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Abstract—Walking in an unfamiliar environment may include
some risk of falling. For frail seniors, these risks can significantly
increase according to their ability to maintain balance. Among
several factors, the user’s balance can be affected by several risks
including the characteristics of the user’s gait. To overcome this
issue, this paper presents three methods: one using a statistical
model, and two others using an artificial neural network (ANN).
The latter two can be differentiated by the use of constraints
applied onto the raw data. Centered on non-invasive augmented
shoes, our proposed system uses mobile technology to provide an
on-site assistance to users, replacing the bulky equipment usually
needed for clinical gait analysis. The experimental framework
is based on visual disturbances to induce variation in the
parameters of the user’s gait. Preliminary results obtained from
this framework suggest that our models enable the risk level
classification.

Index Terms—Risk of falling, gait analysis, visual perturba-
tions

I. INTRODUCTION

It is known that elderly do face difficulties for mobility
because of falling problems. Beyond the physical injuries, in
many cases, falls leave a psychological impact due to the fear
of falling. As a consequence, even without an injury, a fall
can cause a loss in confidence and a reduction of mobility
[7]. In spite of many remarkable achievements, fall prevention
programs do not provide any real-time monitoring of daily
activities of user. This have motivated conception of intelligent
clothes that can detect potentially dangerous situations related
to gait abnormalities.

For elderly, gait abnormalities may represent reduction
of motor function resulting in an increased risk of falling.
Indeed, the risk of falling can be a long-term feature related to
mobility. However, a risk of falling gives no guarantees about
forthcoming falls. It only gives an indicator about a dangerous
situation that may lead to falls. Therefore, the risk analysis
proposed in this paper is a qualitative evaluation where the
risk is defined as a probability of falling between low (0) to
very high (3) level. Those four risk levels are based on the
risk analysis method described in [3]. In the latter, qualitative
risk is assessed by combining different risk components. Each
component is numerically rated to reflect a low to a high value.
Then, the overall risk is obtained by combining them together.

In this paper, the device used for the computation of the
risk of falling according to the user’s gait is centred around

an instrumented shoe, similar to these ones [13], [16], [18],
driven by a real-time system running on a SmartPhone. The
instrumented interface contains some force sensors and a
variable bending resistor located inside a sole; which the latter
is adapted to many types of footwear. Data measured from four
FSR Force sensors and variable bending resistor (FlexSensor)
are send via bluetooth wireless communication to a smartphone
at a sampling rate of 100Hz. An Android application then
implements the proposed algorithms in this paper to compute
a risk of falling.

The contribution of our work is then the analysis of gait
abnormalities by using three methods: one using a statistical
model, and two others using an artificial neural network
(ANN). These models are designed in order to qualitatively
evaluate a risk of falling level while walking. The structure
of the paper is organized into the following sections. First,
a related works on the gait analysis using instrumented shoe
is analysed. Second, three gait models for the risk of falling
evaluation are described. Third, two experiments are detailed:
the first one is used for the validation of the algorithms and the
second one for the evaluation of their performances. Finally,
a discussion on the algorithms performance shows a relation
between gait abnormalities and risk level.

II. RELATED WORKS

Although many factors may increase the risk of falling, one
of the most important is the user gait parameters variances.
Indeed, Hamacher et al. concluded in [9] that linear variability
of temporal measures of stride, swing and stance time are the
parameters most capable of distinguishing between fallers and
non-fallers. In order to compute these gait parameters, in [8],
the authors used four gyroscopes located at lower limb for the
analysis of gait asymmetry.

However, gait related issues are usually assessed with
the help of instrumented shoes. Typically, those shoes uses
sensors embedded in the sole to analyse the user gait. For
instance, shoes with wireless capabilities have demonstrated
the feasibility of computing walking parameters such as heel-
strike, toe-off, foot orientation and position [5]. Also in [15],
they computed an instability assessment model for health care
professionals with the help of eight gait parameters, such as
pressure correlation, step time, cadence and stance-to-swing



ratio. Others also show interesting avenues about the gait
anomalies detection and the gait phases recognition. For in-
stance, the system proposed in [19] uses an instrumented shoe
to detect different gait mode by phase-dependent pattern recog-
nition for a below-knee amputee subject. Artificial intelligence
techniques such as fuzzy logic and Hidden Markov Model were
also use to detect gait patterns and to classify gait abnormalities
[4], [11], [12]. However, despite the improvement in the gait
analysis, none of these systems compute a qualitative risk of
falling.

III. GAIT ANALYSIS MODELS

A step of the human gait is divided in two main phases: the
stance phase, where the foot touches the ground, and the swing
phase, where the foot leaves the ground. In this paper, the gait
analysis is mainly done during the former phase. For this study,
the stance phase is divided into three periods, as shown in Fig.
1: (1) the heel strike -the first heel contact with the ground-, (2)
the midstance and (3) the toes-off -the propulsion phase of the
gait-. In the following sections, steps will be timed according
to those definitions. Thus, we refer the time pass since the last
heel strike as the “current step time” and the midstance time
portion as the “midstance time”.

Fig. 1. Overview of gait phase

The main contribution of this work is centered on the
comparison of three gait analysis models: (1) Statistical model
(STAT), (2) Artificial neural network model using current data
(ANN-RT) and (3) Artificial neural network model on data
between a heel strike and toe-off (ANN-S). The former model
is based on several statistics computed with extracted gait
parameters from measured raw data. The two others methods,
as their name implies, are based on artificial intelligence
techniques. The main difference between both ANN models is
the constraints applied on a temporal analysis and the features
computed. The ANN-RT model computes current data – at a
rate of 100Hz –, while the ANN-S relays on a windowing
approach namely for each window, several gait features are
computed.

Since the gait is specific to each user, these three models
need a training stage prior to be used. This training process is
indeed mandatory in order to take into account the physical and
morphological differences between each walker and should be
supervised by a clinician.

The STAT model, the ANN-RT model and the ANN-S
model are further described in the following sections.

A. Statistical Model

Statistical models represent a first approach to artificial
intelligence techniques. Further studies on the gait analysis use
this model. Indeed, in order to characterize gait variability in
patients with parkinson’s disease, Wu and Krishnan proposed
to use a statistical model [20]. Also, through an instrumented
shoe, Noshadi et al. compute in real-time a variability index
coming from gait parameters using statistical trends [15].

In our statistical model, the gait analysis is conducted
by comparing several gait parameters with their receptive
average value. The monitored parameters are obtained from
data transmitted by the shoe and are divided according to
footsteps. Thus, at each specified time from heel strike, the
raw data is processed to obtained, for each FSR sensor, the
beginning time, the pressure at current step time and the
maximum pressure since the last heel strike. Moreover, the
time taken for the stance phase and the swing phase are also
monitored.

The mandatory training step takes a set of data from
the usual gait of the user. Those data should come from
supervised walking to ensure that the model is trained with a
suitable gait, and of course, is not trained with unsteady gait.
The parameters average value and their respective standard
deviation are computed according equations (1) and (2):

D̂jt =
1

|S|
×

S∑
(Djt) (1)

σjt =
1

|S|
×

√
S∑
(D̂jt −Djt) (2)

where D is the data of the parameter j at time t, D̂ the average
and σ the standard deviation. Sums are performed on all step
samples S.

The three stages that composed the STAT gait analysis
process are summarized in Fig. 2. At first, to extract risk of
falling from current data D, the algorithm computes, for each
selected parameter j at time t from the start of a heel strike,
the ratio Rjt of how many standard deviation the value is from
the average D̂jt as seen in (3). Thereafter, each ratio Rjt is
then summed together after being multiplied by a weight Wj .
The result computed by (4) gives an indicator G at time t of
the gait abnormalities. The global indicator G is obtained by
summing those timed indicators according to (5). Finally, the
third stage discretizes the risk by applying thresholds to the
global indicator.

Rjt = (Dj − D̂jt)/σjt (3)

Gt =
∑
j

(Wj ×Rjt) (4)

G =
∑
t

(Gt) (5)

In fact, if current data are closed to the computed average
data, the global indicator will tend to zero and the risk will



Fig. 2. Analysis process of the walking data

be low. Otherwise, the indicator will grow and the risk will
increase, thus giving real-time indicator of gait abnormality.

B. Artificial neural network model ANN-RT

As its name implies, the Artificial neural network ANN-
RT model analyses the gait with current input data. Such
methods is used for distinguishing gait pattern between normal
healthy subjects and Parkinson Disease (PD) patients [10].
In a similar manner, it allows identification of abnormal gait
pattern in Parkinson’s disease subjects during normal walking
[14]. The ANN-RT model does not need a full step (between
heel strike to toe-off) to compute the risk. However, raw data
cannot be used as input directly for the ANN-RT models.
Therefore a pre-processing stage is required in order to extract
gait features that will be used as inputs of the artificial neural
network. As a result, the ANN-RT model is implemented with
three computation stages: features extraction, artificial neural
networks computation and risk discretization as shown in Fig.
3.

Features used include bending of the sole, the pressure ratio
at heel position (Rt), the pressure ratio at toe positions (Rt)
and the midstance time ratio (Rms). Though, the raw data
coming from bending of the sole are directly used as a feature,
the three others are pre-processed. For this, equations (6) and
(7) are used to extract the two pressure ratio features from
sensors (P ). To compute Rms, the current midstance time is
divided by the current step time as shown in (8):

Rh = (Phi)/(Phi + Phe) (6)
Rt = (Pti)/(Pti + Pte) (7)

Rms = Tms/Tstep (8)

where the index represents the sensor locations: heel (h), toes
(t), interior (i), and exterior (e) of the sole.

Fig. 3. Artificial Neural Network Model

The artificial neural network is composed of four inputs,
four outputs and a hidden layer of eight neurones. Pre-

processed features are used as input, while the outputs reflect
the risk according to the user gait.

To discretize the risk, the four neurone output values are
weighted and summed together using 9:

Risk =
∑

(Ok × wk) (9)

where O is the output value of the neurone k and w its
according weight. As the STAT model, thresholds are then
applied to obtain the associated risk.

Though, the gait analysis is straight forward, ANNs needs
training to process data accordingly. Particularly, the ANN-
RT model is trained using the Backpropagation algorithm and
require a proper training data set. This set should contained
step samples of all the four risk levels. To get those, several
step are captured and then analysed with the STAT model.
Thereafter, the training set is obtained by the selection of some
data from each rated step. Since unsteady gaits are necessary
for training, those should be acquired with the help of a
clinician.

C. Artificial neural network model applied to step data

The ANN-S model is very similar to the ANN-RT one. One
may refer to Fig. 3 for an overview of the three process stages:
features extraction, artificial neural networks computation and
risk discretization.

The main difference between ANN-S and ANN-RT models
resides in the features selection. In the former, features are not
dependent of a full step. In the latter, features are extracted
only when a step is completed. Those include the maximum
foot bending in the step, the midstance time ratio of a step
as computed using (8), the average pressure during midstance
Pms and the stance-to-swing ratio RStanceToSwing . The two
last features are computed according to (10) and (11):

Pms =
∑

(Pjt/Tms) (10)

RStanceToSwing = Tstance/(Tswing + Tstance) (11)

where P is the pressure obtained from sensor i at a time t
and Tms is the midstance time. Tstance and Tswing represent
respectively the total time of the stance (foot on the ground)
and the swing (foot in the air) according to the current step.

As the ANN-RT model, the artificial neural network of the
ANN-S model is composed of four inputs, four outputs and a
hidden layer of eight neurones. In the same way, the training
data set is obtained from a selection of several steps analysed
with the STAT model. This paper proposes to use the same
training set for both ANN models.

IV. VALIDATION AND PERFORMANCE

In order to validate the three algorithms presented in this
work, two experiments are conducted. The first one assesses
the ability of proposed algorithms to detect and classify
abnormalities in gait. The second one compares the algorithms
performance to analyse gait influenced by three visual pertur-
bations.
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Fig. 4. Summary of the computed risk’s according to each step for the STAT
model (black curve), the ANN-RT model (red curve) and the ANN-S model
(dot curve).

A. Detection and classification of gait abnormalities

The goal of the first experiment is to evaluate the ability of
the three models to differentiate and quantify gait abnormali-
ties. In fact, this is a preliminary stage to evaluate algorithms
performance. To do so, a gait sequence is analysed through
the three algorithms and results are graphically analysed. To
be usable in the second experiment (visual perturbations), the
three algorithms should output similar risk evaluations.

Data is collected from a healthy subject walking at average
speed. Around ninety strides were taken to capture the gait
parameters. The participant was asked to walk along a corridor
while varying its gait between a normal gait, a limping gait,
a balancing gait and a toes first gait. In fact, most of the gait
variation asked included a major change in the user’s gait phase
timing. About a third of the steps were considered as abnormal
compared to the participant standard gait.

Fig. 4 presents a summary of the risk computed by the
algorithms according to each step recorded. Each risks is
represented by a number from zero (low risk) to three (very
high risk). In Fig. 4, the black curve shows the statical model
results while the red and dot curves respectively show the
ANN-RT and the ANN-S outputs. As a first observation, one
notes a correspondence between the ANN-S and the STAT
model evaluations. On the other hand, the ANN-RT model
seems to diverge from the two others. However, by looking at
summary table I, the algorithms have found around the same
risk level’s number.

Risk level STAT#1 ANN-RT#2 ANN-S#3
0 60 68 73
1 10 6 4
2 15 14 9
3 4 1 3

TABLE I
SUMMARY TABLE OF THE MODEL COMPUTED RISK’S

Fig. 5. Pressures from the four sensors under the foot (top) and risk analysis
of the STAT model (bottom)

Fig. 6. Risk analysis of the ANN-RT model (top) and the ANN-S model
(bottom)

As an example, four different representations of eight
walking steps sequence are shown according to time. Fig. 5
shows raw pressures from FSR sensors (top) and STAT model
analysis prior to the threshold stage (bottom) while the Fig. 6
shows the ANN-RT (top) and ANN-S (bottom) analysed risks.
From the pressure curve, one may find step numbers four, five
and six different from the five others. Accordingly, the statical
model shows a significant difference in the gait parameters
for those three steps. ANN models also detect abnormalities
for these steps. On the other hand, the ANN-RT one shows
medium risk (risk level one) for most of the steps but detects
variations for the fourth, the fifth and the sixth step. The ANN-
S algorithm only detects two very high risk levels on step four
and six while other steps are evaluated as low risk level.



B. Performance evaluation

In order to evaluate the performance of the algorithms, the
models should be tested in a more realistic situation. Since
older population couldn’t be used at this stage of the project,
the modification of visual acuity was used to induce abnormal
gaits. Indeed, the risk of falling increases with poor depth
perception/stereo-acuity and poor low-contrast visual acuity
[17].

Moreover, several studies demonstrated the relation between
gait changes (or postural stability) and visual perturbation in
the young and older age groups. Experiments were performed
using participants with no history of falls and normal vision.
The visual stimulus was mainly lens magnification [6], binoc-
ular refractive blur [1] and cataract simulation [2].

Knowing these previous studies, we developed an experi-
ment using three modified pairs of glasses in order to simulate
four risk levels. For example, an increase of visual perturbation
will increase respectively unsteady steps or gait abnormalities.
Indeed, four visual conditions were explored: no visual distur-
bance (C0), lightly obscured vision (C1), obscured vision (C2)
and highly obscured vision (C3). Thereby, it is expected that
our three models should differentiate risk level (related to gait
abnormalities) according to visual disturbances.

Four participants take part in this experiment (labelled as
P1, P2, P3 and P4 in the following). All participants were
graduated students or university staff aged between 23 and
36 years old. Among the participants, none have stated any
particular gait issues. The participants were asked to walk
along a corridor in a straight line four times; each times they
are wearing different glasses (or no glasses). During the tests,
an auditory disturbance was applied to prevent the influence
of heel strike sounds on the user gait.

For each participant, the data analysis is done in the
following processing stage. All acquired data are first analysed
according to the three algorithms. However, no threshold is
yet applied; the models outputs at this stage are only risk
indexes. Then, for each risk, results are merged, sorted and
equally divided in four subgroups representing a different risk
level from which three thresholds are extracted. Once done,
each risk index is then discretized, thus giving, for each visual
condition (C0 to C3), the risk level for each step. For each
visual disturbance, the average risk is then computed according
to each model and each participant.

A summary of the results are shown in Fig. 7. First, for
the gait analyzed by the STAT model, participants P1 and P2
show an increasing risk following the visual disturbances while
participant P3 has a slight risk decrease for the C2 condition.
Although the forth participant do not show a monotonic
increase of the risks, there is still a difference in the gait
analysis between no visual perturbations and the three other
conditions. Second, the results coming from the ANN-RT
model are strictly increasing for P1, P3 and P4. The evaluation
of participant P2’s step detects a quite difference between C0
condition and the three others. Finally, the results given by the
ANN-S model show a corresponding risk increase according
to visual perturbation augmentation for each of the participant.

V. DISCUSSION

In the first experiment, the three models were able to detect
abnormal gait. By comparing the ANN models with the statis-
tical one, similar rates of 76.6% and 75.28% for respectively
the ANN-RT and the ANN-S are obtained. Those high rates
indicate that the three models achieve similar performance and
give about the same risks. However, a closer look in the Fig. 4
shows that ANN-RT model seems less accurate. Particularly,
it tends to evaluate higher risks than the two other models.
Still, the algorithms detect and classify risk levels for some
important variations in the gait parameters. Although only one
participant takes part in the first experiment, some conclusions
on the three models can still be drawn. Indeed, since the
algorithms are trained according to each user, similar results
should be obtained for other user if gait parameter variations
are found. Of course, in real life situations, gait parameter
variations are less noticeable than those evaluated in the first
experiment. However, by using visual disturbance to induce
variations in the gait, the conditions of the second experiment
are closer to natural events and can then be differentiated by
the ANN.

Results obtained for the second experiment show that, for
most of the participants, the three models were able to detect
an increase risk level when visual disturbance were augmented.
Though, it seems that models do not always detect a risk level
increase. For instance, the participant P4’s risk evaluations
by the STAT model for condition C1, C2 and C3 do not
spotted the expected risk augmentation. Similar results can be
seen in ANN-RT model for the participant P2. Thereby, what
conclusion can be drawn from those observations?

First of all, one has to note that, even if visual perturbations
tend to increase the gait variability, their effects are only proba-
ble. In other word, one can have no significant change in their
gait while wearing the different glasses. Moreover, nothing
prevents a user without visual disturbance to occasionally make
an unusual step due to external perturbations or uncontrolled
variables. Thus, it is expected that for some step sequences,
computed average risks do not reflects the according visual
condition.

Secondly, the three algorithms use different features to
evaluated the risk level; the STAT uses several timed param-
eters, the ANN-RT uses online data and the ANN-S uses
processed data once the step is completed. Thus, even if
features compositions are similar, difference in the processed
risk may occur. This is particularly visible in the results given
by the ANN-RT model of the first experiments, where it detects
different risks compared to others.

Finally, it is known that our brain have a great adaptability.
Since the results of the second experiment were obtained by
increasing visual disturbances, it is possible that some partic-
ipants got used to the visual perturbations and unconsciously
corrected their gait. This could explain conflicting results for
the C3 condition.

Despite multiples uncontrolled variables from human fac-
tors, results obtained did show, for most of the participant, a
corresponding increase of the average risks when a decrease



Fig. 7. The average computed risks according to each visual condition for the STAT model(left) the ANN-RT model (middle) and the ANN-S model (right)

visual perception was applied. Consequently, the three models
proved their ability to classify risk levels according to the user
gait. By comparing the three models, it seems that the ANN-
S model gives better results than the two others. Also, the
STAT model shows good results from most participants. Thus,
statistic model for the gait analysis has proved good efficacy.
Finally, the ANN-RT model gives satisfactory results but is
less accurate than the two others.

VI. CONCLUSION AND FUTURE WORKS

This paper has presented three models in order to analyse
qualitatively a risk level related to gait abnormalities. The
three proposed models are respectively based on statistics, on
artificial neural network on real-time acquired data and on
artificial neural network on data of a complete step. Models
were evaluated by two experiments. The first one validated the
ability of the three models to detect and classify risk level when
voluntary gait variations were induced. The second experiment
compared and validated the gait analysis by inducing gait
variation through visual disturbance. Despite of some human
factors, the three algorithms are able to evaluate some gait
abnormalities and give accordingly a risk level.

Knowing the according risk level, on-site assistance can
be provided to frequent fallers. To do so, future works will
use the computed risk level in order to warn the user through
vibrotactile feedbacks. Moreover, by including several risk
detections with the designed instrumented shoe described in
this paper, the whole systems could be used as comprehensive
mobile assistance tool for elderly population.
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