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Abstract
The spread of toxic content online is an important problem
that has adverse effects on user experience online and in our
society at large. Motivated by the importance and impact of
the problem, research focuses on developing solutions to de-
tect toxic content, usually leveraging machine learning (ML)
models trained on human-annotated datasets. While these
efforts are important, these models usually do not general-
ize well and they can not cope with new trends (e.g., the
emergence of new toxic terms). Currently, we are witness-
ing a shift in the approach to tackling societal issues on-
line, particularly leveraging large language models (LLMs)
like GPT-3 or T5 that are trained on vast corpora and have
strong generalizability. In this work, we investigate how we
can use LLMs and prompt learning to tackle the problem of
toxic content, particularly focusing on three tasks; 1) Toxic-
ity Classification, 2) Toxic Span Detection, and 3) Detoxifi-
cation. We perform an extensive evaluation over five model
architectures and eight datasets demonstrating that LLMs
with prompt learning can achieve similar or even better per-
formance compared to models trained on these specific tasks.
We find that prompt learning achieves around 10% improve-
ment in the toxicity classification task compared to the base-
lines, while for the toxic span detection task we find better
performance to the best baseline (0.643 vs. 0.640 in terms
of F1-score). Finally, for the detoxification task, we find that
prompt learning can successfully reduce the average toxicity
score (from 0.775 to 0.213) while preserving semantic mean-
ing.1

Disclaimer. This paper contains uncensored toxic content
that might be offensive or disturbing to the readers.

1 Introduction
In online platforms, toxic content can be defined as rude, dis-
respectful, or unreasonable content that may result in users
leaving the conversation [6]. It has been a long-standing
problem affecting our society [5, 10, 14, 53]. To tackle this
problem, researchers and companies leverage large-scale la-
beled datasets to train powerful machine learning (ML) mod-
els for toxicity detection and mitigation [4,10,36,61,63,66].

1Our code is available at https://github.com/xinleihe/toxic-
prompt.

One major obstacle in the development of accurate and
generalizable toxic content classifiers is the lack of a compre-
hensive labeled dataset that contains different types of toxic
content. This is mainly because the data collection and label-
ing process for the creation of such datasets is costly, which
hinders the development of effective methods for detecting
toxic content. Also, previous work [5,61] has shown that the
toxicity detection model trained on one dataset is less effec-
tive when applied to other datasets. Moreover, due to the fast
evolution of language (new phrases, words, style, etc.), it is
crucial to develop a toxicity detection mechanism that can
quickly adapt to different circumstances.

With the success of pre-trained language models (LMs),
a dominant way to adapt the model to downstream tasks is
fine-tuning, where the whole model or part of the model is
optimized to better fit the downstream tasks. Recently, large
language models (LLMs) like GPT-3 [7] and T5 [44] have
shown promising performance in downstream tasks without
updating at all the model’s parameters by directly querying
the model using natural language, an emerging paradigm
called prompt learning. With the help of prompt learning,
the LLM can generate an output that aims to solve a specific
task, all with a natural language task instruction (e.g., using
a prompt: “Translate it from English to French” for machine
translation) and a few samples as the task input. Besides the
handcrafted fixed prompts, recent work [28, 30] shows that
prompt tuning is an efficient way to achieve more promising
performance on various tasks with restricted computational
resources, limited datasets, and bounded time. Concretely,
instead of fine-tuning the LLM, prompt tuning freezes the
LLM and only optimizes the prompt (e.g., the way that the
prompt is written) in such a way that the LLM’s perfor-
mance is optimized for the specific task at hand. Given that
prompt learning is a promising way to use LLM for various
tasks, here we aim to use prompt learning to tackle the prob-
lem of toxic content and assess how prompt learning-based
approaches compare to state-of-the-art methods of tackling
toxic content.

Our Work. In this work, we conduct the first systematic
analysis focusing on how prompt learning can help tackle
the problem of toxic content. Concretely, we focus on three
tasks, i.e., toxicity classification, toxic span detection, and
detoxification (see Table 1 for examples of these tasks).
Specifically, for the first task (toxicity classification), given a
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Table 1: Examples of the three tasks we consider in our work.
Toxicity classification aims to classify whether the given sen-
tence is toxic or not. Toxic span detection aims to detect
the exact span that makes the sentence toxic. Detoxification

aims to reduce the toxicity of the given sentence while preserv-
ing its semantic information.

Toxicity Classification Answer
your reading comprehen-
sion is more fucked up
than a football bat.

Toxic

Toxic Span Detection Answer

keep hiring imbeciles like
this jerk and you will end
up with a no firearms for
rent-a-cops bill next ses-
sion.

keep hiring imbeciles like
this jerk and you will end
up with a no firearms for
rent-a-cops bill next ses-
sion.

Detoxification Answer
what a chicken crap ex-
cuse for a reason.

what a bad excuse for a
reason.

sentence, we first map its label into the word “Yes” or “No”
and fine-tune the prompt to better guide the LLM to conduct
the task. For the second task (toxic span detection), with
prompt tuning, given a sentence with toxic spans, we aim
to first generate the sentence without the toxic spans, then
subtract the original sentence with the generated sentence to
obtain the spans. Finally, for the third task (detoxification),
we tune the prompt to rephrase the toxic sentence into a non-
toxic version while preserving the semantic meaning.

Extensive evaluation of eight datasets and five model ar-
chitectures shows that prompt tuning has comparable or even
better performance than the baselines. For instance, for the
toxicity classification task, prompt tuning gains more than
10% F1-score improvement on average (see Table 3). For
the toxic span detection task, our method achieves 0.643 F1-
score, which is better than the best result provided by SPAN-
BERT (0.640), but with much less training time. Regarding
the detoxification task, we find that our method can success-
fully detoxify the text (e.g., the average toxicity score drops
from 0.775 to 0.213 on ParaDetox) while preserving the se-
mantic information to a large extent. In general, one major
advantage of prompt tuning is that it can adapt to different
tasks with fewer training samples/steps. For online services
such as social media, these improvements and cost reduc-
tions are significant (given billions of posts per day). This
also fits the purpose of green AI [3, 49] for making AI re-
search more environmentally friendly and inclusive.

In summary, we make the following contributions:

• To the best of our knowledge, we perform the first sys-
tematic evaluation using prompt tuning to tackle the
problem of toxic content.

• We leverage prompt tuning to solve the three most rep-
resentative tasks in this domain, i.e., toxicity classifica-
tion, toxic span detection, and detoxification.

• Extensive evaluations show that our prompt tuning

methods can achieve comparable or even better perfor-
mance than the SOTA methods. Also, we observe that
prompt tuning has promising performance on fast adap-
tation to different tasks, i.e., with fewer training sam-
ples/epochs.

Implications. Our work has important implications for var-
ious stakeholders involved in understanding and mitigating
online abuse, hate, and harassment. First, we make our
code and annotated dataset available, enabling social me-
dia operators to implement solutions to detect and moderate
toxic content. Our approach is superior to previous efforts
when considering the annotated data requirements, the per-
formance, the time cost, and the robustness/transferability of
the proposed solution. Additionally, our work can be used to
build explainable toxic detection/moderation tools, given our
method’s outstanding performance on the toxic span detec-
tion and detoxification tasks. Third, we argue that our work
can assist and motivate the research community in leverag-
ing the prompt tuning approach for solving other emerging
socio-technical issues, such as the spread of misinformation
online. Overall, our work is an important step towards un-
derstanding the power and generalizability of LLM in solv-
ing hard tasks (e.g., online toxicity), which is an important
and timely issue, given the extensive popularity of LLM and
chatbots powered by LLM (e.g., ChatGPT).
Ethical Considerations. We emphasize that in this work we
work exclusively with publicly available datasets focusing on
toxicity classification, toxic span detection, and detoxifica-
tion tasks. Also, we use publicly available large language
models to assess their performance on these tasks and how
our work compares to previous efforts. We acknowledge that
since we model all three tasks as generation tasks, the model
may generate toxic content, however, we took the following
steps to minimize harm: 1) we do not share the generated
content with people or online users; and 2) all annotations
required for our work were done by the authors of this study.
Finally, in this work, we show that using prompt-tuning,
large language models can detoxify content with acceptable
performance. At the same time, however, adversaries might
use large language models and prompt tuning to do the op-
posite task (i.e., toxifying content). We believe that this po-
tential abuse is outside of the scope of this work. Yet, it high-
lights the need for the implementation and use of appropriate
safeguards (e.g., similar to Stable Diffusion’s Safety Filter2),
to ensure that large language models and prompt tuning can
not be used for malicious purposes (e.g., generation and dis-
semination of toxic content).

2 Preliminary
Prompt Learning. With the advance of pre-trained LLM
such as GPT-2/3, the previous “pre-train, fine-tune” pro-
cedure is replaced by the “pre-train, prompt, and predict”
paradigm [31]. Concretely, given a downstream task, fine-
tuning requires the training objective to be specified before-
hand and the model needs to be updated. In contrast, prompt

2https://stability.ai/blog/stable-diffusion-public-release.
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learning [7] uses a prompt that contains the task-specific de-
scription and text examples in a natural language way as the
input to the model. In this way, the downstream task can
be formulated as a [MASK]language modeling problem (i.e.,
predict masked text pieces based on the context) and does
not need to update the parameters in the underlying model.
Prompt learning is especially suitable for few-shot down-
stream tasks when limited training examples are available
and fine-tuning the pre-trained model is costly. In general,
prompt learning can be broadly grouped into two categories
- manual prompt and learnable prompt (soft prompt).
Manual Prompt. The natural way to create prompts is
to manually design intuitive textual templates based on hu-
man/domain knowledge [7]. For example, if the task is to
classify the sentiment of a movie review “Absolutely terrible
writing and dragged-out unnecessary dialogue", we can ap-
pend a prompt “The review is” to the content and get “Abso-
lutely terrible writing and dragged-out unnecessary dialogue.
The review is [MASK]”. We expect the language model to
generate “horrible" than “great" to replace [MASK]. Manual
prompts have been proven to solve various tasks with de-
cent accuracy [31]. However, handcrafted prompts need to
be customized based on the downstream tasks, inevitably in-
troducing artificial bias and leading to sub-optimal results.
Learnable Prompt. In contrast to the manual prompts,
learnable prompt methods automatically learn to prompt
from a larger searching space for the candidate prompts to
better fit the downstream tasks. Prefix tuning [30] is one
of the most promising techniques for prompt tuning. Con-
cretely, it adds a prefix (i.e., a sequence of continuous task-
specific vectors) before the input, which can be considered
as a set of “virtual tokens”. Given the downstream task, the
prefix will be optimized while the parameters θ of LM are
frozen. This is extremely efficient compared to fine-tuning
the whole model as for different downstream tasks, only dif-
ferent prefixes instead of different models will be updated.
Formally, the prefix matrix Mφ parameterized by φ can be
updated via the following log-likelihood objective:

max
φ

logP(yyy|xxx;θ;φ) = max
φ

∑
yi

logP(yi|h<i;θ;φ) (1)

where h<i = [h(1)<i ; · · · ;h(n)<i ] is a function of the trainable pa-
rameters at time step i. It is directly copied from Mφ if the
time step is within the prefix (hi is Mφ[i]), otherwise it is com-
puted with the LM. Similarly, Lester et al. [28] propose a
more efficient method that adds several tunable tokens as the
prefix and optimizes the embeddings of those tunable tokens
directly. It has fewer tunable parameters as it does not in-
volve additional tunable parameters in each network layer.
Note that the learnable prompt (prefix matrix) is the embed-
ding of a set of “virtual words” which can be optimized.
The embeddings have mathematical meanings but cannot be
mapped into real words.

3 Tasks
In this work, we consider three tasks that are related to toxic-
ity: 1) toxicity classification (detect whether the text is toxic),

2) toxic span detection (detect which parts of the text are
toxic), and 3) detoxification (eliminate toxicity in the text
while preserving its semantics). The three tasks handle tox-
icity in different levels: toxicity classification only detects
whether the whole text is toxic or not; toxic span detection
aims to detect the exact character offset of the spans that
make the text to be toxic, and detoxification’s goal is to elim-
inate the toxic content from the text while preserving its se-
mantic meaning.

3.1 Task1: Toxicity Classification
Goal. We frame this task as a binary classification task,
where the input is a piece of text and the output is whether
the given text is toxic or not. An example of toxicity classifi-
cation is shown in Table 1.
Existing Methods. Existing toxicity classification methods
usually leverage a labeled dataset (a text is annotated as toxic
or not) to train classifiers or fine-tune an LM. Early efforts
widely use feature engineering (e.g., dictionaries, bag-of-
words, etc.) to extract features from text and detect toxic
language or phrases [12]. With the advance of deep neural
networks (DNNs), recent efforts have been focusing on train-
ing toxicity classification models based on recurrent neu-
ral networks (RNNs) [38], convolutional neural networks
(CNNs) [15], and transformers (e.g., BERT) [1]. The very
latest trend of toxicity classification is using LLMs that are
pre-trained on large unlabeled corpora and then fine-tuning
them to tailor them for the toxicity classification task [64].
The drawback of these methods is that they require a large
annotated corpus to train or fine-tune an LM and their detec-
tion effectiveness is limited by either the size of the labeled
dataset or the time to fine-tune the pre-trained LMs.
Our Method. Given the language model parameterized by
θ, a set of texts {xxx|xxx ∈ X} and the corresponding label {yyy ∈
Y}, we aim to learn the prefix matrix Mφ so that the prompt
consist with Mφ (parameterized by φ) and xxx can successfully
retrieve label yyy from the language model θ. Our optimization
goal is summarized in Equation 2.

φ
∗ = arg min

φ

L( f (X ,φ,θ),Y ) (2)

where L is our loss function (e.g., binary cross-entropy loss)
and f is our toxicity classification model. It is important to
note that our model does not fine-tune the language model
parameterized by θ.

3.2 Task2: Toxic Span Detection
Goal. The toxic span detection aims to identify the specific
spans (i.e., the character offsets) that make the text toxic. For
instance, in the example shown in Table 1, the toxic span
detection task should return two spans - one for “imbeciles”
(starting at 13 and ending at 21) and one for “jerk” (starting
at 33 and ending at 36). It is another important task as it
can assist users in better understanding how the toxicity is
reflected in the text (e.g., the highlighted toxic span can assist
annotators to support their decisions). Formally, given an
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input text t, our goal is to determine the exact toxic spans
{St} in the text.
Existing Methods. Toxic span detection can be seen as a
case of attribution or rationale extraction [39]. Most of pre-
vious work [12, 18, 22] frame this task as a sequence label-
ing task. Concretely, given the labeled toxic span corpus, an
LM can be trained to label each word as toxic or not. Once
the model is trained and given a text the model will give a
toxicity prediction label for each word. Existing methods
have been widely using transformers (e.g., BERT+CRF [12],
SPAN-BERT [22]) or recurrent neural networks (e.g., BiL-
STM [18]) to attain the goal. Some research also experi-
mented with custom loss [59] and data augmentation [55] to
boost the performance of toxic span detection.
Our Method. Our method is fundamentally different from
the existing methods. Instead of considering the toxic span
detection as a sequence labeling task, we treat it directly as
a generation task. Concretely, the input of our model is the
original text that contains the toxic content. We aim to lever-
age the prompt and the (frozen) LLM to generate text without
the toxic span while keeping the rest the same as the input
text. Note that, with the prompt, the LLM does not attempt
to replace the toxic span in the generated text, rather it gen-
erates a, usually, incomplete text that does not have any toxic
spans. Then, to detect the toxic span, we run a mapping al-
gorithm to “subtract” the input text from the generated text
and consider the rest as the toxic spans (i.e., character-level
offsets). Our optimization goal, given the input T = {t} and
T̃ = {t \{St}}, is summarized in Equation 3.

φ
∗ = arg min

φ

L(T̃ , f (T,φ,θ)) (3)

It learns Mφ (parameterized by φ) that nudges the large lan-
guage model θ to remove only toxic spans {St} from X .

3.3 Task3: Text Detoxification
Goal. Text detoxification, as its name suggests, aims to elim-
inate toxicity from text and generate a detoxified version of
the text while preserving the semantic meaning. Different
from the previous tasks that only focus on the detection of
toxicity (e.g., toxicity classification and toxic span identi-
fication), text detoxification addresses the toxic content by
proactively rewriting it. An example of toxicity detoxifica-
tion is shown in Table 1. Formally, for this task, the input is
a toxic text t and our goal is to generate a detoxified version
of the text t̂.
Existing Methods. Text detoxification can be viewed as a
style transfer task. That is, toxicity can be treated as the style
of a text. The style transfer methods are applied to rewrite
the text with similar semantic meaning without the toxicity
style. In previous work [32, 37], both supervised and unsu-
pervised methods are proposed to solve this task in a style
transfer manner. Logacheva et al. [32] propose DetoxBART,
which fine-tunes the Transformer-based generation model
BART [29] on the ParaDetox dataset. Such fune-tuning
process makes DetoxBART yield the best performance in
terms of detoxification and semantic preservation. The other

Table 2: Overview of datasets. Note that ∗ means the dataset
provides the train/test partition.

Dataset Task # Train # Test

HateXplain [35] 1 12,578 3,050
USElectionHate20 [16] ∗ 1 586 118
HateCheck [45] 1 1,998 484
SBIC [46] ∗ 1 93,346 11,000
MHS [23] 1 22,700 5,762
ToxicSpan [39] ∗ 2 7,888 1,991
Parallel [11] 3 886 222
ParaDetox [32] 3 9,551 2,388

end-to-end approaches include DualRL [34], Deep Latent
Sequence Model (DLSM) [17], Stable Style Transformer
(SST) [27], Style Transfer as Paraphrase (STRAP) [24],
Paraphrasing GeDi (ParaGeDi) [9], etc.
Our Method. The detoxification task is also a generation
task. Given the paired dataset (i.e., the toxic text T and the
paraphrased non-toxic counterpart T̂ ), our goal is to learn the
prompt Mφ that can better transfer the input text (toxic) into
the output text (non-toxic) text while preserving the seman-
tics. The optimization goal is similar to Equation 3 and the
only difference is that the label changes from T̃ to T̂ where
the former is the texts without toxic spans (incomplete texts)
and the later is the detoxified texts (complete texts).

4 Datasets and Models

4.1 Datasets
In this paper, we consider eight datasets for the evaluation
of the three tasks. Note that, in Task 1 (toxicity classifica-
tion), for each dataset, we generate a balanced version of it
by randomly choosing the same number of samples from the
larger category to match the smaller category. We follow the
train/test partition of a dataset if they have already been pro-
vided. Otherwise, we randomly sample 80% of a dataset as
the training dataset and the rest 20% as the testing dataset.
Table 2 reports some basic statistics about each dataset. We
describe each dataset below.
HateXplain [35]. It is a benchmark dataset collected from
Twitter and Gab for explainable hate speech detection. The
dataset is annotated by Amazon Mechanical Turk (MTurk)
workers with three labels: hate, offensive, or normal. For our
work, we consider both hate and offensive posts as toxic and
the rest as non-toxic.
USElectionHate20 [16]. This dataset is collected from
Twitter by selecting tweets that contain election hashtags or
politicians’ names. The authors manually label a subset of
tweets with different stances as well as whether the tweet
is hateful/offensive. We consider hateful/offensive tweets as
toxic and the rest as non-toxic.
HateCheck [45]. HateCheck contains a suite of functional
tests for hate speech detection models. Each post is labeled
by different annotators and we consider the majority votes as
the final label of this post.
SBIC [46]. The Social Bias Inference Corpus (SBIC) is col-
lected from Reddit, Twitter, and fringe Web communities
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such as Gab, Stormfront, and banned subreddits. The dataset
is labeled by MTurk workers. We leverage the v2 version of
it for our study and we consider posts labeled offensive as
toxic posts and the rest as non-toxic posts.
MHS [23]. The Measuring Hate Speech (MHS) dataset
is collected from comments on social media like YouTube,
Twitter, and Reddit. The corpus is labeled by MTurk work-
ers from the US. We consider comments with hate speech
score ≥ 0 as toxic and all others as non-toxic.
ToxicSpan [39]. The ToxicSpan dataset contains ∼10k En-
glish texts filtered from Civil Comments [6] and was for-
mally introduced as SemEval-2021 Task 5 [39]. Each text
is reviewed by three to seven raters. Each rater is asked to
identify the spans “that constitute anything that is rude, dis-
respectful or unreasonable that would make someone want
to leave a conversation" [37]. The lengths of the highlighted
spans were decided by the raters.
Parallel [11]. The Parallel dataset contains 2,279 pairs of
(toxic sentence, detoxified sentence). There are 1,108 unique
toxic sentences after removing duplicates. Note that for each
toxic sentence, the dataset might offer multiple detoxified
versions. We only select the first detoxified version to con-
struct the pair.
ParaDetox [32]. ParaDetox contains 11,939 toxic sen-
tences and 19,766 paraphrased sentences (detoxified sen-
tences). Similar to the Parallel dataset, each toxic sentence
might have multiple detoxified versions. We only pick the
first detoxified version to construct the pair. The ParaDetox
dataset constructed by us has 11,939 pairs in total.
Remarks. All the datasets are annotated by human annota-
tors. However, the definition of toxicity might vary across
different datasets. For instance, USElectionHate20 targets
hateful tweets against politicians, while SBIC focuses on of-
fensive posts from different Web communities. This may
bring challenges for toxicity classifiers such as the Perspec-
tive API [4]. On the other hand, our approach diminishes this
issue, given that we use a learnable prompt that is tailored for
each dataset, effectively capturing the toxic definition of the
dataset through the lens of the positive and negative samples
in each dataset.

4.2 Models
In this paper, we consider prompt tuning over two families
of LLM including GPT2 [43] and T5 [44]. Concretely, we
use GPT2-medium, GPT2-large, T5-small, T5-base, and T5-
large in our experiments. In Task 1 (Toxicity Classification),
the learning rate is set to 0.3, we set the total optimization
steps to 2,000 with Adafactor [50] optimizer and the lin-
ear learning rate scheduler with 100 warm-up steps. For
all models, the effective batch size is set to 32 (batch size
of 4/8 with gradient accumulation steps of 8/4 for GPT2-
L/Others). We follow the prompt tuning method proposed
by Lester et al. [28] in Task 1. In Task 2 (Toxic Span Detec-
tion) and Task 3 (Detoxification), we set the training epoch
to 5, the initial learning rate to 5e-5, and the optimizer of
AdamW [33] with the linear learning rate scheduler. Dif-
ferent from Task 1 (Toxicity Classification), we follow the
prompt tuning method proposed by Li and Liang [30] instead

as it can achieve better performance in Task 2 and Task 3.
We hypothesize that Lester et al. [28] initializes the prompt
with embeddings that enumerate the output classes, which
makes the method more suitable for the classification task.
In contrast, the prompt tuning method proposed by Li and
Liang [30] has more tunable parameters than the one pro-
posed by Lester et al. [28]. This method learns transformer
activations that are fixed across examples at every network
layer, allowing subsequent tokens to attend to this prefix. As
such, Li and Liang [30] is a better fit for Task 2 (Toxic Span
Detection) and Task 3 (Detoxification).

5 Task 1: Toxicity Classification

5.1 Experimental Setup
Baselines. Regarding the baselines for Task 1, we con-
sider Google’s Perspective API [4] (Perspective), BERT-base
trained on toxicity classification corpus [1] (ToxicBERT),
and RoBERTa-base trained on toxicity classification cor-
pus [1] (UnRoBERTa). For each baseline, given a text, it
provides a toxicity score ranging from 0 to 1. We consider
the text with a score larger than 0.5 as toxic otherwise non-
toxic. The results with the best threshold (rather than 0.5) are
shown in Table 15 in Appendix. Note that for Perspective
API, on each dataset, we select the perspective score (e.g.,
Severe Toxicity) that achieves the best classification result,
and report the corresponding performance.
Datasets. We use five datasets - HateXplain, USElection-
Hate20, HateCheck, SBIC, and MHS - to evaluate the base-
lines and our models. Note that we observe redundant sam-
ples on HateXplain, USElectionHate20, and SBIC.v2. How-
ever, they are less than 1% and have almost no influence on
the final performance based on our initial evaluation.
Metrics. We consider accuracy, precision, recall, and F1-
score as the evaluation metrics, which are standard metrics
for evaluating the performance of classifiers. Note that we
only report the F1-score on the main paper and put the preci-
sion, recall, and accuracy results in Appendix A in Appendix.

5.2 Results
Overall Performance. We first show the F1-score of toxic-
ity classification with toxicity classification in Table 3. The
accuracy, precision, and recall are shown in Table 16, Ta-
ble 17, and Table 18 in the Appendix. We find that, in gen-
eral, prompt tuning outperforms baselines across different
datasets. For instance, on HateXplain, the prompt tuning
with GPT2-L achieves 0.731 F1-score, while the best base-
line (Perspective) only achieves 0.703 F1-score. The statis-
tical test shows that prompt tuning indeed outperforms the
best baseline (see Table 14 in Appendix). This indicates that
prompt tuning can indeed unleash the power of LLM to per-
form the toxicity classification task. Also, we observe that
a larger LM usually provides a more promising performance
on the task, e.g., GPT2-L usually outperforms GPT2-M and
T5-B/L is better than T5-S in general. For instance, on Hate-
Check, GPT2-L achieves 0.892 F1-score while GPT2-M only
has 0.758 F1-score. This implies that the larger capacity of
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Table 3: F1-score of Task 1. The best results of each dataset are highlighted in bold.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.703 0.657 0.648 0.016 0.731 0.716 0.731 0.637
USElectionHate20 0.506 0.488 0.425 0.709 0.741 0.673 0.833 0.660
HateCheck 0.784 0.670 0.671 0.758 0.892 0.860 0.841 0.946
SBIC.v2 0.669 0.581 0.581 0.721 0.854 0.820 0.844 0.841
MHS 0.790 0.768 0.775 0.711 0.758 0.762 0.775 0.776

Avg. 0.690 0.633 0.620 0.583 0.795 0.766 0.805 0.772

LLM would better guide the prompt tuning to achieve better
performance.

Table 4: F1-score of Task 1 with manual prompt.

Dataset GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.080 0.111 0.041 0.276 0.667
USElectionHate20 0.030 0.275 0.213 0.289 0.632
HateCheck 0.056 0.032 0.256 0.008 0.569
SBIC.v2 0.255 0.151 0.110 0.086 0.619
MHS 0.134 0.157 0.205 0.188 0.664

Avg. 0.111 0.145 0.165 0.169 0.630

Comparison to Manual Prompt. As previous work [8, 48]
shows that manual prompts can achieve decent performance
in the toxicity classification task, we investigate how the per-
formance of prompt tuning compares to manual prompts. We
use the below manual prompt following Schick et al. [48] for
our comparison study. Note that we also investigate using
the descriptions of 6 different scores in Perspective API as
the manual prompt and the results show similar trends.

[INPUT]
Question: Does the above text contain rude, disrespectful,
or unreasonable language?
Answer:[MASK]

Here, [INPUT]is the placeholder for the text to be classified,
“Question: Does the above text contain rude, disrespectful,
or unreasonable language? Answer:” is our manual prompt
and [MASK]is the classification output by the LLM. The per-
formance is shown in Table 4. We observe that the F1-score
of the manual prompt is substantially lower than the prompt
tuning approach (see Table 3). For instance, for the aver-
age results, with T5-S, prompt tuning achieves 0.766 F1-
score while manual prompt only reaches 0.165. These re-
sults highlight the effectiveness and performance gains when
using prompt tuning instead of manual prompts.
Fewer Training Steps. In our previous experiments, we
use 2,000 training steps during the prompt tuning procedure.
Here, we investigate how the selection of the value for the
training steps affects performance. Figure 1 summarizes the
F1-score for different language models wrt. different train-
ing steps. We observe that the F1-score increases during the
initial steps and at some point, the F1-scoregains diminish.
For instance, on HateXplain (see Figure 1a), from 200 to
800 steps, the F1-score with GPT2-L increases from 0.603

Table 5: F1-score of Task 1 with 500 training samples on each
dataset.

Dataset T5-S T5-B T5-L

HateXplain 0.624 0.666 0.655
HateCheck 0.865 0.897 0.654
SBIC.v2 0.772 0.782 0.764
MHS 0.659 0.694 0.644

Avg. 0.730 0.760 0.679

to 0.713, and it stabilizes at 0.731 with 2,000 steps. This in-
dicates that the prompt tuning can adapt to the downstream
task faster, which is important as it can save both time and
computational power.
Fewer Training Samples. In previous experiments, we ran-
domly sample 80% of the dataset as the training dataset and
the rest 20% as the testing dataset. Here, we investigate
whether the prompt tuning can still work well with fewer
training samples. We use the T5 models as the case study as
we observe from Figure 1 that T5 models are relatively stable
and can achieve good performance in general. Concretely,
for each dataset, we randomly select 500 training samples
to form the new training dataset and optimize the prompt
for 1,000 steps only. Note that we exclude the USElection-
Hate20 dataset for this assessment as it only has 586 train-
ing samples, which is close to 500. The results are summa-
rized in Table 5. We observe that although the performance
is lower than training with full data, it is still comparable to
or even better than the baselines. Take SBIC as an example,
with 500 samples, the T5-B model achieves 0.782 F1-score,
which is lower than training with full data (0.844) but still
higher than the Perspective API with 0.669 F1-score (see Ta-
ble 3). Note that 500 training samples are only around 0.5%
of the SBIC’s original training dataset, which is a quite small
fraction. This provides us with a new perspective of view to
transfer the toxicity-related research into new datasets: in-
stead of using the mature published APIs like Perspective,
leveraging prompt tuning with a small fraction of data being
labeled is also a promising way to reach desirable perfor-
mance.
Prompt Transferability. Finally, we assess the generaliz-
ability power of prompt tuning by investigating the perfor-
mance when training a prompt on one dataset and testing on
another. Here we take the T5-base model as the pre-trained
LLM for prompt tuning. Table 6 displays the results. We
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(b) USElectionHate20
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Figure 1: F1-score of Task 1 with different training steps.

Table 6: F1-score of Task 1 (Toxicity Classification) when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.488 0.373 0.419 0.688
USElectionHate20 0.650 - 0.472 0.485 0.733
HateCheck 0.543 0.297 - 0.534 0.579
SBIC.v2 0.638 0.404 0.646 - 0.655
MHS 0.694 0.581 0.610 0.518 -

can observe that in some cases, the prompt can successfully
transfer to another dataset. For instance, the prompts trained
on USElectionHate20 can achieve 0.650 F1-score on HateX-
plain and 0.733 F1-score on MHS, which are about 5% lower
than the baselines (0.703 accuracy on HateXplain and 0.790
accuracy on MHS according to Table 3). However, the per-
formance is less satisfying in some other cases where the F1-
score is below 0.500. We also notice that the prompt trained
on the MHS dataset can better transfer to other datasets. For
instance, after training on MHS, the F1-score is 0.694 on Ha-
teXplain and 0.581 on USElectionHate20, which is compa-
rable or even better to the F1-score provided by the Perspec-
tive API (0.703 and 0.506). This can be credited to the fact
that MHS covers various kinds of toxicity including insult,
humiliation, violence, hate speech, etc. By fine-tuning with
the diverse distributed data, the learned prompt is more gen-
eral and can better transfer to other datasets. On the other
hand, prompts learned from dataset like HateXplain is less
effective to transfer into other datasets. We suspect this is
because these datasets have a relatively narrow definition of
toxicity. In general, the prompt learned from a more diverse
dataset with different types of toxicities may have a better
generalization ability to other datasets. Meanwhile, as we
have shown before (see Table 5), the prompts can better fit
different downstream datasets with the help of only a small
fraction of labeled samples, which further demonstrates the
efficacy of prompt learning.
Comparison with Fine-tuning. Here we take T5-S on USE-
lectionHate20 as an example. We observe that prompt tuning
reaches 0.712 accuracy within 6 minutes, while the best ac-
curacy (evaluated every 200 steps) for fine-tuning the whole
model is only 0.619 within 100 minutes. This is because the
LLM is trained with a large corpus and can generate informa-
tive representations of the inputs. Prompt tuning can guide
the model better leverage the representation for the down-
stream tasks with a small number of parameters, which can
adapt faster to new tasks compared to finetuning, especially
with fewer training samples.

Robustness. Given the misspellings in the training proce-
dure, we do observe that prompt tuning can adapt to the
testing posts with misspellings. E.g., on 100 randomly se-
lected toxic posts on HateCheck, there do exist misspelling
words like “tr4sh,” “4ssholes,” “Fukc,” and “crippl3.” And
prompt tuning with T5-S can correctly identify them (98%
accuracy). We further perturb these 100 evaluation posts by
randomly repeating one character of each toxic word sev-
eral times or adding extra spaces inside the toxic word, e.g.,
“sluttttts,” and “w h o r e.” Note that we leverage such pertur-
bations since we also observe them in the toxic texts and such
perturbations are also considered by previous work [19]. We
observe that, without further prompt tuning, the evaluation
accuracy on these modified 100 posts is still 97%, which re-
mains almost unchanged. This implies that prompt tuning is
robust to adversarial perturbation.
Error Analysis. Although prompt tuning outperforms other
baselines in most cases, wrongly predicted texts still exist
(20 in total). We take the USElectionHate20 dataset (with
T5-B) as a case study to analyze the wrongly predicted cases.
As shown in Table 7, the main reason that causes the wrong
prediction is the wrong label, e.g., in the example, we ob-
serve some toxicity against Trump, but the text is labeled
as non-toxic. Also, we observe that some variations of the
slur words and toxic hashtags may cause wrong predictions.
Last, prompt tuning is less effective against some texts with
implicit toxic content.
Takeaways. Our results show that prompt tuning outper-
forms baselines in the toxicity classification task with suf-
ficient labeled data. Also, the detection performance is still
promising with fewer training steps/samples. Another ob-
servation is that directly transferring the prompt trained on
one dataset into another dataset might be less effective as the
two datasets might share different types of toxicity. How-
ever, this can be addressed by adding only a small number of
labeled samples from the distribution of the testing dataset.
Our results suggest that prompt tuning can also serve as an
alternative tool to assist the annotation process, especially for
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Table 7: Failed examples on USElectionHate20. Note that we
shorten long texts for presentation purposes.

Reason Example Percentage (%)

Wrong ground truth

@realDonaldTrump
Why would the
government stop this
when our President is
among those guilti-
est? Money launder
much,Trump? ...

50

Slur word variation F@&amp;CK, BS 10

Hashtag hate
#FakeNewsMediaClowns,
#LyinSleepy-
WiredUpJoeBiden

5

Other

The biggest threat
to our nation dwells
within the White
House. Vote Biden.
Pass it on! ...

35

the newly emerging toxicity.

6 Task 2: Toxic Span Detection

6.1 Experimental Setup
As we observed from Task 1 (Toxicity Classification), T5
models and GPT2 models share similar performance. In the
following evaluation, we mainly leverage T5 models as our
pre-trained LLMs.
Baselines. We consider three baselines, i.e., BiLSTM [18],
BERT [12], and SPAN-BERT [22]. Concretely, we fol-
low the default hyper-parameters setting of Pavlopoulos et
al. [37]. We train/fine-tune the models for 100 epochs on the
training partition of the ToxicSpan dataset and evaluate it on
its test partition.
Datasets. We use the ToxicSpan dataset to evaluate the base-
lines and our models.
Metrics. We follow previous work [37] and leverage F1-
score as the main evaluation metric. Note that the F1-score
in Task 2 is different from Task 1. Concretely, for the i-th
sample, we consider its ground truth span (i.e., the character
offsets) as Si

g and the predicted span as Si
p. The sample-level

precision Pt , recall Pt , and F1-score F t
1 are defined as the

following:

Pt(Si
g,S

i
p) =

|Si
g ∩Si

p|
|Si

p|
(4)
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Note that if the ground truth span Si
g and the predicted span

Si
p are both empty, we consider F t

1(S
i
g,S

i
p) = 1 (F t

1(S
i
g,S

i
p) =

0 if one of them is empty). Then, we average the F1-score for
all samples to obtain a single F1-score.

6.2 Results

Table 8: Performance of Task 2 (Toxic Span Detection).

Method F1 Time Cost (Second)

BiLSTM 0.566 94
BERT 0.629 1,828
SPAN-BERT 0.640 3,334

PT (T5-S) 0.571 175
PT (T5-B) 0.615 363
PT (T5-L) 0.643 838
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Figure 2: F1-score of Task 2 (Toxic Span Detection) with differ-
ent training epochs.

As shown in Table 8, prompt tuning achieves comparable
or even better performance than the baselines. For instance,
prompt tuning on T5-L reaches an F1-score of 0.643, which
is higher than BiLSTM (0.566), BERT (0.629), and SPAN-
BERT (0.640). On the other hand, prompt tuning achieves
this outstanding performance with much less time. For ex-
ample, prompt tuning on T5-L only takes 838 seconds, while
the SPAN-BERT needs 3,334 seconds for the fine-tuning pro-
cess. This is because prompt tuning has fewer parameters to
be updated compared to those of fine-tuning the LM. Another
observation is that the prompt tuning achieves better perfor-
mance with a larger LM, e.g., the F1-score is 0.571, 0.615,
and 0.643 on T5-S, T5-B, and T5-L, respectively. This sug-
gests that a larger capacity of LMs would facilitate the span
detection process as well.
Effects of Training Epochs. We then investigate whether
prompt tuning is still effective with fewer training epochs. As
shown in Figure 2, prompt tuning already achieves remark-
able performance even in the first epoch. For instance, with
only 1 epoch on the T5-L model, prompt tuning can achieve
0.618 F1-score, which is close to 0.643 with 5 epochs. This
further demonstrates the efficacy of prompt tuning in adapt-
ing to new tasks.
Prompt Transferability. As we only have one dataset for
Task 2, to investigate the prompt transferability, we manually
label the toxic spans of 100 randomly sampled posts from the
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Parallel dataset (we used in Task 3) and form a new testing
dataset. Given the prompt trained with T5-L on ToxicSpan,
we observe that our method can correctly identify the toxic
spans on 85% of posts. We then dive deeper into the failed
cases and find that most of them belong to Categories 1 and 8
as shown in Table 9. In general, this case study demonstrates
that prompt tuning can indeed transfer to out-of-distribution
data.
Comparison with Fine-tuning. For Task 2, we also com-
pare the performance of prompt tuning with fine-tuning. Tak-
ing T5-L model as an example, we observe that, with the
same training epochs, prompt tuning yields slightly better
performance (0.643 F1-score) than fine-tuning (0.628 F1-
score) and costs less time. This indicates that prompt tuning
can unleash the power of LLM with only limited effort.
Robustness. Following the perturbation strategy in Task 1,
we perturb 100 randomly selected posts from TSD and com-
pare the performance with the original posts. We observe
that prompt tuning reports the same toxic span for 57 per-
turbed posts. For 38 perturbed posts, prompt tuning failed
to detect or can only detect part of the toxic spans. For the
rest 5 perturbed posts, prompt tuning can obtain even better
toxic spans than their original version. Compared to Task 1,
prompt tuning is less robust in Task 2. This can be credited
to the lack of perturbed toxic spans in the training dataset,
which may be mitigated by introducing perturbation during
the training phase as well.
Error Analysis. We conduct a case study regarding the
wrongly detected spans. Concretely, we randomly select 100
test samples with wrongly predicted spans and manually ver-
ify the possible reasons. Then, we categorize the reasons
into 9 categories (see Table 9). Note that each test sample is
manually verified by three annotators to put into a category
with full agreement. We find that a substantial percentage
of wrong span predictions in categories 2, 3, 4, and 5 (47%)
are caused by the problematic ground truth label. For in-
stance, in category 2, the ground truth span contains both
toxic and non-toxic text. Note that the ground truth inconsis-
tency is caused by the fact that the lengths of the toxic spans
were decided by the raters [39]. The ToxicSpan dataset ac-
cepts character offsets that at least two raters have included
each character offset in their spans. Category 2 actually cov-
ers the corner cases relating to such human errors/bias when
building the ToxicSpan dataset. Nevertheless, our method
successfully detects the real toxic span “cowards” from this
example. Also, in category 3, the toxic span is not labeled
by the ground truth. However, they are accurately detected
by our method. We also observe that prompt tuning may fail
to identify some ambiguous toxic spans such as the “embar-
rassment” example shown in category 4 (Table 9). A more
interesting case (category 5) shows that our method can dig
out the missing toxic span from the text. For instance, the
ground truth span only contains “stupid”, while our method
discovers “idiots” as well. This case demonstrates the poten-
tial of prompt tuning to become an effective tool to improve
the annotation quality of toxic spans. We also notice that
the cases in categories 1, 6, 7, 8, and 9 (53%) are caused
(or partially caused) by our method. For category 1, we ob-

serve that our method repeats the original sentence without
any change. We then diver deeper into those samples and
find that they are mainly short sentences or contain less toxic
spans, which may lead the prompt to become less sensitive to
these cases. For category 6, we observe that our method suc-
cessfully generates the sentence without toxic spans, but the
mapping algorithm fails to provide an exact span area as the
ground truth span, e.g., prompt tuning includes the quota into
the toxic span as well since it serves as an emphasize to the
toxic expression. In category 9, we observe that our method
overlooks the ground truth span, but surprisingly detects a
new span like the “crap” example. Those wrong cases show
that toxic span detection from the view of prompt tuning is
not perfect, but prompt tuning shows its great potential in fa-
cilitating and correcting the toxic span detection process. For
instance, it can serve as an assistant tool for better annotation
quality.
Takeaways. We observe that prompt tuning can achieve
comparable performance with the best conventional method,
i.e., SPAN-BERT, but with much less time cost. Also, the
performance is relatively stable even with fewer training
epochs. This further demonstrates the potential of leverag-
ing prompt tuning to tackle the toxic span detection tasks and
provides evidence for better span labeling. We also show that
prompt tuning, in some cases, can identify additional toxic
spans not labeled by the ground truth (i.e., human annota-
tors).

7 Task 3: Detoxification
Different from previous tasks that only focus on toxicity de-
tection, this task aims to detoxify the given text while pre-
serving the corresponding semantic meaning.

7.1 Experimental Setup
Baselines. We use the vanilla version of BART [29] and the
DetoxBART [32] as the baselines. Note that the DetoxBART
is also trained on the ParaDetox dataset for 10,000 epochs
according to Logacheva et al. [32].
Datasets. We use Parallel and ParaDetox datasets to evaluate
the performance of baselines and prompt tuning.
Metrics. To quantify the quality of the detoxification, we
consider two aspects, i.e., the detoxification effectiveness
and the utility of the generated sentences. For detoxifica-
tion effectiveness, we leverage the Perspective API to quan-
tify the toxicity level change since it offers the best per-
formance among all baselines and is robust on different
datasets. Specifically, we first measure the average toxicity
score change and then quantify the percentage of texts that
has high toxicity score (0.7 or 0.9), following the guidelines
of Perspective API.3 Note that we use Tavg, T0.7, and T0.9
to denote the average toxicity score of texts, the ratio of texts
that have toxicity score over 0.7, and the ratio of texts that has
toxicity score over 0.9, respectively. Regarding the utility,
we consider five different metrics. We first consider BLEU
score as the utility evaluation metric, which is also widely

3https://developers.perspectiveapi.com/s/about-the-api-
score.
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Table 9: Failed examples on Task 2. Green denotes the ground truth span is correctly predicted by the algorithm. Pink denotes the
ground truth span is not detected by the algorithm. Orange denotes the span is not in ground truth but is detected by the algorithm.

Category Reason Text Example Percentage (%)

1 Labeled by ground truth
(GT) but not by our method.

they’re not patriots. they’re vandals , thieves , and
bullies . they’ve plastered a facade of patriotism over

their outrage at being expected to obey the law.

17

2 GT contains both toxic and
non-toxic spans.

adn is endorsing, without officially endorsing. bunch
of cowards !!!

9

3 GT is none, but our method
labels more toxic spans.

he’s as stupid as those commie propagandists here who
tried to attribute poor potato harvests to potato beetle
supposedly being dropped from cia airplanes over gdr,
czechoslovakia or poland. this was so stupid and out
of sync with real world that it was subject of snickering
among local populations. obviously you will not read
that in books written by last marxists in the world, that
is, western academics.

15

4 GT span is non-toxic. justin is an embarrassment to canada. he needs a muz-
zle. he needs a brain.

6

5 GT only contains parts of
toxic spans, and our method
detect more.

the money you idiots give these people are why they
are here. stop feeding the fire. unbelievable how stupid
people can be....drops mic

17

6 Error caused by the match-
ing algorithm

i’ll ignore your “ stupid " insult and reply anyway... 12

7 Our method marks extra
non-toxic span as toxic.

why don’t you call yourself dickhead instead of pubic
... good grief.

12

8 All GT are toxic, but our
method ignores some of
them.

when you consider the source - he writes like the trump
we’ve all come to know - "i could stand in the middle
of 5th avenue and shoot somebody and i wouldn’t lose
voters", a racist , misgynistic , liar who only brings hate
to the table.

8

9 GT is toxic, but our method
instead finds other toxic.

uh-no, keep voting for failed liberal idiocy that guar-
antees results ala detroit, chicago, etc. you’ll wish your
body had only some crap rather than gangbanger gun-
fire.

4

used in previous work [32,54]. Then we quantify the seman-
tic preservation by comparing the text embeddings similarity
between the original text and the detoxification text. Con-
cretely, we consider two types of embedding following [32],
i.e., contextual string embeddings [25] from flairNLP [2],
which is denoted as SIM (F), and SIMILE proposed by Wi-
eting et al. [60], which is denoted as SIM (W). We denote
the two types of embedding similarities as SIM (F) and SIM
(W), respectively. Besides, we also use the token-level per-
plexity [43] to measure the fluency of the text, where lower
perplexity denotes better fluency.

7.2 Results
The detoxification performance on different datasets is
shown in Table 10. We observe that DetoxBART performs
slightly better in detoxifying the text than prompt tuning. For
instance, on ParaDetox, DetoxBART reduces the Tavg, T0.7,
and T0.9 to 0.180, 0.013 and 0, respectively while prompt
tuning on T5-L can reduce them into 0.213, 0.037, and 0.003

respectively. This means that ParaDetox has better detoxifi-
cation effectiveness than prompt tuning. However, we also
observe that the text quality generated with prompt tuning
is better than the DetoxBART. For instance, on ParaDetox,
compared to DetoxBART, the PT (T5-B) has a higher BLEU
score, SIM (W), SIM (F), while attaining a smaller To-
kenPPL. This indicates the text generated by prompt tun-
ing has better fluency and can better preserve the semantic
meaning of the original text. In general, we consider both
DetoxBART and prompt tuning as successful methods as
they can largely reduce the toxicity level while preserving
the semantic meaning and fluency of the original text.

Different Epochs. We then investigate how the training
epochs affect the detoxification effectiveness and the model’s
utility regarding semantic preservation. The results are
shown in Figure 4 and Figure 3, respectively. From Figure 4,
we have three observations, first, we find that more train-
ing epochs lead to better detoxification performance. For in-
stance, on Parallel, prompt tuning on T5-L can reduce the
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Table 10: Performance of Task 3. The arrow denotes which direction is for better results.

Dataset Method Tavg ↓ T0.7 ↓ T0.9 ↓ BLEU ↑ SIM (W) ↑ SIM (F) ↑ TokenPPL ↓

Parallel

None 0.755 0.676 0.135 1.000 1.000 1.000 227.834
GroundTruth 0.178 0.009 0.000 0.491 0.757 0.669 550.725
BART 0.754 0.676 0.135 0.999 0.999 0.998 227.904
DetoxBART 0.242 0.036 0.000 0.708 0.879 0.843 236.654
PT (T5-S) 0.573 0.463 0.077 0.835 0.927 0.939 326.696
PT (T5-B) 0.408 0.256 0.032 0.770 0.898 0.909 301.597
PT (T5-L) 0.396 0.329 0.031 0.754 0.881 0.889 284.861

ParaDetox

None 0.775 0.778 0.134 1.000 1.000 1.000 330.829
GroundTruth 0.166 0.000 0.000 0.633 0.828 0.778 393.800
BART 0.774 0.777 0.133 0.999 0.999 0.998 331.250
DetoxBART 0.180 0.013 0.000 0.688 0.862 0.832 438.242
PT (T5-S) 0.253 0.081 0.007 0.760 0.910 0.905 593.442
PT (T5-B) 0.224 0.051 0.005 0.754 0.920 0.897 499.851
PT (T5-L) 0.213 0.037 0.003 0.743 0.916 0.886 404.565

Tavg to 0.616 with 1 epoch, while decreasing to 0.397 with 5
epochs. Second, prompt tuning on larger models lead to bet-
ter detoxification performance, e.g., T5-L performs the best
while T5-S performs the worst. This is expected as a larger
model can represent the data in a more informative way thus
better guiding the prompt tuning in the direction of detoxi-
fication. Third, in a larger dataset such as Paradox, prompt
tuning already achieves good detoxification performance in
the early epoch, e.g., the first or second epoch. Our results
further exemplify the effectiveness of prompt tuning as the
time cost is much less than training the detoxification model
like DetoxBART.

Regarding utility, we find that the utility is relatively stable
for different models in different epochs. This indicates that
those LLMs have good generation ability in general.
Prompt Transferability. We then take ParaDetox as the
training dataset and Parallel as the testing dataset to investi-
gate the generalizability power of prompt tuning. With T5-B
trained on ParaDetox, the Tavg, T0.7, and T0.9 on Parallel drop
to 0.251, 0.027, and 0.000, respectively, which are even bet-
ter than the original results shown in Table 10 (0.408, 0.256,
and 0.032). One possible reason is that ParaDetox contains
a larger number of training data, which better guides the
prompt for the detoxification tasks and makes it more trans-
ferrable to other datasets like Parallel.
Comparison with Fine-tuning. For Task 3, we take the T5-
L model on Parallel as a case study. We observe that, prompt
tuning can reduce the toxicity of posts to a larger extent, e.g.,
the Tavg of prompt tuning is 0.396, while the value is 0.437
for fine-tuning. On the other hand, we find that fine-tuning
can generate more fluent sentences, e.g., the BLEU score
is 0.795 for fine-tuning, while only 0.754 for prompt tun-
ing. In general, prompt tuning can still be considered as a
lightweight plugin to adapt LLMs to new tasks.
Robustness. We again follow the perturbation strategy in
Task 1 to perturb 100 randomly selected posts from the Par-
allel dataset. We observe that, for the original version of
these 100 posts, prompt tuning (with T5-L) can reduce the
Tavg, T0.7, and T0.9 from 0.725, 0.590, and 0.130 to 0.357,
0.120, and 0.010, respectively, while the values are 0.402,

0.180, and 0.020 for the perturbed 100 posts, which is close
to detoxify the original version. This indicates that prompt
tuning is relatively robust in Task 3.

Case Study. We then dive deeper into the generated text of
the ParaDetox dataset and check them manually. We con-
sider both successful cases (C1 and C2) and failed cases
(W1-W5). Table 11 shows the examples of these cases. In
most cases, prompt tuning is powerful in reducing the toxic-
ity level of the sentence while preserving its semantic mean-
ing. For example, in C1, our method achieves similar detox-
ification performance (toxicity score decreases from 0.827
to around 0.163). Also, our method preserves the semantic
meaning properly. In C2, we observe that our method can
even detoxify the sentence better than the ground truth.

Among the 2,388 text samples, we observe that there are
88 detoxification samples (3.68%) that still have a high tox-
icity score, i.e., larger than 0.7. We manually check those
samples and find that they can be categorized into 5 differ-
ent wrong categories (W1-W5). For W1 (6/88), we observe
that the sentence is hard to be detoxified, and the ground
truth sentence is identical to the original sentence. For W2
(52/88), prompt tuning just directly repeats the original sen-
tence without any modification. For W3 (27/88), we observe
that prompt tuning indeed preserves the semantic meaning
and reduces the toxicity level. We acknowledge that for some
implicit toxic content, as shown in the example, it might be
harder for the prompt model to detect and eliminate them
perfectly. For W4 (1/88), prompt tuning actually provides
better semantic preservation compared to the ground truth.
For W5 (1/88), we observe that prompt tuning just considers
“i jus clicked tht nasty shit” as toxic parts and directly re-
moves them. During the labeling, we notice that there indeed
exists a trade-off between detoxification and semantic preser-
vation. However, in most cases, prompt tuning can do well
on both aspects (see also Table 10). It indicates that prompt
tuning can be a good tool for assisting the detoxification task,
e.g., providing possible solutions for the annotators to make
their decision. Currently, our current prompt tuning is based
on paired datasets, which is similar to machine translation.
However, such datasets are usually small. One promising
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Figure 3: Utility of Task 3 with different training epochs.
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Figure 4: Detoxification effectiveness of Task 3 with different
training epochs.

direction that we aim to explore in our future work is to com-
bine the paired dataset with the unpaired dataset (i.e., it only
contains sets of toxic and non-toxic contents but without the
pairs) to jointly fine-tune the prompt.
Takeaways. We empirically show that prompt tuning can re-
duce the toxicity level to a large extent and better preserve the
semantic meanings. An interesting observation is that the se-
mantic meaning of the original sentence can be properly pre-
served even with fewer training epochs due to the strong rep-
resentation ability of the LLM. However, with fewer epochs,
the detoxification performance might be less satisfying as the
process of toxic to non-toxic contents is more difficult than
previous tasks and needs more learning steps to better guide
the prompt tuning. The effective detoxification and semantic
preserving abilities make prompt tuning a strong competitor
to conventional methods in the detoxification task.

8 Related Work
Prompt Learning. Prompt learning is a new paradigm in
natural language processing (NLP) [31]. It allows users to
directly specify the task they want in natural language for the
pre-trained language model to interpret and complete. This
paradigm paves way for using a single LLM as the univer-

sal solver for various understanding and generation tasks,
such as text classification [47], machine translation [44], se-
mantic parsing [52], question answering [20], etc. To un-
leash the full potential, research on prompt learning has been
investigating automatically inducing the discrete/continuous
prompts [30, 57], multi-prompt learning [20, 42], prompt
training, and fine-tuning strategy [13, 41], transferability of
prompts [40], etc. Our work is built on top of prompt learn-
ing. We conduct the first systematic hateful language study
from the prompt tuning perspective.
Toxicity Classification. The problem of toxic online con-
tent is a longstanding and challenging [5] problem affecting
our society. Motivated by the impact that the problem has
on both the online and offline world, the research commu-
nity and the industry devoted substantial resources to devel-
oping models to detect toxic content. One of the most used
tools for assessing toxicity online is Perspective API [4], a set
of machine learning models trained on a human-annotated
dataset, released by Google. The Perspective API, given
a piece of text, provides a set of scores that correspond to
how likely the text is toxic, attacking specific identities, sex-
ually explicit, etc. At the same time, Google released its an-
notated dataset, which enabled other researchers to develop
more models aiming to tackle the problem. One such exam-
ple is Detoxify [1], which leverages the power of transformer
models to detect toxicity in text, across multiple languages.

Davidson et al. [10] highlight that there is a distinction be-
tween offensive language and hate speech. Also, the authors
release HateSonar, a machine learning model, that identi-
fies whether a piece of text contains offensive language or
hate speech. As previous research notes [61], however, the
HateSonar classifier performs poorly compared to the Per-
spective API, when tested on comments left on news ar-
ticles. Zimmerman et al. [66] highlight that by leverag-
ing deep learning ensembles, we can improve the perfor-
mance of previous models in detecting hate speech on Twit-
ter. Other work focuses on identifying the targets of toxic
content [14,53], or on identifying specific forms of toxic con-
tent such as Antisemitism [36, 62], Islamophobia [58], and
Sinophobia [56, 65].
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Table 11: Examples on Task 3. Here we consider successfully detoxified cases (with toxicity score less than 0.7) as the correct cases (C),
and those cases with a larger than 0.7 toxicity score are considered as wrong cases (W).

Category Original Ground Truth Generated

C1 if assad wasn ’t such a dick then
involvement would not be neces-
sary. [0.827]

if assad wasn’t such that bad in-
volvement would not be neces-
sary. [0.163]

if assad wasn ’t such a bad per-
son then involvement would not
be necessary. [0.159]

C2 your reading comprehension is
more fucked up than a football bat.
[0.835]

your reading comprehension is
worse than a football bat. [0.575]

your reading comprehension is not
good [0.355]

W1 if you hold a knife against the cops
you deserve to be shot! [0.827]

if you hold a knife against the cops
you deserve to be shot! [0.827]

if you hold a knife against the cops
you deserve to be shot ! [0.774]

W2 did they bring along a signedx-
glossy of boy wonder and cas-
tro as a token of their stupidity ?
[0.770]

did they bring along a signedx-
glossy of boy wonder and Castro
as a token [0.133]

did they bring along a signedx-
glossy of boy wonder and cas-
tro as a token of their stupidity?
[0.754]

W3 someone should give this idiot a
slap on the head. [0.939]

someone should give him a lesson.
[0.257]

someone should give him a slap on
the head. [0.721]

W4 i hate guys with a bitch mouth sit
the fuck down nigga [0.985]

I hate bad guys [0.440] i hate guys with a bad mouth sit
down [0.721]

W5 wtf ! ! ! ! ! ! ! ! ! ! i jus clicked
tht nasty shit [0.979]

I just clicked something. [0.042] wtf!!!!!!!!!!!!!!!!!!!!!!!!!!! [0.713]

All of the above-mentioned efforts in detecting toxic con-
tent are based on fine-tuning existing models or develop-
ing dedicated classifiers focusing on the specific task of de-
tecting toxic content. Recently, the pre-train and prompt
paradigm is becoming increasingly popular, hence the re-
search community started investigating how prompt learning
can be leveraged to tackle the problem of toxic content on-
line. In particular, Chiu et al. [8] use OpenAI’s GPT-3 lan-
guage model to investigate the performance of prompt learn-
ing in the task of detecting racist or sexist content. They find
that by using a pre-defined prompt and a few-shot learning
setting, they can identify racist or sexist content with an ac-
curacy of up to 85%, highlighting that prompt learning can
play a role in identifying toxic content. Similarly, Schick et
al. [48] find that language models can identify toxic content
and whether the generated text contains undesirable biases,
all using prompt learning techniques. Also, they propose a
de-biasing method, which helps the language model gener-
ate less biased content. Overall, both works [8, 48] highlight
that large language models and prompt learning can detect
toxic content with a decent performance. While this previ-
ous work is essential, it is limited in the sense that it focuses
only on the toxicity classification task and, more importantly,
relies on manual pre-defined prompts. In contrast, our work
provides a comprehensive evaluation of how large language
models and prompt learning can assist in tackling the prob-
lem of toxic content by considering multiple tasks (toxicity
classification, toxic span detection, and detoxification). Also,
we show that by using prompt tuning techniques, instead of
pre-defined prompts, we can substantially increase the per-
formance of the language models in the three tasks.
Toxic Span Detection. Toxic span detection [39] aims to
identify the specific span that makes the sentence to be toxic.
Pavlopoulos et al. [37] treat this task as the sequence labeling

task to annotate the suspicious span in the sentence. Three
models including BiLSTM [18], BERT [12], and SPAN-
BERT [22] are considered. We instead formalize this task as
a generation task and show that prompt-tuning can achieve
comparable performance to the SPAN-BERT but with much
less computational time.
Detoxification. Detoxification aims to reduce the toxicity
level of the sentence while preserving the semantic mean-
ing to the largest extent. It is similar to neural style trans-
fer [21]. Laugier et al. [26] propose a self-supervised method
named CAE-T5 to learn the transformation from toxic to civil
from the unpaired corpus. Logacheva et al. [32] develop
DetoxBART which fine-tunes the BART model on the Pa-
raDetox dataset to achieve better performance. Our work is
substantially different from their work as we do not need to
fine-tune the model but just the prompt, which is less costly.
We notice that conventional methods like DetoxBART can
achieve better detoxification performance while prompt tun-
ing can better preserve semantic information.

9 Conclusion
In this paper, we performed the first extensive evaluation of
using prompt learning with tunable prompts (prompt tuning)
to tackle the problem of toxic content. Particularly, we fo-
cused on three tasks (toxicity classification, toxic span detec-
tion, detoxification) and assessed the performance of prompt
tuning and how it compares to state-of-the-art baselines in
these tasks. Among other things, we find that prompt tun-
ing can achieve comparable or even better performance com-
pared to the baselines. As shown by our evaluation, inte-
grating prompt tuning into toxic content research can better
help to improve the dataset quality and the model utility as
the toxicity label (Task 1), predicted toxic span (Task 2), and
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detoxified sentence (Task 3) can be used to assist the labeling
procedure.
Limitations. Naturally, our work has some limitations. First,
we use GPT2 and T5 as the LLMs to demonstrate the ef-
ficacy of prompt tuning. Our evaluation has demonstrated
that prompt tuning can perform well even with these LLMs,
and larger models generally perform better (see Table 3).
While we acknowledge that conducting experiments with
larger models with billions of parameters would be appeal-
ing, our hardware capabilities limit such endeavors. Also,
we use Perspective API as an indicator to quantify the toxic-
ity level (e.g., on Task 3), which is likely to yield some false
positives/false negatives. Nevertheless, detecting toxic con-
tent is an open research challenge and the Perspective API is
also leveraged by previous work [48, 51], indicating that it is
a good proxy for assessing toxic content. Despite these lim-
itations, we believe that our research can pave new ways for
the study of toxic content, as researchers with limited com-
puting resources can utilize currently available pre-trained
large language models to perform important toxicity-related
tasks with acceptable performance.
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A Task 1 Performance with Other Metrics
General Result. Table 16, Table 17, and Table 18 show the
accuracy, precision, and recall of Task 1.
Manual Prompt. Table 12 shows the accuracy, precision,
and recall of Task 1 with the manual prompt.
Fewer Training Steps. Figure 5, Figure 6, and Figure 7
show the accuracy, precision, and recall of Task 1 with fewer
training steps
Fewer Training Samples. Table 13 shows the accuracy, pre-
cision, and recall of Task 1 with fewer training samples.
Prompt Transferability. Table 19, Table 20, and Table 21
shows the accuracy, precision, and recall of Task 1 when the
training dataset is different from the transfer dataset. Here
the model architecture is T5-B.

B Statistical Test
To investigate whether the performance difference is signif-
icant, we perform the paired t-test on the predictions of the
best baseline and the best prompt tuning model in Task 1.
The results are shown in Table 14. We observe that, on all
datasets, the p-value is less than 0.01, which indicates that
the performance is indeed significantly different. On Task 2,
we compare the performance between SPAN-BERT and PT
(T5-L) with the Mann-Whitney U test. The p-value (0.936)
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Table 12: Accuracy, precision, and recall of Task 1 with manual prompt.

Dataset Accuracy Precision Recall
GPT2-M GPT2-L T5-S T5-B T5-L GPT2-M GPT2-L T5-S T5-B T5-L GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.482 0.475 0.491 0.485 0.504 0.356 0.362 0.351 0.464 0.502 0.045 0.066 0.022 0.196 0.994
USElectionHate20 0.449 0.508 0.500 0.500 0.517 0.125 0.524 0.500 0.500 0.510 0.017 0.186 0.136 0.203 0.831
HateCheck 0.510 0.506 0.508 0.498 0.587 0.778 0.800 0.526 0.333 0.595 0.029 0.017 0.169 0.004 0.545
SBIC.v2 0.533 0.516 0.477 0.454 0.530 0.630 0.618 0.370 0.265 0.521 0.160 0.086 0.065 0.052 0.764
MHS 0.470 0.488 0.452 0.512 0.561 0.366 0.442 0.372 0.562 0.538 0.082 0.095 0.141 0.113 0.867

Avg. 0.489 0.499 0.486 0.490 0.540 0.451 0.549 0.424 0.425 0.533 0.067 0.090 0.107 0.114 0.800

Table 13: Accuracy, precision, and recall of Task 1 with 500 training samples on each dataset.

Dataset Accuracy Precision Recall
T5-S T5-B T5-L T5-S T5-B T5-L T5-S T5-B T5-L

HateXplain 0.633 0.627 0.664 0.641 0.603 0.672 0.608 0.744 0.638
HateCheck 0.862 0.890 0.587 0.843 0.849 0.562 0.888 0.950 0.781
SBIC.v2 0.757 0.770 0.719 0.728 0.741 0.659 0.823 0.829 0.908
MHS 0.650 0.678 0.668 0.643 0.661 0.694 0.676 0.731 0.602

Avg. 0.726 0.741 0.659 0.714 0.714 0.647 0.749 0.813 0.732

indicates that the performance of SPAN-BERT and PT (T5-
L) are similar. Note that we do not perform the statistical test
on Task 3 as it has multiple metrics to evaluate the perfor-
mance.

Table 14: Paired t-test on Task 1 performance.

Dataset Baseline (F1) Prompt Tuning (F1) p-value

HateXplain 0.703 0.731 2.33e-51
USElectionHate20 0.506 0.833 1.42e-9
HateCheck 0.784 0.946 8.07e-8
SBIC.v2 0.669 0.854 0.00
MHS 0.790 0.776 7.93e-50

C Task 1 Performance with Dynamic Thresh-
old

The performance with the dynamic threshold (rather than
0.5) for Perspective API is shown in Table 15. We observe
that prompt tuning still outperforms Perspective API in most
of the cases.

Table 15: Task 1 performance with dynamic threshold.

Dataset BaselineBaseline (Threshold)Prompt Tuning

HateXplain 0.703 0.714 (0.415) 0.731
USElectionHate20 0.506 0.762 (0.230) 0.833
HateCheck 0.784 0.790 (0.445) 0.946
SBIC.v2 0.669 0.782 (0.167) 0.854
MHS 0.790 0.790 (0.498) 0.776
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Table 16: Accuracy of Task 1. The best results of each dataset are highlighted in bold.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.668 0.628 0.625 0.504 0.741 0.734 0.738 0.635
USElectionHate20 0.653 0.644 0.610 0.729 0.746 0.712 0.831 0.712
HateCheck 0.750 0.620 0.616 0.787 0.888 0.847 0.816 0.944
SBIC.v2 0.696 0.635 0.635 0.631 0.845 0.819 0.840 0.831
MHS 0.760 0.736 0.747 0.667 0.736 0.720 0.746 0.763

Avg. 0.705 0.653 0.647 0.664 0.791 0.766 0.794 0.777

Table 17: Precision of Task 1.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.635 0.610 0.611 1.000 0.760 0.770 0.751 0.634
USElectionHate20 0.875 0.870 0.810 0.765 0.754 0.778 0.820 0.805
HateCheck 0.691 0.592 0.586 0.880 0.862 0.792 0.740 0.915
SBIC.v2 0.734 0.682 0.683 0.580 0.806 0.817 0.822 0.792
MHS 0.703 0.686 0.697 0.628 0.698 0.662 0.695 0.734

Avg. 0.728 0.688 0.677 0.771 0.776 0.764 0.766 0.776
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Figure 5: Accuracy of Task 1 with different training steps.
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Figure 6: Precision of Task 1 with different training steps.
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Figure 7: Recall of Task 1 with different training steps.
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Table 18: Recall of Task 1.

Dataset Baselines Prompt Tuning
Perspective ToxicBERT UnRoBERTa GPT2-M GPT2-L T5-S T5-B T5-L

HateXplain 0.787 0.712 0.690 0.008 0.704 0.668 0.711 0.641
USElectionHate20 0.356 0.339 0.288 0.661 0.729 0.593 0.847 0.559
HateCheck 0.905 0.773 0.785 0.665 0.926 0.942 0.975 0.979
SBIC.v2 0.614 0.506 0.505 0.952 0.909 0.823 0.868 0.897
MHS 0.902 0.873 0.872 0.821 0.830 0.898 0.875 0.824

Avg. 0.713 0.641 0.628 0.621 0.820 0.785 0.855 0.780

Table 19: Accuracy of Task 1 when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.627 0.556 0.579 0.703
USElectionHate20 0.629 - 0.574 0.552 0.708
HateCheck 0.507 0.559 - 0.603 0.552
SBIC.v2 0.553 0.551 0.552 - 0.588
MHS 0.654 0.669 0.603 0.585 -

Table 20: Precision of Task 1 when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.778 0.634 0.675 0.726
USElectionHate20 0.615 - 0.622 0.571 0.674
HateCheck 0.506 0.733 - 0.646 0.546
SBIC.v2 0.536 0.600 0.534 - 0.563
MHS 0.622 0.794 0.600 0.618 -

Table 21: Recall of Task 1 when the training dataset is different from the transfer dataset.

Training Dataset Transfer Dataset
HateXplain USElectionHate20 HateCheck SBIC MHS

HateXplain - 0.356 0.264 0.304 0.654
USElectionHate20 0.689 - 0.380 0.422 0.803
HateCheck 0.586 0.186 - 0.456 0.616
SBIC.v2 0.786 0.305 0.818 - 0.783
MHS 0.785 0.458 0.620 0.446 -
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