the
Web ecosystem, we found on our desktop machines. In some
ways we are renovating the desktop grid paradigm where
volonteer nodes participate into computation. We proposed a
methodology that considers first a high level of abstraction for
the interactions between components that have been identified
over time by colleagues working in the cluster and grid fields,
all sub-fields included. Second we implemented a prototype
that serve to measure the technical difficulties in implementing
the abstration and it reveals the round-trips required to enrich
the model.
Our future work will mainly consider alternatives to the
management of data. In the current prototype we are using

6

Redis servers to store codes, input and output data, but without
direct communication between browsers. This situation is like
what the community has done at the beginning in desktop grid
computing but it is not always the best choice for performance
matters. We will refine our formal modeling in order to
take into account direct communication between browsers
explicitely. The BitDew system [9] will serve as a use case.
Moreover we are also guessing that the Active Data model [] to
take into account the data life cycle could be unified with our
interaction scheme. The two systems rely on Petri Nets and the
difficulty is on how to define a coupling or composition of the
two systems. The general objective is to progressively add or to
glue sub-components for data management into the interaction
scheme that depicts how core components (compute on data,
certify results, monitoring, scheduling tasks) in order to offer
the same services as we can find them nowadays on clusters,
grids and clouds.

ACKNOWLEDGMENT

This work has been done partly under the Wendelin grant from
the ministry of industry in France (Programme Investissement
d’Avenir). This work has also been conducted with the support
of the President’s International Fellowship Initiavite (PIFI)
of the Chinese Academy of Science that founded months of
invited professor with CSTNET for two authors.

REFERENCES

[1] D. Cassou, S. Ducasse, and N. Petton, “Safejs: Hermetic sandboxing
for javascript,” CoRR, vol. abs/1309.3914, 2013. [Online]. Available:
http://arxiv.org/abs/1309.3914

[2] W. Saad, L. Abidi, H. Abbes, C. Cérin, and M. Jemni, “Wide area
bonjourgrid as a data desktop grid: Modeling and implementation on
top of redis,” in 26th IEEE International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2014, Paris,
France, October 22-24, 2014. IEEE Computer Society, 2014, pp. 286–
293. [Online]. Available: http://dx.doi.org/10.1109/SBAC-PAD.2014.50

[3] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–
131, 2003.

[4] H. Abbes and J.-C. Dubacq, “Analysis of peer-to-peer protocols per-
formance for establishing a decentralized desktop grid middleware,” in
Euro-Par Workshops, ser. Lecture Notes in Computer Science, E. César,
M. Alexander, A. Streit, J. L. Träff, C. Cérin, A. Knüpfer, D. Kran-
zlmüller, and S. Jha, Eds., vol. 5415. Springer, 2008, pp. 235–246.

[5] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class
Citizen in the Grid,” Distributed Computing Systems, International
Conference on, vol. 0, pp. 342–349, 2004.

[6] A. Shoshani, A. Sim, and J. Gu, “Storage Resource Managers:
Middleware Components for Grid Storage,” In Nineteenth IEEE
Symposium on Mass Storage Systems, 2002. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.3515

[7] G. Antoniu, L. Bougé, and M. Jan, “JuxMem: An Adaptive Supportive
Platform for Data Sharing on the Grid,” Scalable Computing: Practice
and Experience, vol. 6, no. 33, pp. 45–55, Nov. 2005. [Online].
Available: http://hal.inria.fr/inria-00000984/en

[8] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, and et al.,
“Freeloader: Scavenging desktop storage resources for scientific data,”
In proceeding of supercomputing, 2005.

[9] G. Fedak, H. He, and F. Cappello, “BitDew: A data management
and distribution service with multi-protocol file transfer and metadata
abstraction,” Journal of Network and Computer Applications, vol. 32,
no. 5, pp. 961–975, Sep. 2009. [Online]. Available: http://dx.doi.org/
10.1016/j.jnca.2009.04.002

[10] J. Xu and R. J. O. Figueiredo, “Gatorshare: a file system framework
for high-throughput data management,” Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
HPDC 2010, Chicago, Illinois,USA, June 21-25, 2010, pp. 776–786,
2010.

[11] H. Abbes, C. Cerin, and M. Jemni, “Bonjourgrid: Orchestration of multi-
instances of grid middlewares on institutional desktop grids,” Parallel
and Distributed Processing Symposium, International, vol. 0, pp. 1–8,
2009.

[12] H. Abbes, C. Cérin, and M. Jemni, “Bonjourgrid as a decentralised job
scheduler,” in APSCC. IEEE, 2008, pp. 89–94.

[13] H. Abbes, C. Cérin, M. Jemni, and W. Saad, “Toward a meta-grid
middleware.” Journal of Internet Technology, Volume 11 No1, 2010.

[14] L. Abidi, C. Cérin, and M. Jemni, “Desktop grid computing at
the age of the web,” in Grid and Pervasive Computing - 8th
International Conference, GPC 2013 and Colocated Workshops, Seoul,
Korea, May 9-11, 2013. Proceedings, ser. Lecture Notes in Computer
Science, J. J. Park, H. R. Arabnia, C. Kim, W. Shi, and J. Gil,
Eds., vol. 7861. Springer, 2013, pp. 253–261. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38027-3_27

[15] C. Cerin and G. Fedak, Desktop Grid Computing, 1st ed. Chapman
and Hall-CRC, 2012.

http://arxiv.org/abs/1309.3914
http://dx.doi.org/10.1109/SBAC-PAD.2014.50
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.3515
http://hal.inria.fr/inria-00000984/en
http://dx.doi.org/10.1016/j.jnca.2009.04.002
http://dx.doi.org/10.1016/j.jnca.2009.04.002
http://dx.doi.org/10.1007/978-3-642-38027-3_27

	Introduction
	RedisDG as the abstraction for interactions
	RedisDG modeling
	RedisDG protocol

	Details about the prototype
	Related works
	Conclusion and future work
	References

