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Shared Decision-Making Forward an Autonomous Navigation for
Intelligent Vehicles*

Ahmad Shour+, Hugo Pousseur+, Alessandro Correa Victorino+, and Veronique Cherfaoui+

Abstract— Shared control is a situation where humans and
machines carry out a task in a cooperative way, and it is
a popular approach to facilitate control and communication
between humans and intelligent systems. Automated driving
vehicles that share control with human drivers have been shown
to acts better than fully automated systems and manual driving.
However, there is little consensus in guidelines for the design
and definition of shared control, some researchers assist humans
using haptic feedback, and others use an optimization process
and many other works. In this paper, Non-Cooperative Game
Theory is applied for the Decision-Making to formulate the final
input to the vehicle in the form of linear velocity and steering
wheel angle, where a joystick is used for manipulating human
inputs and a computer vision technology which is the “Visual
Servoing” implemented to command the autonomous driving
inputs, after giving a value for the blending coefficient which
is determined by a function dependent of the admissibility of
inputs and the similarity between them. The final navigation
decision sent to the intelligent vehicle is the output from the
fusion system. Noting that, the fusion system has the only right
to command the driving inputs to the vehicle. Finally, simulation
results are presented with the help of SCANeR Studio and
MATLAB/SIMULINK Simulators.

I. INTRODUCTION

A. Motivation

Autonomous navigation of vehicles is an important topic
nowadays. Most road accidents are caused by human errors
[1], such as making a phone call, being drunk, or even
when they are fatigued. Even the application of the most
recent Advanced Diving Assistance Systems (ADAS) has
helped to reduce accidents, the development of on-boarded
autonomous navigation systems applied to intelligent vehi-
cles has appeared as a potential solution. Automated vehicles
can be the rescue of human lives that are dying each day
while driving. Google has already started the testing of
their autonomous car “Waymo self-driving cars” on the
streets, also the organization of challenges for autonomous
cars continues with DARPA (Defence Advanced Research
Program of America). In this event, research centers and
universities around the world participate and display their
research and development in the domain of autonomous cars.
Fully autonomous driving is planned through the five series
of levels defined by the American SAE J3016 standard [2],
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currently, the focus is relaid on the development of the third
and the fourth levels of autonomy.

In this paper, we present a methodology to solve the
problem related to the fusion of the capabilities between
two intelligent agents (Humans and Intelligent Systems) to
drive a car. Keeping humans in the loop to interact with
intelligent systems will lead to efficient results in the way
of driving, in a shared control navigation strategy. In this
strategy, we can avoid any part of weakness from both sides.
Where, automated vehicles transcend the human driver in
sudden situations, power, and more persistence over a long
period. While humans are superior in cognition, reasoning,
decision making, and more intelligent in the perception of
the environment.

The shared control idea aims at synergistically merging the
competencies of both humans and intelligent systems. Au-
tonomous navigation for intelligent vehicles usually requires
a control system for path following. This control system is
composed of longitudinal and lateral controllers. Our novel
approach in this paper is the “Shared Control” strategy to
both longitudinal and lateral driving through cooperative
autonomous vehicle navigation between human driver and
autonomous driver.

B. Related Works

In [4], cooperative non-linear quasi-continuous sliding
mode control in a steer-by-wire vehicle as a lane-keeping
assistant is proposed, where the assistant system must give
the authority to the driver when he/she is available. The focus
was on the interaction between the human driver and the
controller. This interaction was based on a variable parameter
computed by the monitoring system of the driver. Then, the
final steering shared angle between the human and controller
is achieved depending on the human angle, automatic angle,
and the computed parameter.

The strategy of the shared control can be dependable on
the driver’s intention. After planning the trajectory based on
the kinematic safe envelope, driver’s path error can be used
to select the trajectory that the human wants to follow, where
MPC used to implement path tracking [7].

Shared control for the longitudinal vehicle control [8],
where both the human and the intelligent systems can apply
a force on the accelerator pedal. An optimization problem is
applied to optimize the interaction between them, through a
game theory approach. Each driver is modeled as an objective
function to follow the desired trajectory. Noting that, the
intelligent systems can only apply an opposite force to the
pedal, no braking force. This methodology was applied to



two scenarios, one for speed-following and the other for car-
following, and efficient results were shown. Nash equilibrium
between driver and intelligent system used to formulate a
control algorithm for the longitudinal control of the vehicle.

In [3], another shared control methodology is presented
between the user and intelligent assistance system via a hap-
tic joystick force feedback. Focusing on the human intentions
defined as the position error and the desired speed of the
wheelchair, where unknown input observers are developed to
estimate those intentions based on joystick motions. Tagaki-
Sugeno fuzzy model provides the optimal fuzzy controller
and LQR controller proposed to form the lateral and angular
torque feedback to the joystick, respectively.

In [5], the experiments applied to show that haptic torque
feedback on the steering wheel without any warning from the
automated system is not comfortable for the human driver.
Gestures can be used to warn the human before any action
from the assistance system, for example, warning by sound
what the automated system will act.

The methodology proposed in [9] is based on Shared
control to stabilize an inverted pendulum taking inputs from
humans and intelligent systems. The problem of the fusion
between the two control inputs is modeled as the regulation
of the conflict between them to zero. LQR controller is used,
and the admissibility of each input is specified by the R and
Q matrices of the controller. Noting that, the fusion system
has the only right to give the final input to the cart to have a
stabilized inverted pendulum. The role of the fusion system
is to nullify the conflict between the two, that what called
“Conflict Resolution”.

C. Contribution

Till now, computer vision working alone on a task is still
weak compared to working cooperatively with the human
[6]. In this paper, a computer vision technology which is the
“Visual Servoing” will be working cooperatively with the
human to drive a vehicle. The proposed strategy is based
on the Non-Cooperative Game Theory to formulate the final
input for the vehicle, based on the fusion between the two
independent inputs. The fusion of the two inputs is based on
a mathematical strategy to choose the coefficient of blending.
Fusion coefficient is defined by a function dependent on
the admissibility of each input and the similarity between
them. The methodology is validated using the professional
driving simulator SCANeR Studio with the help of MAT-
LAB/SIMULINK.

The rest of the paper is organized as follows. A back-
ground of the work is presented in II. The autonomous
driving controller explained in III. The fusion methodology
is computed in IV. Some experimental results are shown in
V. Finally, conclusion is presented in VI.

II. BACKGROUND

A. Non-Cooperative Game Theory

Game Theory is a mathematical theory related to the
study of decision-making in an interactive situation [12]. In
this paper, the fusion problem is represented in terms of a

game. Non-Cooperative Game Theory (NCGT) is applied
to the human driver and the autonomous agent, which will
present the two players in our work. Each player will provide
the driving inputs from their perspective of the situation
independent of the other. These two inputs are merged, in a
fusion system formulated at the coming sections, to resulting
a final input to the vehicle. The final driving inputs are
considered as the longitudinal velocity and the steering wheel
angle.

In [10], the methodology of the NCGT showed that the
final scaled coefficient will be at the line between the
two mapped points of the two agents, which is the Nash
Equilibrium solution. The input data from the manual driving
and autonomous driving of the vehicle will be fitted into a
quadratic form: y = ax2 +bx+ c.

Then, these quadratic forms will be mapped into 2D points
of coordinates (a,b). The coefficient c is not considered
in the mapping because the output y is more sensitive to
the coefficients a and b. For example, if we suppose that:
yhuman = ahumanx2 + bhumanx + chuman; which is the fitted
quadratic form of the human input, then the mapped point
of this fitted data will be point H presenting it in 2D of
coordinates (ahuman,bhuman).

The strategy of NCGT is related to maximizing the
gain/payoffs. The final driving input computed by the final
system can be different than the individual inputs. Which will
be presented by the ”Loss Utility Function”. It represents the
approximation of the driver resistance to the deviation from
the intention. It is considered as a parabolic shape, and its
function of the form:

f (x,y) = (x− x1)
2 +(y− y1)

2 (1)

where x1 and y1 are the coordinates of the mapped point of
the driving input.

The functioning of the shared control system should be
human-centered. In situations, where the human driving in-
tention is very different than that of the autonomous system,
the shared control system should become human-centric.
With this functionality, the intelligent vehicle may also be
termed as ‘Human-Centered Autonomous Vehicle’.

The similarity between the two input profiles is inversely
proportional to the euclidean distance between their respec-
tive mappings on the 2D plane. When the similarity is low
then the intentions are different, we must follow the human in
those situations. Since the NCGT is based on the loss utility
function the driving intentions are compared in the context
of their respective loss utilities, i.e. the loss utility functions
of the respective mappings are compared to calculate the
similarity measure. It has this form:

Sim(PH ,PA) =
1

(1+δ ∗D2)
(2)

where PH and PA are two profiles of the human and au-
tonomous inputs, respectively. δ is the tuning parameter and
D is the euclidean distance between the two mapped points.

Let A and H be the two mapped points of the autonomous
and human speed inputs, respectively. As shown in (Fig. 1),



we present a simple example to show how the input data
(speed inputs in this example) can be mapped into 2D points.

Fig. 1. Speed inputs and there 2D mappings

Fig. 2. Final point presentation

Then, for each input a loss utility function (Fig. 2) will be
presented to be able to find point F, which is the bargaining
solution between the human driver and the autonomous
system. F belongs to the plane of intersection between the
two parabolic shapes, that presents the loss utility of each
input. As shown in (Fig. 2), in the 2D presentation that point
F is the intersection between the two parabolas, this confirms
that the F lies on the line between A and H.

B. Inputs Admissibility

Each parabolic function will be presented by an opening
of its U-shape. Here, the definition of the opening comes
from the principle of quality for each input.

Suppose that we the quality of the human inputs at a
certain situation is higher, in another word, the human inputs
are more admissible, then the opening of the parabola will
be smaller than that for the autonomous parabola opening.
Then the final input, in this case, will be more shifted to the
human intentions.

That was presented by Belief Function Theory in our
previous work [11], using the occupancy grid of the map
with the help of lidar and camera sensor data to obtain the
environment state. A degree of belief for each input in its
decision admissibility “quality” is given a probability value.

III. VISUAL CONTROLLER

The visual controller drives the car in keeping the vehicle
in the center of the current lane. The controller defines in
divided into two parts: the first part detects lanes from the
image of the front vehicle camera and the second part defines
the command allowing to refocus the vehicle to the lane
center.

A. Lane detection

A study shows, due to CNN, the lane detection accuracy
increased from 80% to 90% compared with traditional image
processing methods [14]. In lane detection, deep-learning
compared to traditional detection methods can detect lanes
in complex situations with shadows, occlusions, or curves
[15]. The lane detection is divided into two parts, the first
part creates binary masks, one per line from the raw image,
and the second extracts a model for each line.

1) Masks prediction: The binary masks are predicted by
two deep-learning models. These models are trained and
tested on the CuLane dataset [16].

a) Mask prediction model: The first model, mask pre-
diction, is an autoencoder that predicts lines mask of an
instant t not depending on previous predictions from the
camera image. The output of the model is four masks, each
mask represents the mask activation for a line. The true
positive are much less represented compared to the true
negative, so the model has been trained in using the weighted
binary cross-entropy loss function.

L(ŷ,y) =−(ŷ∗ log(y)∗w1 +(1− ŷ)∗ log(1− y)∗w0) (3)

with ŷ true value, y value predicted and w0,w1 weights for
true negative/positive values.

b) Tracking model: The second model, tracking, is
another autoencoder model where the coder part is defined
by conv2D-lstm layers [17]. This model corrects prediction
done by the first model based on previous predictions. This
has been trained on noise data to learn to denoise data based
on previous predictions. To improve the runtime execution,
previous predictions are saved already encoded avoiding
encoding previous predictions at each prediction by the
tracking model.

As (Fig. 3) shows the prediction process from the raw im-
age to line masks. As explained above, the tracking process
improves the robustness of the prediction. This process can
help to fill partial prediction, (Fig. 4), or remove outliers.

2) Lines regression: Once masks are predicted, a model
needs to be defined to interpolate each mask line. This
interpolation is performed into two steps, the first one applies
RANSAC [18] algorithm to remove outliers and the second
one defines the quadratic regression.

As (Fig. 5) shows intermediate results from mask predic-
tion until road segmentation.

Fig. 3. Binary masks predictions process



Fig. 4. Tracking robustness example, the top image shows predictions
without tracking and the bottom image shows predictions with tracking

Fig. 5. Lane detection results, (a) masks prediction, (b) masks prediction
with tracking, (c) regressions, (d) road segmentation.

B. Control Commands

Once lanes are detected, it’s possible to control the define
the command allowing to recenter the vehicle to the center
of the vehicle. The solution is to apply the Visual Servoing
method [19].

1) Visual Servoing: The visual servoing allows defining
the vehicle commands from features image. In our case
features image S are defined by the point D = (X ,Y ), who
represents the intersection of the path to follow the border of
the image, and the angle Θ, who represents the angle between
the tangent τP of the path P evaluated in D with the ordinate
axis. Fig. 6 represents these features on an example. All
vision-based control aims to minimize an error e(t) defined
as follow:

e(t) = S(t)−S∗ (4)

With S features at the t instant and S∗ desired values of these
features. From this error, we can define row controller and
column controller allowing us to reduce the error e.

Like denote [19], we can define a relation between features
derivation (Ṡ) and the vehicle velocity (v,w).[

Ẋ
Θ̇

]
= Arowv+Broww (5)

Fig. 6. Image features, point (D), path (P), path tangent (τP), angle between
τP and y−axis (Θ), others lines represents lane boundaries detected.

But Ṡ∗ = 0, so ˙e(t) = ˙S(t) then if Brow 6= 0, the row controller
law is defined by:

w =−B+
row(

[
KX eX
KΘeΘ

]
+Arowv) (6)

With KX ,KΘ positive gains and B+
row the pseudo-inverse of

Brow. In the same way, we can define the column controller
law like this:

w =−B+
col(

[
KY eY
KΘeΘ

]
+Acolv) (7)

So from the current feature error and the linear velocity,
we can define the angular velocity allowing to refocus the
vehicle in the center of the current lane.

2) Image Based Dynamic Window Approach: The dy-
namic window approach (DWA) [20] is an online collision
avoidance strategy, which means this strategy is based on the
current states of the robot (i.e. current dynamics of the robot).
The DWA method is divided into two steps: 1. define the
limitation of the search space, 2. find the velocity maximizing
the objective function. In our case, the first step is the same
approach as described in [20]. The initial objective function
is defined as follow:

G(v,w) = λ .heading(v,w)+β .dist(v,w)+ γ.velocity(v,w)
(8)

with the heading function measure the alignment of the target
with the target, the dist function computes the distance to the
closest obstacles and velocity function it’s a simple project
of the translation velocity.

The heading function can be replaced by another one
based on visual servoing error [21]. Let denote et+∆t like
this:

et+∆t =

Xt+∆t −X∗

Yt+∆t −Y ∗

Θt+∆t −Θ∗

=

eX
eY
eΘ

 (9)

The heading function is modified as:

heading(v,w) = λ1XYerror +λ2Θerror(v,w) (10)

where:

XYerror =

{
1− |eX |

eXmax
for row controller

1− |eY |
eY max

for column controller
(11)

Θerror = 1− |eΘ|
π

(12)

IV. FUSION METHODOLOGY

As shown in (Fig.7), the framework methodology of the
“Fusion System” is presented. Where the human and the
autonomous algorithm give their inputs independent of the
other, each agent percept the environment in a different way.
Here, the two parabolic drawings will not be formulated to
find the final point and the final command. We will use
mathematical functions to fuse the two inputs depending on
the fusion coefficient will be discussed in the coming section.
First, each agent will give his input independently to the
other. Second, the input data will be fitted into quadratic form
to plot the two mapped points to find the similarity between



Fig. 7. Fusion Framework

them. Third, a value of admissibility for each input will
be given according to the methodology of Belief Function
Theory. Finally, the coefficient of the fusion system will be
computed using (Eq. 13), and the final input will be sent to
the vehicle in the form of linear velocity and steering wheel
angle.

A. Fusion Coefficient

The fusion coefficient Alpha “α” will be a combination
between the admissibility and the similarity values (Eq. 13).
Where α is between 0 and 1. As mentioned in II-B, the
admissibility of each input is defined by a probability value
between 0 and 1. Moreover, the similarity will be a boolean
value, either 0 (the two inputs are non-similar) or 1 (the two
inputs are similar).

α =
(
(1−admh)

)
∗
(
(1−Sim)

)
+
(max(0,admh−adma)

admh−adma
+

max(0,adma−admh)
adma−admh

)
∗
(

Sim
)

(13)
admh : admissibility o f the human input
adma : admissibility o f the autonomous algorithm input
Sim : Similarity between the inputs; 0 or 1

To explain, in a situation if both agents are making the
same action, i.e stopping the vehicle then there is a similarity
between them and the value of Sim=1 and the admissibility
will be high since they are giving a correct decision. In
another case, if the human decides with no reason to stop
the vehicle, and the autonomous agent continues driving, in
this situation there is no similarity between them, we should
follow the human driver and Sim=0 even if the “adma”
higher than “admh”. A threshold limit will be defined to
give the similarity “Sim” value.

B. Final Input

As mentioned before, F is the point of the bargaining
solution, which means that it is the final point decision of the
inputs and it lies between A and H in the 2D presentation
of the mapped points from the quadratic fitting of the data.

The coordinates of F are the results of blending between
the two mapped points of the human and autonomous system,

after specifying the admissibility of each input.{
xF = xH −α(xH − xA)

yF = yH −α(yH − yA)
(14)

In this way, point F will always lie on the line between
the mapped points.

Finally, the final input to be sent to the vehicle is a fusion
between the two inputs:

u f = uh−α ∗ (uh−ua) (15)

where :


α ∈ [0,1]
u f is the f inal input
uh is the human input
ua is the autonomous input

This fusion will be applied for the linear velocity input and
the steering wheel input.

C. Driving Modes Of The Vehicle

SCANeR Studio simulator is the most comprehensive sim-
ulation platform addressing prototyping, validation, training
of ADAS, and navigating Autonomous Vehicles as well as
Human-Machine Interactions. SCANeR Studio is a driving
simulation software package, where we can create a vehicle
with our designed scenarios to drive the car in it (Fig. 8).
Modes of driving the vehicle are: Autonomous Driving mode
and Human Interaction mode.

Fig. 8. Virtual Environment in SCANeR Studio Simulator

Autonomous Driving inputs are formulated as presented in
III using a visual control algorithm using a computer vision
technology which is the “Visual Servoing”. Python API used
to drive the vehicle, taking the camera and lidar data from
the simulator.

Human Driving inputs are formulated using a joystick,
it play the role of the steering wheel of a real vehicle.
SIMULINK API is used to drive the vehicle using a block
constructed for our joystick.

Both modes drive the vehicle in the same scenario created
by the SCANeR Studio simulator.

The final command decision is given by the fusion system
in the form of linear velocity and steering angle to the
vehicle. Noting that, only the fusion system has the right
to drive the vehicle.



V. EXPERIMENTAL RESULTS

We choose to apply our methodology for an example
scenario to overtake an obstacle as shown in (Fig. 8). In
this case of study, the two inputs are similar since both try to
avoid collision with the obstacle. While the human inputs are
not admissible since the human driver was not able to avoid
it correctly, but the autonomous algorithm did it successfully.

Fig. 9. Inputs Fusion

Fig. 10. Mapped Points 2D Presentation

As shown in (Fig. 9, 10), the fusion system sends final
command input to the vehicle shifted more to the admissible
input, where α is computed to a value around 0.8, thus the
overtaking of the obstacle will be based on the inputs sent
by the fusion algorithm which is more shifted toward the
autonomous inputs (adma > admh).

In (Fig. 11), we were able to determine the value of the
similarity and it was above the chosen threshold, thus Sim=1.

VI. CONCLUSIONS
To conclude, we were able in this work to fuse between

two inputs, one from humans formulated using a joystick,
and the other from an autonomous controller using a com-
puter vision algorithm which is the “Visual Servoing”. We
applied our work to a scenario trying to avoid an obstacle,
one was correct and the other not, and the fusion system was
able to send the final command decision shifted to the higher
admissible input. Simulations were done by using SCANeR
Studio Simulator and MATLAB/SIMULINK.
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