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Abstract—Day-ahead DSM techniques in the smart grid allow
the supply-side to know in advance an estimation of the amount
of energy to be provided to the demand-side during the upcoming
day. However, a pure day-ahead optimization process cannot
accommodate potential real-time deviations from the expected
energy consumption by the demand-side users, as well as the
randomness of their renewable sources. This paper proposes
a day-ahead bidding system based on a pricing model that
combines a price per unit of energy, depending on the day-ahead
bid energy needs of the demand-side users, with a penalty system
that limits the real-time fluctuations around their bid energy
loads. In this day-ahead bidding process, demand-side users,
possibly having energy production and storage capabilities, are
interested in minimizing their expected cumulative expense. The
resulting optimization problem is formulated as a noncooperative
game and is solved by means of suitable distributed algorithms.
Finally, the proposed procedure is tested in realistic situations.

I. INTRODUCTION

The electric energy network is undergoing a great technologi-

cal evolution with the development of the smart grid concept,

which allows more interaction between the supply-side and the

demand-side of the network by taking advantage of advanced

information and communication technology. These bases pose

a plethora of new optimization and control issues related to

stability, reliability, and pricing policies of the network.

Demand-side management (DSM) comprises the different

initiatives intended to modify the time pattern and magnitude

of the load demand. In particular, letting the consumers

directly control and manage their individual consumption pat-

terns, combined with time-dependent electricity prices, results

in a grid that is more secure and efficient, easier to operate, and

that facilitates the integration of renewable energy, distributed

energy generation, and storage. A day-ahead demand-side

optimization provides the supply-side with an estimation of the

amount of energy to be delivered to the demand-side over the

time-period of analysis [1]. Nonetheless, additional costs are

incurred by the supply-side when the consumption schedule

is not correctly predicted by the users, and are transferred to

the demand-side in the form of penalty charges [2], [3].

The aim of this paper is to complement the model proposed

in [4], [5], in which the participants were committed to follow

strictly the bid consumption pattern, by taking into account

the randomness of the users’ energy consumption and non-

dispatchable generation. For this purpose, we propose a two-

stage pricing model: in the first stage, the price per unit of

energy is agreed during the day-ahead bidding process and

explicitly depends on the aggregate bid energy load of all

demand-side users, with the active users, i.e., those subscribers

participating actively in the bidding process, bidding their

energy needs according to individual consumption statistics; in

the second stage, real-time penalties are applied to those users

that deviate from their day-ahead bidding strategies, providing

an incentive for better prediction.

By means of a fully distributed demand-side management

method regulated by an independent central unit, active users

are interested in accurately deriving the bidding strategies

that minimize their expected individual monetary expense

and simultaneously optimize eventual energy generation and

storage strategies. Considered the selfish nature of the users,

the resulting bidding optimization is formulated as a nonco-

operative game, for which we analyze the existence of Nash

equilibria (NE). Besides, we propose two suitable distributed

algorithms to calculate such solutions, deriving sufficient

conditions for their convergence. In order to participate in

the aforementioned demand-side bidding process, each active

user is connected not only to the power distribution grid, but

also to a communication infrastructure that enables two-way

communication between his smart meter and the central unit.

The paper is structured as follows. Sections II and III

introduce the overall smart grid framework, the adopted en-

ergy pricing model, and the demand-side bidding system.

In Sections IV we consider demand-side users who can

only adopt load bidding strategies, whereas in Section V we

also include distributed generation and storage capabilities.

Section VI illustrates the proposed methods and algorithms

through experimental evaluations. Finally, we provide some

conclusions in Section VII.

II. SMART GRID MODEL

The modern power grid is a complex network that can be

conveniently divided into [6], [7]: (i) supply-side (energy

producers and providers), (ii) central unit (regulation authority

that coordinates the market-clearing process and the proposed

demand-side bidding process), and (iii) demand-side (end

users). In this paper, we focus our attention on the demand-

side of the smart grid, which is introduced in Section II-A and

further refined in Sections IV-A and V-A, whereas the supply-

side and the central unit are modeled as plainly as possible.
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A. Demand-Side Model
Demand-side users, whose associated set is denoted by D, are

characterized in the first instance by the random variable ln(h)
representing the individual per-slot energy load, which gives

the energy flow between user n ∈ D and the grid at time-slot

h in the time period of analysis, which is conveniently divided

in H time-slots. In particular, we have ln(h) > 0 when user

n purchases energy from the grid and ln(h) < 0 when user n
sells energy to the grid. Our demand-side model distinguishes

between passive and active users. Passive users are basically

energy consumers and resemble traditional demand-side users,

whereas active users indicate those consumers participating in

the demand-side bidding process, i.e., reacting to changes in

the cost per unit of energy by modifying their demand.
For convenience, we group the P passive users in the set

P ⊂ D and the N active users in the set N ⊂ D = D\P . We

do not make any assumption on pdf of ln(h), but we suppose

that active users can derive their individual load statistics.

B. Energy Cost and Pricing Model
This section describes the cost model on which depends the

price of energy. Let us define the cost per unit of energy
Ch(·) indicating the cost function at time-slot h set by the

supply-side during the market-clearing process. Within the

day-ahead bidding process, demand-side users agree the per-
slot aggregate bid energy load L̂(h), and the price Ch

(
L̂(h)

)
remains fixed during the time period of analysis, while real-

time penalties for load deviations are subsequently applied. In

this paper, we adopt the following cost function:

Ch

(
L̂(h)

)
= KhL̂(h) (1)

which corresponds to the non-normalized quadratic grid cost

function widely used in the smart grid literature (e.g., in [4],

[8], [9]). In general, the grid coefficients Kh > 0 are different

at each time-slot h, since the energy production varies along

the time period of analysis according to the energy demand

and to the availability of intermittent energy sources.
For convenience, let us introduce l̂n(h) as the per-slot bid

energy load for each user n ∈ N at time-slot h, so that

L̂(h) = L̄(P)(h) +
∑
n∈N

l̂n(h) (2)

where L̄(P)(h) =
∑

n∈P l̄n(h) is the average per-slot aggre-

gate energy consumption associated with the passive users

connected to the grid, with l̄n(h) = E{ln(h)}. We suppose

that the central unit can determine the average consumptions

of every passive user n ∈ P referring to its available past

statistics. For the sake of simplicity, we also assume that

L̂(h) ≥ L(min)(h) at each time-slot h, where L(min)(h) > 0
denotes the minimum per-slot aggregate energy load and can

be also calculated by the central unit. Furthermore, once L̂(h)
is fixed in the day-ahead bidding process, we assume that the

real-time aggregate energy load needed by the demand-side

users is always guaranteed by the supply-side.
In order to encourage participation of the demand-side in

the bidding process, passive users pay an overprice on the

purchased energy given by the multiplicative constant γh > 1
with respect to the agreed cost per unit of energy KhL̂(h):

f (P)
n =

H∑
h=1

γhKhL̂(h)ln(h), n ∈ P (3)

where ln(h) > 0 for users n ∈ P , since we assume that only

active users are allowed to sell energy to the grid.
On the other hand, each active user n ∈ N derives his

bid energy load vector l̂n =
(
l̂n(h)

)H
h=1

in the day-ahead

demand-side bidding process. Nonetheless, he can possibly

deviate from such strategy in real time by buying/selling a

different amount of energy ln(h), for which he pays/receives

KhL̂(h)ln(h), while incurring in the penalties given by the

following pricing system:

(i) When ln(h) > l̂n(h), user n pays a penalty

KhL̂(h)αh

(
ln(h) − l̂n(h)

)
, with 0 < αh ≤ 1 being the

penalty parameter for discouraging user n from exceeding

the agreed per-slot energy load l̂n(h);
(ii) When ln(h) < l̂n(h), user n pays a penalty

KhL̂(h)βh

(
l̂n(h) − ln(h)

)
, with 0 < βh ≤ 1 being the

penalty parameter for discouraging user n from falling

behind the negotiated per-slot energy load l̂n(h);

Accordingly, we introduce the cumulative expense over the

time period of analysis for the active users, which represents

the cumulative monetary expense incurred by user n ∈ N for

obtaining the energy loads {ln(h)}Hh=1, including the penalties

for deviating from the bid energy loads {l̂n(h)}Hh=1:

f (N )
n = fn(̂ln, l̂−n) =

H∑
h=1

Kh

(
l̂−n(h) + l̂n(h)

)(
ln(h)

+ αh

(
ln(h)− l̂n(h)

)+
+ βh

(
l̂n(h)− ln(h)

)+)
, n ∈ N (4)

where (x)+ = max(x, 0), l̂−n =
(
l̂−n(h)

)H
h=1

being the ag-

gregate bid energy load of the other users m ∈ N\{n}, and

l̂−n(h) = L̂(h)− l̂n(h) = L̄(P)(h) +
∑

m∈N\{n}
l̂m(h). (5)

Basically, when ln(h) ≥ 0, active user n pays a fraction

βh of the full price for the negotiated energy that he does

not purchase, and is charged 1 + αh times for the energy

that exceeds his day-ahead agreed amount. Likewise, when

ln(h) < 0, active users n receives a fraction βh of the full

price for the exceeding energy that he sells to the grid, while

he is charged 1 + αh times the full price for the negotiated

energy that he fails to sell.

The penalty parameters
{
αh, βh

}H

h=1
are established in

the day-ahead market-clearing process with the purpose of

discouraging real-time deviations with respect to the bidding

load either upwards or downwards. On the other hand, the

parameter γh must be chosen to penalize passive users with

respect to the active ones.

III. DEMAND-SIDE BIDDING SYSTEM

Once defined the overall model, in this section we present the

proposed demand-side bidding process.
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First, the grid energy prices for the time period of analysis,

i.e., the grid coefficients {Kh}Hh=1, and the penalty parameters{
αh, βh, γh

}H

h=1
, are fixed in the day-ahead market-clearing

process [6], [7]. Then, each active demand-side user reacts

to the prices provided by the central unit through iteratively

adjusting his per-slot bid energy loads, given by l̂n, with the

final objective of minimizing his expected cumulative expense

throughout the time period of analysis, i.e.,

f̄n(̂ln, l̂−n) = E
{
fn(̂ln, l̂−n)

}
(6)

which is obtained in closed-form as in the following lemma.

Lemma 1 ([10, Sec. 1]). Given the pricing model in Sec-

tion II-B, the expected cumulative expense of active user

n ∈ N , with per-slot bid energy loads l̂n, is given by

f̄n(̂ln, l̂−n) =
H∑

h=1

Kh

(
l̂−n(h) + l̂n(h)

)
φln(h)

(
l̂n(h)

)
(7)

where

φln(h)(x) = E
{
ln(h) + αh

(
ln(h)− l̂n(h)

)+
+ βh

(
l̂n(h)− ln(h)

)+)}
= (1 + αh)l̄n(h)− αhx

+ (αh + βh)
(
xFln(h)(x)−Gln(h)(x)

)
(8)

Gln(h)(x) =

∫ x

−∞
tfln(h)(t)dt (9)

with Fln(h)(x) and fln(h)(x) denoting the cdf and pdf of ln(h).

Once the day-ahead bidding process finalizes, the prices per

unit of energy {KhL̂(h)}Hh=1 remain fixed. Then, passive and

active users are charged in real-time as in (3)–(4), respectively.

IV. LOAD BIDDING STRATEGY FOR EXPECTED COST

MINIMIZATION

In this section, we consider active users with load bidding

capabilities, and we examine the bidding system introduced

in Section III using a game theoretical approach.

A. Demand-Side Model with Energy Load Bidding

Let us introduce the individual per-slot net energy consumption
en(h), which indicates the energy needed by user n ∈ D to

supply his appliances at time-slot h taking into consideration

eventual non-dispatchable (renewable) energy resources that

the user may adopt.1 Since, in this section, en(h) is the only

contribution to the energy load ln(h), it thus follows that

ln(h) = en(h) is the random net energy consumption and

l̂n(h) = xn(h) is the optimization variable that represents the

per-slot bid net energy consumption of user n ∈ N .

Defining the bidding strategy vector as xn =
(
xn(h)

)H
h=1

,

the strategy set Ωxn
for active users can be expressed as

Ωxn
=

{
xn ∈ R

H : χ(min)
n (h) ≤ xn(h) ≤ χ(max)

n (h)
}

(10)

1Non-dispatchable generators, having only fixed costs, imply no strategy
regarding energy production, unlike dispatchable generators in Section V.

with χ
(min)
n (h) and χ

(max)
n (h) denoting the minimum and

maximum per-slot bidding loads for user n ∈ N , respectively.

B. Game Theoretical Formulation and Analysis of NE

We can now formally describe the demand-side bidding pro-

cess described in Section III with the setup in Section IV-A

as the game G =
〈
Ωx, f̄

〉
, with Ωx =

∏N
n=1 Ωxn and f̄ =(

f̄n(xn, l̂−n)
)N
n=1

given in (7), in which each player n ∈ N
calculates his bidding strategy xn ∈ Ωxn that minimizes his

payoff function f̄n(xn, l̂−n), given the aggregate bid energy

load vector of the other users l̂−n:

min
xn

f̄n(xn, l̂−n)

s.t. xn ∈ Ωxn

∀n ∈ N . (11)

The solution of the game G =
〈
Ωx, f̄

〉
corresponds to the

well-known concept of Nash equilibrium, which is a feasible

strategy profile x� = (x�
n)

N
n=1 with the property that no single

player n can profitably deviate from his strategy x�
n, if all

other players act according to their optimal strategies [11].

The existence of such solutions is analyzed in next Theorem.

Theorem 1 (Existence of NE [10, Sec. 2]). Given the game
G =

〈
Ωx, f̄

〉
in (11), suppose that, ∀n ∈ N , χ(min)

n (h) and
χ
(max)
n (h) are such that the pdf of the per-slot net energy

consumption satisfies

fen(h)(x) ≥
( 1

L(min)(h)

)( 2αh

αh + βh

)
(12)

for χ
(min)
n (h) ≤ x ≤ χ

(max)
n (h). Then, the game has a

nonempty and compact solution set.

Remark 1.1. The condition in (12) limits the displacement of

xn(h) around the mode of en(h).

C. Computation of NE

Observe that, in the game G =
〈
Ωx, f̄

〉
in (11), the cou-

pling between users lies at the level of the payoff functions

f̄n(xn, l̂−n), whereas the individual feasible sets Ωxn
are de-

coupled. Hence, we consider the extremely flexible and easy-

to-implement solution provided by a distributed algorithm

based on the individual best-responses. In this scheme, each

active user calculates, at each iteration, his optimal strategy

given the aggregate bid energy loads for all time-slots in

the time period of analysis, which obviously depend on the

bidding strategies of the other active users.

We focus on the class of totally asynchronous algorithms,

where some users may update their strategies more frequently

than others and they may even use outdated information about

the strategy profiles adopted by the other users. Let Tn ⊆
T ⊆ {0, 1, 2, . . .} be the set of times at which user n ∈
N updates his own strategy xn, denoted by x

(i)
n at the ith

iteration. We use tn(i) to denote the most recent time at which

the strategy of user n is perceived by the central unit at the ith
iteration. Besides, we assume that the standard conditions in

asynchronous convergence theory given by (A1)–(A3) in [5,

Sec IV], which are fulfilled in any practical implementation,
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Algorithm 1 Best-Response Algorithm

Data : Set i=0. Given {Kh}Hh=1 and any feasible starting

point x(0) = (x
(0)
n )Nn=1:

(S.1) : If a suitable termination criterion is satisfied:

STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n =

⎧⎨
⎩
x�
n ∈ argmin

xn∈Ωxn

{
f̄n

(
xn, l̂

(t(i))
−n

)}
, if i ∈ Tn

x
(i)
n , otherwise

End
(S.3) : i ← i+ 1; Go to (S.1).

are satisfied by the schedules Tn and tn(i), ∀n ∈ N (see also

[12, Ch. 6] for details). Hence, each individual user updates his

strategy by minimizing his cumulative expense over the time

period of analysis referring to the most recently available value

of the per-slot aggregate energy load

L̂(t(i))(h) = L̄(P)(h) +
∑
m∈N

l̂(tm(i))
m (h) (13)

which considers the energy loads of the other users as per-

ceived by the central unit, and from which user n obtains

l̂
(t(i))
−n (h) = L̂(t(i))(h)−l̂

(tn(i))
n (h). This procedure is described

in Alg. 1 (see [5, Alg. 1], [13, Alg. 4.1] for details).

Theorem 2 (Uniqueness of NE and Convergence of Algo-
rithm 1 [10, Sec. 3]). Given the game G =

〈
Ωx, f̄

〉
in (11),

suppose that, ∀n ∈ N , χ(min)
n (h) and χ

(max)
n (h) are such that

the pdf of the per-slot net energy consumption satisfies

fln(h)(x) >
2maxh

(
(N − 1)max(αh, βh) + αh

)
minh

(
(αh + βh)L(min)(h)

) (14)

for χ
(min)
n (h) ≤ x ≤ χ

(max)
n (h). Then, (i) the game has a

unique solution, and (ii) any sequence {x(i)
n }∞i=1 generated by

Algorithm 1 converges to such unique Nash equilibrium.

Remark 2.1. The condition in (14) is more restrictive than

that given in Th. 1, since it also implies the uniqueness of the

NE. Besides, we can compute a solution even in the presence

of multiple NE under more relaxed requirements (see Alg. 2

in next section). Furthermore, following [5, Rem. 3.1], we can

also understand (14) as a limit on the number of active users

with respect to the minimum per-slot aggregate load.

Note that the central unit cannot instantaneously control that

each active user respects the condition in (14). Nonetheless, the

former can apply further penalties to those users who persist

in making inaccurate load bids [2] (this consideration holds

equivalently for the convergence condition of Alg. 2 in (22)).

V. LOAD BIDDING, GENERATION, AND STORAGE

STRATEGIES FOR EXPECTED COST MINIMIZATION

In this section, we analyze the bidding system formulated in

Section III for more advanced demand-side users, who can

possibly have energy generation and storage capabilities.

A. Demand-Side Model with Energy Generation and Storage

For convenience, let us use G ⊆ N to denote the subset

of users possessing dispatchable distributed energy generation

(DG). For users n ∈ G, gn(h) ≥ 0 represents the per-slot
energy production profile at time-slot h. Introducing the energy
production scheduling vector gn =

(
gn(h)

)H
h=1

, we have that

gn ∈ Ωgn , where Ωgn is the strategy set for dispatchable

energy producers n ∈ G. Likewise, we use S ⊆ N to denote

the subset of users owning distributed energy storage (DS).

Users n ∈ S are characterized by the per-slot energy storage
profile sn(h) at time-slot h: sn(h) > 0 when the storage device

is to be charged (i.e., an additional energy consumption),

sn(h) < 0 when the storage device is to be discharged (i.e., a

reduction of the energy consumption), and sn(h) = 0 when the

device is inactive. Introducing the energy storage scheduling
vector sn =

(
sn(h)

)H
h=1

, it holds that sn ∈ Ωsn , being Ωsn

the strategy set for energy storers n ∈ S . Hence, for each user

n ∈ N , the per-slot energy load ln(h) and the per-slot bid

energy load l̂n(h) are now defined, respectively, as

ln(h) = en(h)− gn(h) + sn(h) (15)

l̂n(h) = xn(h)− gn(h) + sn(h). (16)

Observe that any generation and storage models resulting in

compact and convex strategy sets validate the results in the

next sections [13, Prop. 4.1] (see, e.g., those proposed in [5]).

Finally, let us define the per-slot strategy profile and the

corresponding strategy vector of a generic user n ∈ N as

yn(h) =
(
xn(h), gn(h), sn(h)

)T
, yn =

(
yn(h)

)H
h=1

(17)

For convenience, taking into account the strategy set Ωxn

defined as in (10), and the aforementioned sets Ωgn
and Ωsn ,

the corresponding strategy set for the generic user n ∈ N is

Ωyn
=

{
yn ∈ R

3H : xn ∈ Ωxn
,gn ∈ Ωgn

, sn ∈ Ωsn

}
(18)

with gn = 0 if n ∈ N\G and sn = 0 if n ∈ N\S .

Lastly, for users n ∈ G, the production cost function
Wn

(
gn(h)

)
gives the variable production costs for generating

the amount of energy gn(h) at time-slot h, with Wn(0) = 0.

B. Game Theoretical Formulation and Analysis of NE

Let us formally describe the previous demand-side bidding

process as the game G =
〈
Ωy, f̃

〉
, with Ωy =

∏N
n=1 Ωyn and

f̃ =
(
f̃n(yn, l̂−n)

)N
n=1

, with

f̃n(yn, l̂−n) = f̄n
(
(δ ⊗ IH)Tyn, l̂−n

)
+

H∑
h=1

Wn(δ
T
gyn(h))

(19)

where δ = (1,−1, 1)T and δg = (0, 1, 0)T. Here, each player

n ∈ N calculates his bidding, production, and storage strate-

gies yn ∈ Ωyn
that minimize his payoff function f̃n(yn, l̂−n),

given the aggregate bid energy loads of the other users l̂−n:

min
yn

f̃n(yn, l̂−n)

s.t. yn ∈ Ωyn

∀n ∈ N . (20)
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Algorithm 2 Proximal Decomposition Algorithm

Data : Set i = 0 and the initial centroid (ȳn)
N
n=1 = 0.

Given {Kh}Hh=1, {ρ(i)}∞i=0, τ > 0, and any

feasible starting point y(0) = (y
(0)
n )Nn=1:

(S.1) : If a suitable termination criterion is satisfied:

STOP.

(S.2) : For n ∈ N , each user computes y
(i+1)
n as

y(i+1)
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y�
n ∈ argmin

yn∈Ωyn

{
f̃n

(
yn, l̂

(t(i))
−n

)

+ τ
2‖yn − ȳn‖2

}
, if i ∈ Tn

y
(i)
n , otherwise

End
(S.3) : If the NE has been reached, then each user

n ∈ N sets y
(i+1)
n ← (1− ρ(i))ȳn + ρ(i)y

(i+1)
n

and updates his centroid: ȳn = y
(i+1)
n .

(S.4) : i ← i+ 1; Go to (S.1).

Next theorem analyzes the existence of NE.

Theorem 3 (Existence of NE [10, Sec. 4]). Given the game
G =

〈
Ωy, f̃

〉
in (20), suppose that, ∀n ∈ G, the production

cost function Wn(x) is convex, and that, ∀n ∈ N , χ(min)
n (h)

and χ
(max)
n (h) are such that the pdf of the per-slot net energy

consumption satisfies

fen(h)(x) ≥
( 1

2L(min)(h)

)(αh + 1
)2

αh + βh
(21)

for χ
(min)
n (h) ≤ x ≤ χ

(max)
n (h). Then, the game has a

nonempty and compact solution set.

Remark 3.1. The condition in (21), although similar to that

in (12), is more restrictive since the presence of DG and DS

gives more degrees of freedom for the users’ strategy (see [5,

Sec. 4.1] for details).

C. Computation of NE

When energy generation and storage devices are included in

the smart grid, the convergence conditions for Alg. 1 cannot

be guaranteed (see [5, Sec. 4.1] for details). Therefore, bearing

in mind the scheduling definitions provided in Section IV-C,

we consider an alternative distributed algorithm based on the

proximal decomposition algorithm [5, Alg. 2], [13, Alg. 4.2],

which is guaranteed to converge in the presence of multiple

NE and some additional constraints on the parameters of the

algorithm that we provide next.

Theorem 4 (Convergence of Algorithm 2 [10, Sec. 5]).
Given the game G =

〈
Ωy, f̃

〉
in (20), suppose that, ∀n ∈ G,

the production cost function Wn(x) is convex, and that the
following conditions hold:

(a.1) ∀n ∈ N , χ(min)
n (h) and χ

(max)
n (h) are such that, the pdf

of the per-slot net energy consumption satisfies

fen(h)(x) ≥
1

(αh + βh)L(min)(h)

(1
4
(αh + 1)2

+N
(
max(αh, βh) + αh + βh

))
(22)

for χ
(min)
n (h) ≤ x ≤ χ

(max)
n (h);

(a.2) The penalty parameters are such that αh + βh ≤ 1;
(b.1) The parameter τ satisfies τ > 3(N − 1)

(
maxh Kh

)
;

(b.2) {ρ(i)} ⊂ [Rm, RM ], with 0 < Rm < RM < 2.
Then, any sequence {y(i)

n }∞i=1 generated by Algorithm 2

converges to a Nash equilibrium of the game.

VI. SIMULATION RESULTS

In this section, we illustrate numerically the performance of

the proposed day-ahead bidding process.
We consider a smart grid of N = 100 active users and

P = 900 passive users, considering a time period of analysis

of H = 24 time-slots of one hour each. For the sake of sim-

plicity, each demand-side user n ∈ D has the same energy con-

sumption curve with daily average of
∑24

h=1 ēn(h) = 12 kWh,

occurring higher consumptions more likely during day-time

hours, i.e., from 08:00 to 24:00, than during night-time hours,

i.e., from 00:00 to 08:00, and reaching its peak between 17:00

and 23:00. The price per unit of energy is given by the

grid cost function introduced in (1), with {Kh}8h=1 = Knight

and {Kh}24h=9 = Kday, with Kday = 1.5Knight as in [9],

and whose values are chosen in order to obtain an initial

price of 0.15 e/kWh, when neglecting the real-time penalties.

Furthermore, we set αh = 0.2 for h = 1, . . . , 8 and αh = 0.9
for h = 9, . . . , 24, with βh = 1− αh.

We model en(h) as a normal random variable with mean

ēn(h) and standard deviation σn(h), with χ
(min)
n (h) and

χ
(max)
n (h) chosen such that the convergence of Alg. 1 and

2 is guaranteed. We use Alg. 1 to calculate the load bidding

strategy for expected cost minimization, whereas we employ

Alg. 2 when demand-side users have also dispatchable genera-

tion and storage capabilities. In particular, we suppose that the

latter users follow the production and storage models proposed

in [4, Sec. 2], with the same parameters used in [4, Sec. 5.2].
Fig. 1(a) illustrates the per-slot bid net consumptions xn(h)

with respect to the average per-slot net consumptions ēn(h) for

a generic active user, using three different standard deviations.

Predictably, the user’s bid is greater than his expected load

when αh > βh, since he is more likely to avoid severe

penalties for surpassing the agreed load, and vice versa.

In consequence, such displacement becomes greater as the

standard deviation increases. Let us compare the cumulative

expense obtained using Alg. 1 with respect to the case in which

the user does not fully exploit his statistical knowledge and his

bidding strategy is simply given by his expected consumption

ēn(h). Each user obtains an expected save of 1.9% when

σn(h) = 0.25
∣∣ēn(h)∣∣, of 3.7% when σn(h) = 0.5

∣∣ēn(h)∣∣,
and of 5% when σn(h) = 0.75

∣∣ēn(h)∣∣.
In Fig. 1(b) we examine the expected expenses per time-

slot using σn(h) = 0.75
∣∣ēn(h)∣∣, also considering the case in
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Fig. 1. (a) Difference between average consumption and bid consumption with three different σn(h); (b) expected expenses per time-slot with bidding strategy
based on ēn, with optimum bidding strategy x�

n, and with optimum dispatchable generation and storage strategies g�
n and s�n, using σn(h) = 0.75

∣
∣ēn(h)

∣
∣.

which all users are dispatchable energy producers and storers.

It is straightforward to see that, in both cases, the expenses

are greater when the users adopt the bidding strategy resulting

from Alg. 2, i.e., xn = x�
n. Moreover, when all users adopt

DG and DS, the resulting cumulative expense is 25.3% less

than when they bid their average energy loads.

VII. CONCLUSIONS

In this paper, we propose a day-ahead bidding process with

real-time penalties for smart grid users, which also accommo-

dates distributed energy production and storage. We provide

two distributed and iterative algorithms that allow to compute

the optimal bidding, production, and storage strategies of the

users with minimum information exchange between the central

unit and the demand-side of the grid. Simulations on realistic

situations employing a practical cost function show that active

users substantially reduce their expected expenses with respect

to when their bidding strategy is based on their expected loads.
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