
� I Know Where You Parked Last Summer �
Automated Reverse Engineering and Privacy Analysis of Modern Cars

Daniel Frassinelli∗, Sohyeon Park† and Stefan Nürnberger‡
CISPA Helmholtz Center for Information Security,

Saarland Informatics Campus, Saarbrücken, Germany
Email: ∗daniel.frassinelli@cispa.saarland, †sohyeon.park@cispa.saarland, ‡nuernberger@cispa.saarland

Abstract—Nowadays, cars are equipped with hundreds of
sensors and dozens of computers that process data. Unfortu-
nately, due to the very secret nature of the automotive industry,
there is no official nor objective source of information as to what
data exactly their vehicles collect. Anecdotal evidence suggests
that OEMs are collecting huge amounts of personal data about
their drivers, which they suddenly reveal when requested in court.

In this paper, we present our tool AutoCAN for privacy and
security analysis of cars that reveals what data cars collect by
tapping into in-vehicle networks and extracting time series of
data and automatically making sense of them by establishing
relationships based on laws of physics. These algorithms work
irrespective of make, model or used protocols. Our results show
that car makers track the GPS position, the number of occupants,
their weight, usage statistics of doors, lights, and AC. We also
reveal that OEMs embed functions to remotely disable the car
or get an alert when the driver is speeding.

Index Terms—Automotive privacy & security, telematic control
unit, reverse engineering, CAN.

I. INTRODUCTION

Cars have ceased to be purely mechanical devices since their
computerised counterparts are usually cheaper to manufacture
and provide more functionalities. Even in the entry-level
segment, modern cars feature at least ten different computers,
so-called Electronic Control Units (ECUs), and over 50 in
luxury sedans. Some ECUs are mandated for active passenger
safety (e.g., airbag ECU), or are used to enhance comfort
and provide infotainment. Most ECUs take actions based on
sensors like temperature, light, pressure, or user input such as
switches or touch screens. Due to the plethora of sensors, a
modern car easily collects thousands of data points a second.

This data can be accessed locally through the standardised
On-Board Diagnosis (OBD) port. Also, with the addition
of the Telematic Control Unit (TCU), this data is often
transmitted to the cloud. Furthermore, OEMs use the car’s
Internet connectivity for cabin pre-heating, door unlocking and
remote start. There are also 3G/4G dongles for OBD available
that process the car’s data for insurance purposes [1], [2] and
remote diagnosis [3].

In the public, there is little awareness about data collection
in cars as this collection happens unnoticeably. To the best of
our knowledge, no OEM informs the occupants about which
data is collected, where it is transmitted, who has access to it,
and what it is used for. However, there have been cases where
OEMs refuted customers’ claims based on such collected data.
For example, TESLA and BMW provided evidence in court
after the defendant’s car had already been destroyed in an

accident because the car transmitted data about the exact speed
and position at the time in question [4], [5]. Over the years,
researchers have demonstrated that it is possible to fingerprint
a driver based on brake pedal usage [6] and to understand the
distraction level based on steering wheel movement [7]. A lot
more sensors are present in modern cars that can be used to
infer sensitive information such as speeding, driver identity,
typical pick-up points, or simply profiling.

However, an analysis of data collection and usage is dif-
ficult as the used protocols and encodings are proprietary
and obfuscated. While the physical/link layer is based on
standards like CAN, the payloads are undocumented, differ
even between models of the same brand and are usually
considered intellectual property. Reverse engineering them is
error-prone and labour-intense as it requires driving, testing,
manual inspection and the outcome might only be valid for
one specific model. To make matters worse, encodings are
often squeezed in the least amounts of bits possible, differ
in endianness and have to be post-processed by factors and
offsets to give meaningful physical values. Hence, the possible
interpretations of the sniffed bits grow exponentially.

A. Contributions

In this paper, we provide algorithms to automatically make
sense of unstructured data that describes a physical process,
like driving. To further substantiate our findings, we reverse
engineer the software of a modern Telematic Control Unit,
which collects, processes and transmits data in a connected car.
This reveals which data is collected, how often and to whom
it is sent. We show that a CAN log without prior knowledge
of make or model suffices to derive personal information or
the technical information needed to mount attacks like [6]–
[10]. Besides the privacy aspect, our approach can be used as
the basis for security research and attacks on cyber-physical
systems since it delivers the necessary knowledge to make
attacks more platform-independent. In short,
• we develop an open-source1 tool which is able to auto-

matically extrapolate structured interpretations of CAN
data,

• we demonstrate that a passive, non-knowledgeable at-
tacker can easily infer private data from CAN logs
without requiring physical access to the car,

1We will publish the code after submission.

1401

2020 IEEE Symposium on Security and Privacy

© 2020, Daniel Frassinelli. Under license to IEEE.
DOI 10.1109/SP40000.2020.00081

• we evaluate our approach by comparing AutoCAN find-
ings with manually reverse engineered ground-truth on
four different vehicles,

• we examine the security of a state-of-the-art telecommu-
nication unit of a modern car, and

• we conduct an evaluation of which remote capabilities a
manufacturer has over its vehicles.

II. BACKGROUND

A modern car can be seen as a distributed system where
(1) sensors gather data (e.g. accelerometer), (2) one or more
ECUs take actions based on this data (e.g. stability control),
and finally (3) actuators receive and execute commands from
the ECUs (e.g. brake front left wheel). As a means to reliably
interconnect sensors, controllers, and actuators, several auto-
motive network standards exist. The most widespread techno-
logies are listed in Table I. Our algorithms are independent of
the used protocol or network. In this paper, we focus on CAN
as it is by far the most widespread network used in cars today.

Table I: Automotive Network Protocols

Technology Medium Topology Speed [kbit/s]
LIN single wire bus 19
CAN unshielded twisted pair bus 1,000
FlexRay unshielded twisted pair star & bus 10,000
MOST plastic optical fibre ring 46,000
Automotive Ethernet unshielded twisted pair star 100,000

A. CAN Bus

CAN (Controller Area Network) was proposed by BOSCH
in 1983. Due to its safety and real-time assurances, it became
the de-facto standard used in the automotive industry, with
various application-layer protocols built on top [11].

The CAN bus is a synchronous multi-master serial bus
where each component is connected to the same transmission
medium and broadcasts its messages – or frames in CAN
jargon. Each frame can contain up to 8 bytes, whose payload
is not standardised and is specific to the software running on
each ECU. Typically, a CAN frame is periodically transmitted
and contains so-called Signals: encodings of internal variables
such as speed, temperature, or status bits. If the length of all
transmitted signals exceeds the maximum 8 bytes, a transport
layer protocol such as ISO-TP is used [12]. A core feature
provided by the CAN bus is the arbitration of sending order.
This is achieved by assigning a priority to each frame, which
is used during transmission to prioritise high-priority frames
over low-priority ones. This priority is at the same the frame
ID of a message. An ECU can use multiple frame IDs and can
therefore have multiple priorities. The ID is also used by the
receivers to decide whether they are interested in the frame
or not. Figure 1 shows a typical CAN network with several
messages that are exchanged. In the example, the Window
Control ECU sends a low-priority control frame (ID = 0xE3)
to the rear window to tell it to open or close. However, if the
Domain Controller detects a possible collision while sending a
high-priority steering command (ID = 0x71) to the Electronic

Power Steering (EPS), this frame would get precedence over
the Window Control frame since it has a higher priority.

Manufacturers may embed one or more CAN buses inside
their vehicles, for reasons like (1) separation of roles for safety
reasons, (2) fault-tolerance, and (3) cost reduction by using
lower speed for less critical ECUs. These buses are typically
connected using a gateway ECU that forwards frames from
one bus to another.

B. Car connectivity

Modern cars usually feature a special ECU, the Telematic
Control Unit (TCU). The TCU is connected to the in-vehicle
network (e.g. CAN) and provides 2G, 3G, or 4G connectivity.
The TCU allows vendors to provide updates over-the-air, addi-
tional safety and commodity features, and remote connections
via smartphone apps [13]–[16]. The TCU is also used to
collect usage and diagnostic statistics (e.g., battery usage for
electric cars).

III. PROBLEM STATEMENT & ASSUMPTIONS

Enev et al. use machine learning to fingerprint a driver:
after just one hour of driving and by using only the brake
pedal sensor, they are able to fingerprint the driver with
high accuracy [6]. Nishiwaki et al. use live CAN bus data
in combination with Hidden Markov Models and Gaussian
Mixture Model to understand the level of distraction of the
driver, together with its driving patterns and habits [7]. One can
imagine how this information could be used in an unintended
way; for example by insurance companies [1], [2] or for legal
disputes [4], [5].

In all these prior works, researchers had to manually decode
the payloads of specific frames of the car to extract the data
they cared about – in case of Enev et al. the brake pedal. This
is a very tedious, error-prone, and difficult to scale approach –
mainly because it requires access to the specific vehicle under
test. A one-fits-all solution is currently not possible since all
in-vehicle networks only standardise the physical layer and
link layer. The higher layers, i.e., the payload, differs for each
maker – sometimes even differs for each model by the same
maker. Manufacturers treat the protocols, i.e. how data is
encoded, how often it is expected to be sent, what actions the
receiver has to take, all as company secrets. It is simply not
possible to get documentation from OEMs – often not even
under NDA. This also explains the high prices that vendors of
handheld diagnostic devices ask since they have an enormous
amount of work to do to reverse-engineer the protocols. As
a consequence, automotive security and privacy researchers
have to perform a significant amount of reverse engineering
before conducting the actual research. This makes it hard
for researchers to get into the topic, and unlikely for the
automotive industry that others discover security and privacy
flaws. One of the most prominent examples of how such
“obscurity” has been abused by makers is the Volkswagen
emissions scandal [17].

1402

EPS

CAN Bus

Broadcast

Processed

⬅

➡

⬅ 0x80: Angle, Force

➡
0x70: Force

0x71: Force

⬅ 0x50: RPM, Temp

➡ 0x40: Throttle Engine

Steering
⬅ 0x70: Steering Force

⬅

0xE1: Window direction

0xE2: Window direction

0xE3: Window direction

0xE4: Window direction

Door
Controls

➡ 0xE3: Window DirectionWindow

⬅

0x71: Steering Force

0xB1: Lanes

0xB2: Following DistanceDomain

Controller

Window

➡ 0xE4: Window Direction

Figure 1: Exemplary CAN network: ECUs are interconnected to exchange data. Frames are broadcasted to everybody else, but
only selected frames are processed by the receivers.

Reverse-engineering in-vehicle networks faces several chal-
lenges because:

1) it is almost impossible to understand who’s the sender or
receiver of a frame by just tapping into the bus,

2) there is no visible information flow: ECUs just constantly
broadcast their own state and react on somebody else’s
state,

3) each frame typically transmits several different signals,
laid out in custom binary encoding that is not documented
and is different for each ECU, often even different for
each frame ID belonging to the same ECU. Figure 2
depicts a CAN frame with related signals. Any receiving
ECU must know the exact payload layout in order to
make sense of the frame,

4) the software running on ECUs and processing such
frames is proprietary and the program memory typically
protected against read-out,

5) even standardised access such as On-Board Diagnostics
(OBD) is typically implemented in addition to proprietary
protocols and is only concerned with emissions-related
ephemeral sensor readings. It does neither include stored
information in ECUs nor privacy-related sensor values. It
is not required for electric cars, hence most electric cars
do not even support OBD.

A. Example of in-vehicle information flow

When the driver tells the cruise control to set a target speed,
a somewhat complex process takes place in the background:
Figure 3 shows an example of how a Volkswagen Passat
transmits and processes the vehicle speed: The ABS-ESP2

ECU uses rotational sensors to measure each wheel’s RPM.
This information is used by the same ABS-ESP ECU to
calculate the average RPM of all wheels to get a value
proportional to the vehicle’s speed. However, it does not know
the wheel’s circumference, which is stored in the instrument
cluster. Hence, the instrument cluster multiplies the received
RPM value by the circumference of the wheels in order to get
the speed in kilometres or miles per hour. However, in most
countries in the world, the UNECE3 requires the speedometer
to never show less than the actual driving speed [18]. To

2Anti Lock Brakes / Electronic Stability Program
3United Nations Economic Commission for Europe.

comply, practically all manufacturers add some 10% to the
displayed speed – even if it is digital. This poses a challenge
for functions like cruise control that should seem consistent to
the driver and have to work with the physically ’wrong’ speed
that is shown to the driver. As a result, the engine control
module, in our example, uses the ’wrong’ speed broadcasted
by the instrument cluster to derive the set-point of the cruise
control [19].

This results in complex dependency chains in which similar
values are continuously and asynchronously transmitted by
different ECUs, often with diverse scale and encoding.

CAN ID 0x52C of ACC ECU (frames broadcast every 20 ms)
0 1 2 3 4 5 6 7 Bit

0
P_THR E_ACC 8

DIFF_V R_TRQ 16
24

T_REQ DISP_T 32
B_ACC IP_BP B_DRV 40

48
56

TRQ_ACC R_TRQ
P_THR V_REQ
S_ACC G_REQ
E_ACC T_REQ
OBJ_REC DISP_T
T_SET B_ACC
DIFF_V IP_BP
Z_Count B_DRV
CHKSM DISTANCE

V_REQ

uint8: Distance to vehicle

TRQ_ACC
S_ACC Z_Count

OBJ_REC T_SET

enum: Error in ACC
enum: ACC Status

unused G_REQ
unused

DISTANCE
CHKSM

enum: Prevent overrun cut-off
uint8: Torque request ACC enum: OK to apply torque

uint8: Target set cruise speed

enum: Driver is braking
8 bit Checksum

enum: Target speed not reached
uint4: Timing gap
enum: Detected object type

4 bit counter (freshness)

enum: Gear change request
enum: Driver take-over request
enum: Display timing gap
enum: ACC is braking
enum: Implausible brake pedal

Figure 2: An example CAN ID and its encoding. Taken from
the documentation of a BOSCH Engine ECU that broadcasts
11 different CAN IDs and receives 16 CAN IDs [20].

Encode all wheels

RPM to CAN frame

Compute average

wheel RPM

Engine

Compute speed

from wheel radius

and RPM

ABS - 0x10A ESP - 0x50A Cluster - 0x320Wheel

(4x) Wheel speed

WheelWheelWheel

Figure 3: ECUs dependencies in a Volkswagen Passat.

1403

B. Assumptions

We assume to have read-only access to in-vehicle network
traffic. We do not need physical access to the car. Hence, we
only need a log file of network packets. In case the network
access is possible through a vulnerability in an ECU, we
assume the attacker cannot or does not inject packets and
can only learn from passively sniffing the traffic. The attacker
does not know the car model, condition, and driving situation.
It is also assumed that she does not have prior knowledge
of the layout of the exchanged data. The latter is the worst
case if no documentation is available. If an attacker can still
identify specific fields (e.g., the brake pedal or steering wheel
angle), she can then apply the aforementioned techniques to
identify the driver or its geographical position by correlating
the steering wheel profile to a map.

Even though our methods work independent of the used
protocol and physical layer, in the remainder of this work we
focus on CAN as it is the most widespread in-vehicle network
technology. We also focused on electric cars as they do not
feature OBD as additional help and thereby constitute a worst-
case reversing effort.

IV. UNDERLYING CONCEPT

Even though we start from an unknown structure in sniffed
CAN traffic, we can make the following observations:

1) One ECU might have different functionalities, but CAN
frames with the same sender ID will employ the same
logical format. This means that, while the content in terms
of bits changes over time, the semantics will not change
as they are hard-coded in the software of the ECU that
processes those frames.

2) Many sensor values measure the same physical unit (e.g.
temperature), just at different places in the car.

3) CAN signals, i.e. interpretations of the unstructured bits,
are related to each other by physical laws. Hence, their
relations can be described by mathematical formulas.

We leverage these observations to automatically derive
signals without having access to the car. As a proof of concept,
we developed a set of Python-based tools which facilitate the
decoding, analysis, and application of learning algorithms to
CAN bus traffic. Although in this paper we concentrate on
the CAN bus, we expect our methodology to generalise to
other physical systems (e.g., industrial control system). The
high-level approach works as follows:

 0x11

ID Payload

00000...

CAN dump

0x11

ID = 0x22

Bits [0,2) Bits [2,5)

Divide frames by

frame ID

Extract bits from

frame-series

 0x22 01010...

 0x11 11111...

 0x22 10101...

 0x11 00000...

...

00000...

11111...

00000...

T
im

e

Frame-series

0x22

01010...

10101...

Signals

01

10

010

101

Figure 4: CAN dump to frame-series to signal logic.

1. Frame-series extraction. The first step is to subdivide
the frames by origin. This is done by grouping the frames by
their sender ID: this allows to generate a frame-series for each
sender ID (see Figure 4).

2. Signals segmentation. The second step is applied to each
frame-series independently. The purpose is to segment each
frame into the various signals it transports. This means we
group consecutive bits which likely belong to the same signal
together, and create a different signal whenever consecutive
bits show very different statistical behaviours.

3. Plausibility analysis. To infer whether a signal contains
a plausible value or not, we defined a set of metrics and rules
to be able to distinguish, identify, and categorise signals. This
is feasible as different signals show clearly distinct behaviour.
In Figure 5, we show the four behaviours we identified and
wish to distinguish.

A Continuous (uint) signals like speed, temperature, etc.
These values are generally generated by sensors, or are
derived from them.

B Pseudo-random (rand) values, such as checksums,
which are generally contained in frames carrying safety
sensitive information (e.g. steering wheel angle).

C Enumeration (enum) signals like gear, parking-mode,
break pressed, door open, etc. These fields are generally
used to encode a certain state of the car.

D Cyclic (cyclic) signals that iterate continuously like
clocks or counters; they do not necessarily carry inform-
ation per se, but can be useful to derive more complex
patterns.

4. Signal normalisation. A signal can have an offset and
a scale that is tailored to the transmitted value. For example,
temperatures often use a scale of 0.5 and an offset of −40,
i.e., Temp[◦C] = Signal · 0.5 − 40, which gives a value
range from −40◦C to +87.5◦C (assuming a 7-bits encoding).
To account for that and work on similarly scaled signals, we
apply min/max normalisation to each signal.

5. Correlation analysis. Values transmitted by ECUs are
often correlated to each other by physical and mathematical
properties. For example, the acceleration is proportional to
the throttle pedal position and the engine temperature changes
accordingly to the engine load. This reasoning holds for both
values derived directly from sensors (e.g. speed) and values
derived from other physical values (e.g. odometer). Figure
6 shows an example of this correlation: it is easy to see
how different values transmitted by different ECU can still
be correlated to each other.

V. AUTOMATED REVERSING METHODOLOGY

Here we detail the most relevant steps, which are: signal
segmentation, plausibility analysis, and correlation analysis.

A. Signal segmentation

As we have no knowledge about how signals have been
encoded, we first have to decide how to group and interpret
the bits of each frame. Given the limited amount of payload
bytes in a frame, signals are often encoded with the minimal

1404

Time

A
Speed

Time

B
Checksum

Time

C
Brake

Time

D
Seconds

Figure 5: Raw values for the different signal categories iden-
tified in the CAN bus.

number of bits they require. To this end, we designed a greedy
algorithm which, starting from bit 0, incrementally adds bits
to the current guessed signal. The guessed signal is then
evaluated via plausibility analysis (V-B): based on the result
the algorithm decides to (i) keep the guessed signal, add one
more bit and iterate, or (ii) commit the guessed signal, update
the start bit, and iterate. The algorithm stops when all the bits
of the frame have been processed.

The intuition behind the algorithm design is this: First, let
us denote a signal with f(z, i, j), where z is the frame ID to
which the signal belongs to, i is the signal starting bit, and j
is its length in bits. In the following, let us denote with P (·)
the plausibility function that, given a signal f(z, i, j) in input
returns its inferred type Y ∈ [uint, enum, rand, cyclic]
if plausible, or NaN if not. Given these definitions, the
algorithm works as follow: Given a signal s of type y,

s = f(z, i, j), y = P (s)

and a signal s′ of type y′ such that,

s′ = f(z, i, j + 1), y′ = P (s′)

if Y == Y ′ then we assume the bits composing s are also
part of s′. Hence the algorithm substitute s = s′, j = j + 1
and iterate with j = j + 1. On the opposite, if Y 6= Y ′ with
Y 6= NaN , then we assume the signal s is invalid if more bits
are added to it, and is therefore complete. Hence the algorithm
can split the payload at j, committing the signal s = f(z, i, j)
of type y, and start anew with a signal s′ = f(z, i + j, 1)
with type y′ = NaN . We found this approach to be efficient
in terms of time and memory as its complexity is linear to
the number of bits composing the payload. The pseudo-code
is described in 1; in the algorithm, candump correspond to a
complete, unprocessed, CAN dump.

B. Plausibility analysis

Given an arbitrary CAN signal, the purpose of the plausibil-
ity analysis is to return its inferred type Y if plausible or NaN
if not. This information is used by the segmentation algorithm

Time

Speed

Time

Throttle

Time

Temperature

Figure 6: Correlation between CAN signals.

Algorithm 1 signalsSegmentation(candump)
T ← frameSeriesExtraction(candump)
for each canID ∈ T do

F ← getPayloadsBits(T [canID])
i, j ← 0, 1
while True do

P1 ← plausibilityAnalysis(F [i : j])
P2 ← plausibilityAnalysis(F [i : j + 1])
if valid(P1) and (P1 ! = P2) then

segmentSignal(i, j, P1)
i← j

end if
if j + 1 == numBits(F) then

if valid(P1) then
segmentSignal(i, j, P1)

end if
break

end if
j ← j + 1

end while
end for

to decide when to split the signal. To correctly categorise the
types identified in Figure 5, which are uint, enum, rand,
and cyclic, we devised a set of metrics able to capture their
different statistical behaviour.

Autocorrelation. As a first step, we want to understand
how “noisy” a signal is. A noisy signal indicates either a
wrong selection of bits or that a truly random value was
transmitted. The concept of autocorrelation comes in handy
and it approximates to +1 when elements in a series are
correlated (or −1 if they are inversely correlated), and to
0 when they are highly uncorrelated. The autocorrelation
function measures the correlation between the i-th value and
the (i−h)-th value of a time-series, where h is the lag. As can
be seen in figure 7, the autocorrelation clearly distinguishes
between the different signals.

Hamming distance distribution. We call the second metric
we devised Hamming distance distribution (HAMD). The metric
has the role of capturing bit endianness and encoding size. The
metric is computed by measuring how individual bits change
whenever the signal under test changes. This is computed by
keeping a counter for each bit, which is incremented whenever
the bit changes. The final distribution is obtained by dividing
all counters by the number of times the entire signal changed:
this results in a value between 0 and 1, where 1 means that
the bit always changes whenever the signal changes, while a

1405

0 100 200 300
Lag

0.5

0.0

0.5

1.0 Speed

0 100 200 300
Lag

0.5

0.0

0.5

1.0 Checksum

0 100 200 300
Lag

0.5

0.0

0.5

1.0 Brake

0 100 200 300
Lag

0.5

0.0

0.5

1.0 Seconds

Figure 7: Autocorrelation function.

0 means the bit never changes. Figure 8 shows that little-
endian values have an almost logarithmic distribution with
greater HAMD to the right. This distribution is a good indication
of endianness and integer boundaries. A complete example
can be seen in Figure 9, where the HAMD of multiple CAN
frames is displayed. In the heatmap, each row corresponds
to a single CAN ID and each column to a payload bit. The
cell intensity represents the HAMD for the corresponding bit:
a value close to 1 implies a very active bit, and a value close
to 0 a seldomly changing bit. The heatmap gives a visual
intuition of how the signals are encoded, with incremental
intensities denoting little-endian encoded values and sharp
intensity changes denoting signals boundaries.

0 2 4 6 8 10 12 14 16
Bit

0.00

0.25

0.50

0.75

1.00 Speed

0 2 4 6 8 10 12 14 16
Bit

0.00

0.25

0.50

0.75

1.00 Checksum

0 2 4 6 8 10 12 14 16
Bit

0.00

0.25

0.50

0.75

1.00 Brake

0 2 4 6 8 10 12 14 16
Bit

0.00

0.25

0.50

0.75

1.00 Seconds

Figure 8: Hamming distance distribution.

Post-hamming distance distribution. To further validate
the MSB of uint types, we devised an additional metric
which measures the HAMD of the ith bit in respect to the
(i + 1)th. We use this metric as a sanity check: if a bit in

0 8 16 24 32 40 48 56 64

 1
 41
 42
 43
 44
 46
 48
 76

 DA
 DB
 DC
 F2
 F3
 F9
108
109
10A
10B
111
129
19F
1D6
1DF
263
264
26A
286

2CC
2D5
2EA
311
315
33A
34A
359
380
3D0
3D5
3D6
3F2 0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: HAMD for some frame IDs of the Smart ED.

position i changes, but the bit in position i+ 1 doesn’t, then
it is unlikely they belong to the same little-endian encoded
integer.

Removal of signals error. A common practise in CAN
is to encode a signal which contains an unknown, faulty or
unavailable measurement with its maximum value (all its bits
are 1). This is generally due to booting processes (e.g., the
cluster might boot before the ABS – hence it cannot show the
speed), and sensor/physical process imprecisions (e.g., voltage
fluctuations on ignition). This results in certain signals being
composed of only 1s for brief periods of time. For example,
is some cars the speed (uint 16) is encoded as 0xFFFF
for the first few seconds after ignition, then it moves back to
its real value (e.g., 0). To handle such cases, we remove the
samples where all bits transition to 1 at the same time.

C. Correlation Analysis

Sensors capture the physical environment through which the
car moves. This environment adheres to the laws of physics.
This dependency can also be found in the captured sensor
data. For example, physics dictate that the first derivative of
displacement x w.r.t. time is velocity, the second is accelera-
tion:

~v =
∂x

∂t
, ~a =

∂v

∂t

A car has all those sensors to measure x,~v and ~a: The
displacement, or distance travelled, is the odometer, the speed
is calculated and displayed in the instrument cluster, and
the acceleration is measured for stability control and impact
detection. This insight allows us to correlate signals to each
other based on their mathematical relation. For example, the
distance travelled over time, which can be derived from the
speed, must highly correlate to the odometer. Both signals are
present in the CAN and, even though the encoding, precision,

1406

scale and initial value might be unknown, the normalised time-
series would still feature a high correlation.

We use this observation to find relations between discovered
signals, which helps labelling new signals if a relative signal
is already labeled. We use an exhaustive approach to find
relations by brute-forcing mathematical relations until a high
correlation is found. To this end, each signal derived from the
segmentation is put into a formula and cross-correlated with
all other signals. The formulas are created by combining all
possible combinations in an abstract syntax tree (AST) whose
nodes represent one of following operations: addition (+),
subtraction (−), multiplication (×), division (÷), derivative
(∂), and integral (

∫
). Each operator node can have one or two

operands, namely other signals. All combinations of signals
are brute-forced with all combinations of operations up to a
depth of two in the AST. Each AST is applied to an entire
signal and results in a new, derived signal. This newly derived
signal is cross-correlated against existing signals to discover
a physical relation. The most correlated signals, together with
their mathematical relationship, are presented to the user which
can verify the relationship and label the signals.

We extend the approach by finding and visualising all
signals in a graph: The rationale behind this graph is to
cluster highly related signals together (e.g., battery voltages),
to split unrelated signals into different clusters (e.g. counters,
checksums) and connect the various clusters via weighted
edges to represent their relations. Such graph dramatically
simplifies the process of labelling all signals belonging to the
same the cluster and provides an easy way to visualise how
the signals relate and depend on each other. To this end, we
use the Pearson correlation coefficient φ computed between
each pair of signals. The coefficient φ returns a value between
[−1,+1], where 0.5 ≤ |φ| implies strong direct (or inverse)
correlation, 0.3 ≤ |φ| ≤ 0.5 implies medium correlation, and
|φ| ≤ 0.3 implies little correlation. We use the correlation
coefficient φ, with |φ| ≥ 0.8, to derive a graph where the
signals are the nodes and the edges are determined by the
coefficient φ between them.

VI. EVALUATION AND FINDINGS

We evaluated our algorithms on four different cars:
• 2014 Smart Electric Drive (MY 2014, electric)
• 2013 Ford Fiesta (MY 2013, petrol)
• 2012 Renault Twizy (MY 2012, electric)
• 2018 Renault Zoe (MY 2017, electric)

We designed electronics for a logging box that connects to the
standardised SAE J1962 connector present in almost every car.
The box logs CAN traffic on the most common pins in the
hope that they are connected to at least one power train CAN.
It also regularly logs the GPS position every 5s. We conducted
the experiments with volunteers who gave their consent that
we log all CAN traffic, including their GPS position. The
subjects were told to use the car normally for their day-to-day
business without the need for a specific pattern. The concept of
this study was approved by the Ethical Review Board (ERB)
of our institute.

Passively obtained raw data: For each car, we logged the
raw CAN traffic and GPS position for several days. We only
use the GPS position to verify our results. The GPS position
and derived data (like speed) were not used to train or tailor
any of our algorithms. We subdivided all logs into “trips” by
splitting them whenever no CAN activity was detected for
more than 60 seconds, whereby we assume the car is switched
off. This results in multiple trips per car, with some of them
being few minutes and few thousands of frames long, to some
of them being few hours and millions of frames long.
Ground Truth for verification: To get a ground truth of CAN
encodings for each vehicle, we combined leaked documents,
OBD analysis, fuzzing, online resources, and manual reversing
with visual feedback from the car to obtain as much informa-
tion as possible. Luckily, the different sources of data did not
contradict each other, i.e., the leaked documents and forum
snippets concur with our manual reverse engineering. In Table
II, we summarise the dataset used for the evaluation, which is
composed of the ten longest trips for each vehicle.

A. Segmentation

The purpose of the segmentation is to decode a payload
by cutting it into signals. Each signal is then assigned one of
the four derived types. We presented our approach in V-A and
V-B: the algorithm obtains good results, and is able to correctly
separate uint, enum, rand, and cyclic. Figure 10 depicts
the segmentation for frame 0xDC of the Smart ED. The Figure
shows the signals, and how the algorithm correctly detects
the checksum encoded in bits [56 : 64), the counter used
for freshness at bits [48 : 52), and the various enums/uint
composing the frame. The algorithm also detects peculiar
encodings: the frame encodes the engine RPM as unsigned
short in the bits [34 : 48) and uses the flag in position [33] to
denote the sign. So unlike a two’s complement representation,
the value 0 can have positive and negative sign.

0 1 2 3 4 5 6 7

0

8

16

24

32

40

48

56

Bit

A - uint
B - rand
C - enum
D - cyclic

Figure 10: Segmentation of frame 0xDC for Smart ED.

Figure 11 illustrates the segmentation for the whole power-
train CAN of the Smart ED compared to its ground truth.
The heatmap demonstrates that the segmentation reflects the
ground truth with good precision, and that (a) enum variables
are often distinguishable by their clear 1 single-bit HAMD value
(e.g. the brake pedal for frame 0x111), (b) uints have an
incremental HAMD, (c) rand are composed by a sequence
of bits with HAMD values close to 0.5, (d) cyclic signals

1407

0 8 16 24 32 40 48 56 64

 1
 41
 42
 43
 44
 46
 76
 DA
 DB
 DC
 F2
108
109
10A
10B
111
129
19F
1D6
1DF
263
264
26A
286

2CC
2D5
2EA
311
315
33A
3D0
3D5
3D7
3F2

0 8 16 24 32 40 48 56 64

 1
 41
 42
 43
 44
 46
 76
 DA
 DB
 DC
 F2
108
109
10A
10B
111
129
19F
1D6
1DF
263
264
26A
286

2CC
2D5
2EA
311
315
33A
3D0
3D5
3D7
3F2

A - uint B - rand C - enum D - cyclic

Figure 11: Segmentation of the power-train CAN of the Smart ED (on the left) compared to the ground truth (on the right).

have an almost perfect geometric HAMD.4 However, a few
issues arise as a consequence of some of our segmentation
decisions. First, we decided to label a signal as uint only if
its post-HAMD is higher than 0 for all its bits. We do this
to avoid mistaking a enum as uint (e.g., sign-bit in frame
0xDC). This sometimes leads to a situation where the most
significant bit of a uint is misclassified as enum due to
the fact it changes only once or twice throughout the trip.
Similarly, rand checksums are sometimes not detected as
such. This is due to some frames being quite regular (i.e., few
unique values), which results in a checksum with few unique
values. Both issues would be solved with time i.e., by simply
waiting until enough CAN frames are present in the dataset.
Additionally, the algorithm won’t label a cyclic unless the
cycle is repeated multiple times. Signals that don’t repeat
during the duration of a single trip will always be labelled

4The real power-train has more IDs (74) than the depicted ones. However,
since we had no ground truth for them, we removed them from the plots. Also,
many signals the segmentation discover, especially enums, are not present in
the ground truth. Similarly, constant bits (e.g., leading zeros in most uints)
are not labelled unless they change once.

as uint. For example, frame 0x286 encodes the hour: such
signal will never be labelled as cyclic unless it doesn’t
repeat for at least two times (which would require a 48 hours
long trip).

Table II summarises the results. In the Table,

• Total time and frames represent the cumulative length
in hours and in frames of the trips, respectively.

• Known signals are those we manually reverse-engineered
and for which we know the bit boundaries and type.

• Segmented signals represent the signals returned by the
segmentation algorithm. Note that only a subset of those
signals is depicted in Figure 11.

• Segmentation time is the time required by our algorithm
to segment all the frames, on a single core Intel Core i7
3.5GHz, 16GB DRAM, 1TB SSD.

• Matched signals is the percentage of segmented signals
which are perfectly (boundaries and type) matched to
known signals.

• Mean bit-error is the percentage of bits that are mis-
classified, i.e., assigned to a different signal or type.

Vehicle
Total
time

Total
frames

Known
signals

Segmented
signals

Segmentation
time(s)

Matched
signals

Mean
bit-error

Smart ED 1h 6.8M 107 453 20 0.81 0.093
Renault Zoe 2h 4.3M 40 416 6 0.71 0.076
Ford Fiesta 3.5h 7.5M 81 289 21 0.70 0.105
Renault Twizy 17h 10M 46 161 30 0.89 0.057

Table II: Evaluation of the segmentation algorithm.

1408

B. Comparison to READ

We report a comparison with the state-of-the-art CAN
reverse engineering tool, which is the READ algorithm pro-
posed by Marchetti and Stabili (further discussed in Section
IX) [21]. Before discussing the results, we would like to note
that the segmentation performed by READ is very limited
compared to ours. For instance, READ only aims at finding
rand and counters signals, where counter are only
those signals which perfectly increase by one for every frame
(i.e., checksums counters). READ doesn’t distinguish between
uint, cyclic, and enum, and labels all remaining signals as
PHY. To be comparable, we adapted our algorithm and ground
truth to consider the labels uint, non-trivial cyclic and
enum as PHY. This allows us to evaluate how our algorithm
fare in detecting PHY boundaries and counters/rand if
compared to READ. Table III summarise the results: the
metrics are the same as for Table II. It can be seen how
both algorithms perform well in detecting the boundaries,
and basic rand/counters, with our algorithm marginally
better than READ in some cases; we assume this is due to
the additional sanity checks we perform to remove frames
likely to be containing error signals. Benchmark-wise, the two
algorithms requires a similar amount of memory and time to
segment the same number of frames.

C. Correlation

The purpose of this phase is to automatically find mathem-
atical relations between signals. We found our approach to be
efficient in narrowing down the labelling choices for specific
physical signals (e.g., speed) to a couple of possibilities. For
example, in our experiments, the integral operator

∫
applied

to the speed was always highly correlated with the odometer
(Figure 12) – which follows the laws of physics that dictate
that distance travelled is the integral of speed. Furthermore,
the throttle pedal position highly correlates with the first
derivative of the speed – acceleration. By just computing the
AST between all signals with the

∫
and d

dt operators, and by
taking the triplets of most correlated signals, one can easily
find the speed-throttle-odometer triplet. Other relations showed
a high correlation; for example, the boolean state of the brake
pedal highly correlates with negative acceleration values.

After the initial labelling, we calculated the graph between
all signals. Figure 13 illustrates a simplified graph for the
Smart ED: it can be seen how the graph captures relation-
ships between signals. For example, signals carrying meas-
urements (e.g., voltages) regarding the traction-battery

Vehicle
Matched
signals

READ seg.
signals

READ matc.
signals

Smart ED 0.91 375 0.88
Renault Zoe 1.0 144 1.0
Ford Fiesta 0.96 172 0.93
Renault Twizy 1.0 123 1.0

Table III: Comparison against READ algorithm.

0 50 100 150 200 250 300
Time (s)

0

25

50

75

100

125

K
m

/h

Speed [Km/h]
Odometer [km]
Integral of speed

0

1

2

3

4

5

K
m

Figure 12: Correlation between odometer and speed.

are clustered together in a fully-connected sub-graph. Signals
related to the 12V-battery are also clustered together in a
fully-connected sub-graph, but are also completely decoupled
from the traction-battery. Furthermore, by considering
fully connected sub-graphs as single nodes and examining
how they relate, we can infer their content. For example,
the speed signal (which belongs to the same cluster as the
engine RPM, throttle, etc.) is strongly related to two other
clusters: the traction-battery cluster and the torque
cluster. From physics, we know this to be true as a change
in torque applied to the wheels directly affects positive and
negative acceleration. Acceleration also draws current from the
traction battery, thereby decreasing its voltages due to internal
resistance. Hence, one can understand what signals a cluster
contains by examining such relations. Also, by examining the
internals of each cluster, one can derive the internal signals.
For example, in an electric car, each cell or cell-pack voltage
is transmitted in a different signal: each of these voltages
should be very similar over time. This process can be repeated,
together with the AST brute-forcing, starting from signals that
are relatively simple to infer (e.g., speed, odometer, range), to
more complex ones (e.g., recuperation, driving efficiency).

D. Findings

In Table IV, we report the most privacy relevant signals
we extracted. The signals are from the Renault Zoe and are
known to correspond to the ground truth.5 The column upload
states whether the signal is uploaded to the cloud by default:
the details on how and why we obtained such knowledge are
explained in the next Section. The complete table with more
signals and can be found in the Appendix.

VII. TELEMATIC CONTROL UNIT

Makers are very obscure about what the Telematic Control
Unit is actually doing: there is no documentation about what
functionalities are implemented, how many are (or might be)
actually used, and when, why, and which data the TCU sends
to the cloud. Despite the TCU’s obvious purpose of collecting
data, little is known about what precisely is collected and

5We report the signals for the Renault Zoe instead of the Smart ED as it
is the only car for which we reverse-engineered the TCU.

1409

ㅡ Traction-battery
ㅡ 12V-battery
ㅡ Driving
ㅡ Torque

Figure 13: Simplified correlation graph for a subset of signals for the Smart ED.

Signal Uploaded Description

Trip distance (km) Yes
Trip average consumption Yes
Trip average speed Yes
Remaining range Yes
Odometer Yes
Charging cable plugged Yes If charging cable is plugged in
Battery Health Yes
Battery serial number Yes
Ignition on/off Yes
Age of vehicle Yes Seconds from first start
VIN Yes
Brake pedal pressed No
Throttle pedal No
Speed in cluster No Display speed (ca. +5km/h)
Real speed No Real speed in km/h
Longitudinal accel. No
Transversal accel. No
Steering angle No

Table IV: Private signals that can be passively derived.

with which granularity. For example, from the two articles by
TESLA [4] and BMW [5] it can be seen how both OEMs pos-
sess very detailed driving logs. Manufactures also allow users
to remotely control basic car functionalities (e.g., HVAC) [13],
[14], [16]. However, it is unclear what else can be controlled
via the TCU (and how). For example, the most widely sold
electric car manufacturer Renault-Nissan states in their battery
lease contract that they will “prevent further recharging of the
Battery” if the user doesn’t fulfil the contract clauses [22].
To investigate such claims, we took the most widely sold
electric car in Europe, a Renault Zoe from 2015, which shares
its remote capabilities with the most widely sold electric car
worldwide: the Nissan Leaf.6 Both models are equipped with

6Since 2019, Tesla model 3 became the most sold electric car [23].

a TCU that allows the accompanying smartphone app to pre-
heat the car or gather battery state information remotely. The
Renault Zoe features a connected multimedia system. The
software, called R-LINK, is embedded into the multimedia
touch-panel and provides commodity features such as maps
with live traffic (via TomTom), Bluetooth pairing, voice re-
cognition, eco-driving style analysis, Renault app-store access,
and remote control of basic car features via the smartphone
app [24]. R-LINK connectivity is provided by the TCU, a
physically separate component with an embedded SIM card.
The TCU can connect to the Internet, send/receive SMSs,
and make/receive calls. The TCU is directly connected to the
multimedia panel via UART and has access to the car’s main
CAN bus.

A. CAN traffic analysis

To understand which data is acquired and exchanged
between ECUs, it is vital to understand who sends a message
and what its meaning is. By passively listening on the bus,
one can only see the frame ID and up to 64 bits of payload.
To this end, we designed a CAN Interceptor that uses two
CAN transceiver chips on each side and forwards the received
packet instantly to the opposite CAN transceiver. The inter-
ceptor forwards the original CAN traffic bidirectionally and
is therefore transparent for all ECUs connected to the bus.
Given that, we physically located the TCU and used the CAN
Interceptor, which we placed between the TCU and the rest of
the CAN, to examine the communications. While controlling
the car via Renault’s App, we could see which commands are
sent to the CAN network by the TCU and which sensor values
are actively queried by the TCU before transmitting them to
the cloud. From the experiments we understood that: (1) the
TCU is generally passive, but it periodically broadcast a single

1410

frame to inform the bus of its status, (2) upon certain events
(i.e. ignition ON/OFF, charging ON/OFF or at least every 15
minutes), the TCU initiates an OBD session with the battery
controller, from which it retrieves various values (cell voltages,
temperatures, etc.), and (3) if a remote command is received,
the TCU sends a CAN frame to the bus (e.g., to tell the climate
control to start heating the car).

B. GSM traffic analysis

We also examined the communication between the TCU and
the nearest mobile base station. For that, we used openBSC,
an open source implementation of the GSM architecture
developed by the osmocom community. If paired with a GSM
capable hardware (e.g. sysmocom sysmoBTS [25]), it allows
to completely simulate a GSM network [26]. We focused on
the GSM standard because (1) devices connect to the base
tower with the strongest signal belonging to the operator of
the SIM card, and (2) the GSM standard doesn’t provide means
to authenticate the remote operator. This implies it is possible
to force a GSM device to connect to a fake base station by
simply simulating the correct operator while having a stronger
signal than the original cell tower (which is not an issue if
the BTS is near the car) [27].7 Via OpenBSC, we forced the
TCU to connect to our base station instead of the real network
operator. The attack succeeded because the TCU preferred to
connect to the GSM network instead of using the more secure
3G/4G. We assume this decision has been taken considering
the higher presence of 2G cells in rural areas. Nevertheless,
it is possible to force the downgrade by testing the car in a
shielded environment.

R-Link

Renault ZE

TCU

Figure 14: Flows between R-Link, TCU, and Renault ZE.

From the GSM logs, we identified three traffic flows: (1)
an HTTPS connection to ATOS, an IT service provider, (2)
various HTTP/S requests to TomTom, and (3) sporadic HTTPS
connections to a Renault-owned domain. Between these three,
only the latter was correlated with the activity of the TCU on
the CAN bus, which suggested that the TCU was acquiring
data before sending it to the cloud. We verified that the
requests were performed even when the multimedia panel was
disconnected: this implied they originated from the TCU itself.

From the packet dumps, we saw that both TCU and remote
server used X.509 certificates to create an SSLv2 channel.
Even though SSLv2 is outdated, it prevented us from inferring
which data was being transferred from just the TCP/SSL
dumps. Nevertheless, by checking the activity periods, we

7It is sufficient to know the Mobile Country Code and Mobile Network
Code of the operator (which are public) to overwrite a real GSM cell tower
with openBSC.

understood that the commands from the mobile app were not
coming over HTTPS. Instead, they were sent using ordinary
SMSes.

C. UART

The R-LINK infotainment system and the TCU commu-
nicate over UART (serial bus) using standard AT modem
commands. The standard AT commands (e.g. AT+CCLK? to
get the clock) are extended by manufacturer-specific ones,
accessible via AT+BREWAPP=(cmd)8. Out of all commands,
the most useful was AT+BREWAPP=$DBG,1 which enables
debug mode. When in debug mode, the TCU prints debug
messages, such as:
• Which event triggered the data transmission.
• Path and length of the HTTPS data being transmitted.
• Firmware version and producer of the TCU.
• Some of the data encoded in the messages.
By analysing the logs, we realised that packets are en-

capsulated using the ACP-245 protocol, a public standard
that describes how communication between a TCU and a
remote server should be handled [28]. Since we couldn’t find
any open source implementation, we wrote a basic parser
ourself. We obtained clear-text messages by making use of
another AT command: AT+BREWAPP=$SET URL, which
overwrites the manufacturer’s default server. This URL also
includes the protocol, so by putting HTTP instead of HTTPS
one can disable SSL completely. Thanks to this command,
the car was sending the first payload to the server without
authenticating/encrypting the data (although the server didn’t
reply). By joining the logged data, HTTP data, and our ACP-
245 parser, we discovered that the car always embeds the
GPS coordinates and the ACP-245 vehicle descriptor element,
which contains the VIN number, DCM ID and version, IMEI,
SIM ID and Battery ID, in every payload it sends to the
manufacturer.

HVAC

Renault ZE

TCU

HTTPS JSON
AC - On SMS

Hex-encoded ACP Wakeup
Wakeup

HTTPS POST
ACP Vehicle Descriptor Element

HTTPS Response
ACP Service Configuration Element

Sleep

CAN Bus
HVAC On

Figure 15: Remote command execution flow.

8We found out about AT+BREWAPP and related commands by analysing
the firmware.

1411

D. Firmware

From the specifications, it is clear that the ACP-245 protocol
supports an extensive array of functionalities, both in terms of
which data the car sends to the server, and which commands
the server sends to the car. That raised questions about which
other data the car is sending and which other commands can
be executed (possibly only accessible to the manufacturer).

To answer these questions, we inspected the TCU’s firm-
ware, which we obtained by dumping the entire flash memory
over UART. The UART flashing protocol is proprietary, but it
could be reverse engineered as follows. The TCU is based
on the ARM-based AirPrime SL6078 chip [29]. The SIM
card is soldered to the main board and directly wired to
the AirPrime. For AirPrime development, the vendor (Sierra
Wireless) provides an Eclipse IDE to develop firmware. As it
is open source, we examined the code and found out how the
module communicates with the device. We reversed how the
IDE writes/reads the device’s memory and developed a script
to query the device for arbitrary memory locations. Since there
isn’t any memory protection or keyed developer access, we
were able to dump the whole firmware and volatile memory
during runtime. The firmware is approximately 3.6 MB in
size, with 2.4 MB occupied by the boot-loader, the drivers,
and the operating system. The remaining 1.2 MB consists
of the Renault/Nissan application-specific code developed by
Ficosa, an automotive supplier. The operating system, called
OpenAT and developed by Sierra Wireless, is a complete
software framework for M2M applications and encompasses a
M2M-specific operating system, a range of software libraries,
and a developing environment [30]. We focused primarily
on the Renault/Nissan firmware. Thankfully, the binary code
contained debug strings. Given the size of the firmware,
this heavily simplified the reverse engineering task. As most
methods were practically self-documenting, we focused our
attention on the ones which contained sentences with relevant
words like “HTTP(S)/SSL”, “command/upload/encode”. Our
analysis revealed that the code structure is mostly event-based,
in which the TCU registers a series of callbacks via OpenAT.
The callbacks are triggered either by an event (e.g. SMS
received) or by a timer (e.g. every 15 minutes).

E. Discovered “services”

Within the firmware, we found functionalities that the
manufacturer labels “services” – as they are not always
in the interest of the driver/owner, we keep the quotation
marks when referring to them. They can be divided into four
categories: (1) alert and notification such as theft notification,
speed alert, geo-fencing, low-battery alert, etc., (2) remote
monitoring like battery charge monitor, fleet and pay as you
drive services, remote diagnosis, probing, etc., (3) functionality
control such as remote door lock/unlock, charge scheduling,
battery charge blocking, and (4) configuration which can
essentially enable/disable each service on-demand. In Table
V, we list the most relevant “services” we identified. Some
common points:

• All can be enables/disabled and configured remotely via
ACP service provisioning.

• All upload data to the cloud. These data always contain
the car’s VIN, battery state and GPS position.

Also, due to the remote diagnosis and probe services, Renault
appears to be able to retrieve arbitrary information from the
CAN bus. This implies that any data could be queried in real-
time without the user noticing.

Besides the obvious security concerns, these “services”
have also massive privacy implications: most of them con-
stantly trigger data exchanges with the cloud, and always
encode at least the VIN, IMEI, SIM-ID, battery state, and
GPS position. This allows the receiving party to extrapolate
very complex information like driving behaviour, locations,
and habits. What is also worrying is that Renault can remotely
enable, disable and configure these functionalities without
the user’s consent and knowledge. Furthermore, even the
infotainment has full control of the TCU via AT commands
over the UART: this means that a compromised infotainment
might reconfigure the TCU. This is not unlikely, as the
infotainment system is based on Android 2.2 even though
the car is only two years old and could theoretically receive
over-the-air software updates. The SSL version of the TCU is
similarly outdated – in fact it does not support TLS as it is
based on OpenSSL-0.9.6 from 2003, which has been proven
to be vulnerable years ago.

F. Data Access

We do not know how (secure) the data is stored on the other
end in the OEM’s cloud and who has access to it. However,
to get proof that people have access to that data, we set up
an experiment. We went to a Renault dealer under pretence
that something was wrong with the battery. The assistant just
asked for the VIN and went to a computer to check the battery
data. He did not go physically to the car. We asked for a
screenshot of their proprietary program and obtained a print-
out that lists all the trips the car ever did. It contains a table
with the following columns: (I) Odometer, (II) Trip length
(km), (III) State of Charge (SOC) beginning and end (used
energy), (III) Used energy for driving, climate, lights (in kWh
each), (IV) Outside temperature, (V) Time, and (VI) State
(charging, driving). This clearly states that the manufacturer
does not only accumulate data for statistical evaluation but that
the personnel working at a dealer has detailed access to each
car’s history based on the VIN of the car.

VIII. SECURITY CONSIDERATIONS

Due to the incremental development nature of the auto-
motive industry, the head unit was implemented using a
very outdated version of Android, even though it is the only
component which interacts with the outside world. Similarly
disconcerting was the discovery that the head unit has full
debug access to the TCU via UART. An attacker able to
compromise the head unit can easily reconfigure the TCU via
AT commands or simply flash a new firmware. Moreover, since
the TCU has direct access to the car’s power train CAN, an

1412

Service type Description
Fleet & Pay As You Drive Huge set of services that seem to be used for handling fleet and Pay As You Drive (PAYD) services.

When enables, they constantly exchange data with the cloud.
Eco Send driving style, and eco-related statistics (e.g., trip statistics) to the cloud.
Remote diagnosis Possibly used for remote diagnostics: it allows to remotely query an ECU via OBD.
Probes 1-10 Set-up periodic probes that retrieve data from the CAN and upload it to the cloud.
Battery blocking Allows to remotely disable the battery.
Low battery It sends to the cloud the battery state whenever it goes below a configurable threshold.
Charge History Periodically send the battery state (i.e., voltages, temperature, health, etc.) with GPS position to

Renault. This happens whenever the engine/battery state changes and every 15 minutes.
Remote door, start, horn & light Allows to remotely control the doors, lighting, horn, and ignition.
Bulgar/Tow notification Trigger a transmission whenever towing or burglary conditions are detected.
Maintenance alert It triggers a transmission whenever a maintenance of the car is required. Simply compares the age

of the vehicle to the current timestamp.
Speed/curfew/geo-fence alert These services trigger a transmission whenever the car doesn’t respect some constraints in terms of

speed, time, or distance from a GPS position.

Table V: List of “services” provided by the TCU.

attacker can inject frames and control the vehicle. To verify
our assumption, we successfully implemented attacks against
some of the car’s functionalities. More complex attack which
completely take over the vehicle have already been demon-
strated by researchers [8]–[10]. The only barrier that prevents
an attacker from easily attacking a vehicle this way is the
obscurity of CAN payloads. An attacker first needs to invest
time, effort and money to manually reverse engineer these
payloads, a process that until now required physical access
to the vehicle. However, with AutoCAN, we demonstrate that
this is not necessarily true and that an attacker can passively
log the frames and analyse them offline – greatly lowering the
cost and expertise needed for such attacks.

IX. RELATED WORK

Recently, the topic of CAN traffic reverse engineering has
gained popularity. The READ algorithm proposed by Marchetti
and Stabili [21] is able to partially reverse engineer CAN
signals. READ has several limitations, the most prominent
being that it only tries to find signal boundaries and label
counters and checksums. For a detailed comparison, refer
to section VI. Another independent work tackling the same
problem is the dissertation of Brent Stone, recently published
by the US Air Force Institute of Technology [31]. The author
employs machine learning methods based on Agglomerative
Hierarchical Clustering computer over a Transition Aggrega-
tion N-Gram, which is comparable to our HAMD. The work
focus is the segmentation of the frames, with very little signal
correlation. Nevertheless, the proposed segmentation metrics
are promising and we expect to integrate them in our toolset to
improve its overall efficiency. Huybrechts et al. [32] propose
to use LSTM and CNN networks to identify known signals.
As it is based on supervised learning, their approach is unable
to cope with unknown signals and requires access to external
data sources of the vehicle (like GPS position) in order to
work. Finally, pesé et al., in their just accepted work, propose
LibreCAN [33]. LibreCAN, although novel, is limited by the
fact it requires OBD ground truth data to work. This means the

algorithm requires the attacker to actively inject OBD traffic
into the CAN, and only works for data available via OBD.

In the field of automotive privacy, only little work has
been published over the years. Researchers demonstrated what
could be inferred from CAN traffic [6], [7]. However, none
examined how difficult it is to gain those information and
whether the manufacturer has already access to them. To our
knowledge, our work is the first examining that topic.

X. CONCLUSION

In this paper, we investigate privacy in modern cars. To this
end, we present an initial methodology to extract interpreta-
tions of raw CAN dumps. We demonstrate that an attacker can
use our methodology to simplify the process of interpreting
CAN frames – all without accessing the vehicle. We argue that
even the knowledge of few signals can lead to privacy issues
such as driver de-anonymization, derivation of driving patterns,
location, and so on so forth. To complement our findings, we
investigate the TCU of a modern electric car. We demonstrate
how the lack of well-implemented security mechanisms makes
the device, and thus, the whole vehicle, exploitable. We show
how the TCU tracks the vehicle and discuss how this can
be abused by the maker to extract private information and
enforce contractual clauses, all without the user’s consent and
knowledge. We also show that car dealers have access to
detailed, personal information about each trip a driver makes.
Future work will focus on improving the current reversing
methodology. The aim is to develop an open-source toolset
able to automatically extract, label and correlate interpretations
of cyber-physical system network traffic.

To conclude, we do not claim that data collection is danger-
ous per se. However, users should have the right of knowing
what, when and why data are being collected and should have
the right of denying this collection. This concept, although
well understood by mobile and web providers, does not seem
to be appropriately implemented by the automotive industry.
With this paper, we hope to raise awareness on the issue and
to motivate more researchers and authorities to look into the
matter.

1413

REFERENCES

[1] Insure The Box, “What is telematics insurance?” https://www.
insurethebox.com/telematics.

[2] Money Super Market, “Telematics Car Insurance,” https://www.
moneysupermarket.com/car-insurance/telematics/.

[3] Zubie, “Zubie device,” https://zubie.com/.
[4] TESLA Motors, “Blog: Most Peculiar Test Drive,” https://www.tesla.

com/blog/most-peculiar-test-drive.
[5] District Court Cologne), “Bmw provides evidence of precise telemetry

data in verdict 113 kls 34/15.”
[6] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile driver

fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 1, pp. 34–50, 2016.

[7] Y. Nishiwaki, K. Ozawa, T. Wakita, C. Miyajima, K. Itou, and K. Takeda,
“Driver identification based on spectral analysis of driving behavioral
signals,” in Advances for In-Vehicle and Mobile Systems. Springer,
2007, pp. 25–34.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011, pp. 77–92.

[9] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 447–462.

[10] BBC Online, “Fiat Chrysler recalls 1.4 million cars after Jeep hack,”
https://www.bbc.com/news/technology-33650491.

[11] ISO 11898-1:2015, “Road vehicles – Controller area network (CAN),”
International Organization for Standardization, Standard, 2015.

[12] ISO 15765-2:2016, “Road vehicles – diagnostic communication over
controller area network (docan) – part 2: Transport protocol and network
layer services,” International Organization for Standardization, Standard,
2016.

[13] BMW Group, “BMW ConnectedDrive.”
[14] Volkswagen Group, “Volkswagen Connect app,” https://www.

vwconnect.com/.
[15] European Commission, “eCall,” https://ec.europa.eu/transport/road

safety/specialist/knowledge/esave/esafety measures unknown safety
effects/ecall en.

[16] TESLA Motors, “Tesla App Support,” https://www.tesla.com/support/
tesla-app.

[17] Clean Energy Wire, “Dieselgate – a timeline of Germany’s car emissions
fraud scandal.”

[18] Official Journal of the European Communities, “Eu directive 97/39/ec:
Adapting to technical progress council directive 75/443/eec of 26 june
1975 relating to the reverse and speedometer equipment of motor
vehicles.”

[19] “A Hacker’s Look at Dieselgate,” https://debugmo.de/2015/12/
dieselgate/.

[20] Robert Bosch GmbH, “Funktionsbeschreibung edc15+ p127-pea,” 2000.
[21] M. Marchetti and D. Stabili, “READ: Reverse engineering of automotive

data frames,” IEEE Transactions on Information Forensics and Security,
2018.

[22] Renault Group, “Battery hire lease agreement,” http://myrenaultzoe.com/
Docs/BatteryHireLeaseAgreement.pdf.

[23] Business Insider, “The 10 best-selling electric vehicles in the US this
year so far.”

[24] Renault Group, “Renault R-LINK.”
[25] Sysmocom, “Sysmo NITB 2G starter kit,” http://www.sysmocom.de/

products/lab/2Gstarterkit/index.html.
[26] Osmocom project, “OpenBSC,” http://osmocom.org/projects/openbsc.
[27] D. Strobel, “IMSI catcher,” Chair for Communication Security, Ruhr-

Universitat Bochum, vol. 14, 2007.
[28] DENATRAN – Departamento Nacional de Trânsito, “ACP-245 – Applic-

ation Communication Protocol,” http://new.denatran.gov.br/download/
ACP%20245%20V%201.2.2 %2023 11 10 WITH SMS.pdf.

[29] Sierra Wireless, “Airprime sl6087,” https://source.sierrawireless.com/
devices/sl-series/sl6087/.

[30] ——, “Open AT Application Framework,” https://source.sierrawireless.
com/resources/airprime/software/open-at-application-framework/.

[31] B. C. Stone, “Enabling Auditing and Intrusion Detection of Proprietary
Controller Area Networks,” 2018.

[32] T. Huybrechts, Y. Vanommeslaeghe, D. Blontrock, G. Van Barel, and
P. Hellinckx, “Automatic reverse engineering of can bus data using
machine learning techniques,” in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing. Springer, 2017, pp.
751–761.

[33] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and K. G.
Shin, “Librecan: Automated can message translator,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019.

1414

APPENDIX
DISCOVERED SIGNALS

The Table summarise most signals we were able to derive from the vehicles under test. The knowledge of these signals and
how they relate allows an attacker to compromise the vehicle or the users’ privacy.

ECU Signal How derived Lifetime Description

Electric
Vehicle

Computer

Driving efficiency Calculated Forever
Average consumption Calculated Until Reset
Remaining range Calculated Forever
Battery serial number Stored at production Forever
Current gear Lever position HW switch
Motor RPM RPM Sensor Ephemeral RPM motor + “fake” value (810)
Torque(s) Calculated Ephemeral Measured, requested, negative, etc.
Throttle pedal Pedal position Ephemeral
Ignition on/off Switch Ephemeral
Brake pedal pressed Pedal pressed Ephemeral
12V battery amperage Ammeter Ephemeral
Traction battery consumption Ammeter Ephemeral
State of charge Calculated Forever
Traction battery voltage Voltmeter Ephemeral
Remaining battery capacity Calculated Forever
Max possible charging power Calculated Forever Current limit for charging
Traction battery temperature Calculated Ephemeral Average from individual cells
Charging cable plugged in Switch on socket Ephemeral If charing cable is plugged in
Time until 100% charged Calculated Ephemeral
Battery Health Calculated Forever
Cruise control target Calculated Forever
Cruise control exceeded Calculated Ephemeral If speed exceed cruise limit
Steering angle Steering angle sensor Ephemeral Steering wheel angle in degrees
Steering angle change Calculated Ephemeral Speed of the steering wheel
Battery cell voltage(s) Voltmeter per cell Ephemeral Voltage for each cell (96x)
Battery cell temperatures(s) Temp. sensor per cell Ephemeral Temperature for each cel (96x)
Energy recuperated Calculated Ephemeral Energy gained by recuperation

Instrument
Cluster

Action counter Switch Forever Count when radio is switched on/off
Speed in cluster Calculated Ephemeral Displayed speed (ca. +5km/h)
Trip distance (km) Calculated Until reset
Trip average consumption Calculated Until reset
Trip average speed Calculated Until reset
Outside temperature Temperature sensor Ephemeral Displayed
Hand brake pulled Hand brake HW switch Displayed

Body
Control
Module

Age of vehicle Stored at production Forever Seconds from first start
Ignition counter Calculated Forever How many times ignition on
VIN Stored at production Forever
Indicator(s) Steering column Ephemeral One switch/signal per indicator
Lights(s) Steering column Ephemeral One switch/signal per light
Doors(s) Door(s) switch column Ephemeral One switch/signal per door

Electronic
Stability
Control

Odometer Calculated Forever Driven distance in Km
Real speed Calculated Ephemeral Real speed in km/h
Longitudinal acceleration ESP-accel sensor Ephemeral
Transversal acceleration ESP-accel sensor Ephemeral
Yaw rate ESP-accel sensor Ephemeral
Wheels(s) RPM RPM sensor on wheel Ephemeral One sensor/signal per wheel
ABS warning light Calculated Ephemeral ABS warning in cluster
Odometer (precise) Calculated Ephemeral In meter per seconds

Uncoupled
Brake
Pedal

Brake active Calculated Ephemeral
Torque recuperation Calculated Ephemeral
Brake pedal position Pedal position Ephemeral
Brake requested on UBP Pedal Ephemeral Disk brakes requested pressure

Clima
Ventilation stage Switch Forever Intensity of ventilation
Evaporator threshold Switch Forever
Evaporator temperature Temperature sensor Ephemeral

Airbag Seat belt(s) buckled Seat belt switch HW switch One switch/signal per seat

Table VI: Detailed list of discovered signals.

1415

