2308.05832v1 [cs.CR] 10 Aug 2023

arxXiv

FLShield: A Validation Based Federated Learning Framework to Defend Against
Poisoning Attacks

Ehsanul Kabir, Zeyu Song, Md Rafi Ur Rashid and Shagufta Mehnaz

Penn State University
Email: {ekabir, 7255287, mur5028, smehnaz}@psu.edu

Abstract—Federated learning (FL) is revolutionizing how we
learn from data. With its growing popularity, it is now being
used in many safety-critical domains such as autonomous ve-
hicles and healthcare. Since thousands of participants can con-
tribute in this collaborative setting, it is, however, challenging to
ensure security and reliability of such systems. This highlights
the need to design FL systems that are secure and robust
against malicious participants’ actions while also ensuring high
utility, privacy of local data, and efficiency. In this paper, we
propose a novel FL framework dubbed as FLShield that
utilizes benign data from FL participants to validate the local
models before taking them into account for generating the
global model. This is in stark contrast with existing defenses
relying on server’s access to clean datasets—an assumption
often impractical in real-life scenarios and conflicting with
the fundamentals of FL. We conduct extensive experiments
to evaluate our FLShield framework in different settings
and demonstrate its effectiveness in thwarting various types
of poisoning and backdoor attacks including a defense-aware
one. FLShield also preserves privacy of local data against
gradient inversion attacks.

1. Introduction

Federated learning (FL) [8]], [26] is a collaborative learn-
ing technique that allows multiple participants to jointly
train a machine learning (ML) model without sharing their
own training data. Each participant trains their local model
and shares their local updates with the server which then
aggregates the updates to generate a global model and sends
it back to the participants. This technique has two important
features. Firstly, it can produce a model that is trained on a
vast quantity of data provided by thousands of participants
without compromising their data privacy. Secondly, decen-
tralized training allows parallelization of the computation
across multiple devices resulting in a significant speed boost
in the training process. Due to these attractive features,
FL technique has been adopted to solve problems in many
diverse domains such as autonomous vehicles [35]], [36],
industry 4.0 [18]], [37], healthcare sectors [9], [39]], etc.

The growing adoption of FL systems necessitates a
comprehensive investigation of their robustness and security.
Security concerns arise from the involvement of numerous
clients including potential adversaries aiming to disrupt

the learning process. Designing an efficient and effective
vetting scheme for such a large number of participants is
challenging. Malicious clients may attack FL systems by
sending local model updates trained on poisoned data [2]],
[3], [45] or by intentionally poisoning local models [14],
[42].

Recently, two categories of attacks have garnered sig-
nificant attention: poisoning attacks that aim to corrupt the
global model and inference attacks targeting the theft of
local participant data. Poisoning attacks are executed by
malicious participants seeking to compromise the global
model by sending malicious updates. Attackers may aim
to produce a global model with poor performance on the
primary task (untargeted poisoning attack) [14], [54] or
one that performs poorly on a specific class (i.e., targeted
poisoning attack) [45]]. Another possible goal is to create
a global model that behaves according to the attacker’s
intentions when presented with a designed trigger (e.g.,
backdoor attacks) [2f, [44]]. A common defense strategy
against poisoning attacks involves robust aggregation pro-
tocols capable of detecting and filtering malicious updates.
However, this detection and filtering strategy relies on the
assumption that malicious updates can be distinguished from
benign ones—an assumption that may not hold in cases
where participant data distribution varies significantly. As
benign updates also diverge, separating malicious updates
becomes more challenging. Moreover, a malicious partic-
ipant might adapt their local training procedure to make
their updates indistinguishable from benign ones. Therefore,
defending against poisoning attacks necessitates a strategy
that can validate local models to effectively detect and
filter malicious updates. Conversely, inference attacks can
be initiated by inverting gradients to reconstruct client’s
training data from individual model updates [16].

Challenges: Although some existing works [10]] assume
server’s access to clean data for local model validation, such
assumptions are often impractical—especially in privacy
sensitive FL applications. Hence, implementing a validation
strategy introduces two challenges: how to obtain the valida-
tion data and how to perform validation without exposing the
local models. The validation data should be representative
of the participants’ training data. In practice, any dataset
collected by the server may not sufficiently represent the
diverse distribution of clients’ data. One naive solution is
selecting a set of clients as validators from the pool of all

clients and using their data for validation of local models.
However, sending local models to validators risks expos-
ing them to gradient inversion attacks [[16], [56]. Another
alternate approach is to validate the global model instead
and accepting or rejecting the global model based on the
validation performance [1]. However, the averaged global
model could be infected at each round and fail the validation
test resulting in a denial-of-service. Hence, neither local
nor global models are ideal for validation. We name this
challenge as validation subject dilemma. Additionally, using
unvetted FL participants as validators raises concerns as
malicious validators can send false results, a challenge we
refer to as the validation integrity dilemma. These dilemmas
present significant obstacles in employing validation as a
defense strategy against poisoning attacks.

Proposed defense: In this paper, we propose a novel
validation-based defense framework against poisoning at-
tacks, FLShield, that is able to simultaneously solve the
validation subject and validation integrity dilemmas in dif-
ferent FL setups. The proposed strategy solves the validation
subject dilemma by using representative models, which are
crafted using multiple local models to ensure that the infer-
ence attack will be ineffective. Each representative model is
then validated, and based on the validation results, the local
models that contributed to the best representative models
are selected. We propose two versions of FLShield based
on two representative model crafting algorithms: one with
the use of clustering and the other with a scheme that we
refer to as bijective model generation. The version that uses
clustering-based algorithm is referred to as FLShield* and
the version that uses bijective representatives is referred to as
FLShield!. Our framework also suggests which strategy
to use based on the number of participants and the level of
robustness required in the system.

We solve the validation integrity dilemma by using a
validation protocol that uses a new metric that we refer
to as loss impact per class (LIPC). This metric can be
applied to any classifier validation process in an FL system.
We rank the representative models based on the minimum
value extracted from the LIPC of each model and show
that the top 50% ranked models are largely crafted using
benign updates. Additionally, we demonstrate that the LIPC
scores evaluated by the benign validators on representative
models are consistent even in a non-IID scenario. We use
a validation filtering mechanism in FLShield to filter
tailored validation results by malicious validators and solve
the validation integrity dilemma.

Evaluating FLShield against diverse attacks: We
further show that the filtering technique of FLShield
enables it to defend against both untargeted and targeted
poisoning attacks. Different poisoning techniques, such as
data poisoning or model poisoning, are equally ineffective
because of the framework’s focus on validating models
before aggregating them. Through experiments on datasets
across multiple domains in IID and non-IID scenarios,
we show that FLShield can defend against poisoning
attacks of three categories including a defense-aware one:
untargeted poisoning, targeted label flipping, and backdoor

attacks.
Summary of contributions: In summary, this paper
makes the following contributions:

« We develop a novel FL poisoning defense framework,
FLShield, that employs an effective validation strategy
to solve both the validation subject dilemma and validation
integrity dilemma.

e« We design a new metric named LIPC for validation
purpose. We show that the LIPC metric is a reliable metric
to perform validation.

o Through extensive experimentation, we show that our
framework can defend against poisoning attacks of three
categories: untargeted poisoning, targeted label flipping, and
backdoor attacks without compromising the model perfor-
mance. Moreover, our framework outperforms all existing
defenses in terms of robustness and performance.

e We design FLShield-aware attacks and show that
FLShield is robust against those.

« Finally, we show that the representative models shared
for the purpose of validation can not be used to reconstruct
training data of clients using state-of-the-art gradient inver-
sion attacks.

2. Preliminaries

2.1. Federated Learning

Federated learning (FL) is a distributed paradigm en-
abling a set of clients S to learn a shared global model,
coordinated by a central server. Unlike conventional ML
frameworks requiring centralized data, FL permits local
model training without data sharing. In a training round
t € [1,T], the server sends the global model G; to a
randomly sampled S; C S of size n. Clients £k € S;
fine-tune G; using local data Dy and send updates w!
to the server which then aggregates them to update the
global model Gy41. FL minimizes this objective function:
ming,) ..o PrFr(w) where F}, represents the local objec-
tive for client k, w represents the model parameters and py
denotes their relative impact/weight.

2.2. FL Poisoning Attacks

2.2.1. Untargeted Poisoning Attack. Malicious FL par-
ticipants may submit tampered updates to indiscriminately
poison the global model and reduce the main accuracy (MA)
of the FL task. This attack aims to minimize:

MA= E [Pr(G(z)=y) ¢y

(@,y)~D
where D is the data distribution for the learning task, and y
is the expected output for input x.

2.2.2. Targeted Poisoning Attack. Targeted poisoning at-
tacks aim to impair global model performance on specific
samples, while maintaining high accuracy elsewhere, mak-
ing detection challenging. For these attacks, the adversary

aims to maximize misclassification rate (MR) on the targeted
subset of data:
MR= E

(m,y)th
D:CD

[Pr(G(z) # y)]

where D, are the samples targeted by the adversary.

Targeted Label Flipping Attack. This is a subclass of
targeted poisoning attacks where the adversary manipulates
the global model to misclassify samples from a specific
class (i.e., source class) to a predetermined poison class (i.e.,
target class) [45]. For these attacks, the adversary aims at
two metrics: minimizing global model’s recall (RCL) on
source class and maximizing the attack success rate (ASR)
which measures successful misclassification to the target

class:
RCL= E [Pr(G(z)=y)]
(z,y)~D
Y=Y 2
ASR= E [Pr(G(z)=y:)]
(P

where y, is the source class and y, is the target class.

Backdoor Attack. In backdoor attacks, the global model
learns a malicious sub-task alongside the original task,
thereby misclassifying the inputs containing some attacker-
chosen patterns. The attack aims to maximize the accuracy
of this malicious sub-task also termed as backdoor accuracy
(BA):

BA= E
(z,y)~D
y#y'

[Pr(G(t(z)) = y)] 3

Here, ¢(.) is the backdoor trigger function and the pre-
determined class 3’ is the target class.

2.3. FL Privacy Attacks

While FL strives to protect privacy by keeping data at
local devices, it still remains possible for attackers to launch
privacy attacks if they gain access to the gradients [[16], [50],
[56]. These attacks are generally formulated as optimization
problems and try to reconstruct x, that approximates the
original instance x.

3. Threat Model

Nature of the adversary: We assume that the adversary
compromises a subset of the clients through Sybil attacks
by creating multiple fake clients to gain control over the
FL system. The Sybils have data sampled from the same
distribution as the benign clients and they are coordinated
by the adversary. Each Sybil leaves as soon as it performs
the attack, and then a new Sybil is created. We assume that
the FL coordinating server is honest. FLShield is capable
of preserving privacy against an honest-but-curious server
through the use of secure two-party computation which we
present in Appendix [D}]

Goal of the adversary: The adversary has the following
objectives: (1) poison the global model (poisoning objective)

and (2) reconstruct benign clients’ training data (inference
objective). To achieve the poisoning objective, the adversary
launches a targeted/untargeted poisoning attack, and the
success is measured using metrics ASR/BA (targeted) or
MA (untargeted). The adversary aims to reconstruct the
clients’ training data by launching a gradient inversion attack
on model updates. Generally, the adversary has access to
only global model updates. However, according to the design
of FLShield, when Sybils are selected as validators in a
round, the adversary also gets access to the representative
model updates. Hence, in the threat model, we assume that
the adversary tries to invert representative model updates.

4. Challenges and Key Insights of FLShield
4.1. Challenges

In the ML domain, validation is the process of verifying
a model’s potential efficacy in the test phase by evaluating its
performance on a validation dataset. In centralized learning,
this set is typically a portion of the training dataset not
utilized for training. Contrarily, in the context of FL, the
participating clients are the data sources. Hence, a naive
approach in FL could be using a portion of clients’ data
for validation. However, privacy concerns that led the in-
vention of FL prevent the server from directly accessing
clients’ data. Although some existing works [10] assume
server’s access to clean data, such assumptions are often
impractical—especially in privacy sensitive FL applications.
Thus, the server must resort to the clients for validation
of models. Now, resorting to clients could be insecure as
malicious clients can submit falsified validation results to the
server and disrupt the validation process. An effective de-
fense mechanism must be able to discern genuine validation
results from fraudulent ones. Moreover, malicious validator
clients can attempt inference attacks on models received
for validation—further complicating the challenges faced
by FLShield. Hence, FLShield’s validation mechanism
should only transmit models to validators that are not vul-
nerable to inference attacks. Addressing these two primary
challenges is crucial for ensuring an effective defense.

4.1.1. Challenge 1: Validation Subject Dilemma. This
dilemma alludes to the challenge of selecting/computing ap-
propriate models for validation in the FL setting, balancing
the need for accuracy and privacy. The chosen validation
model must be resilient to inference attacks while maintain-
ing sufficient accuracy for validation purposes.

4.1.2. Challenge 2: Validation Integrity Dilemma. This
dilemma pertains to the challenge of ensuring the integrity
of the validation results in the FL setting, particularly in
discerning between genuine and falsified validation results.
The necessity for verification of these validation results
stems from the fact that the clients performing the validation
could be controlled by the adversary.

4.2. Solving The Validation Subject Dilemma

To address this dilemma, we introduce the concept of
representative models which are fusions of multiple local
model updates. We utilize two strategies to generate such
representative models: (1) bijective representative models:
each local model update is treated as a base update and then
accompanied by additional contributions from other local
updates weighted according to their similarity to the base
update. (2) cluster representative models: model updates
are clustered into multiple groups, and updates within each
group are aggregated to form a representative model.

By aggregating local model updates trained on the
datasets of multiple clients, representative models yield
more generalized results and are thus more suitable for
validation. The integration of multiple local updates also
thwarts privacy attacks launched by adversary-controlled
malicious validators as it prevents successful reconstruction
of training data. We perform gradient inversion attack on
these representative models and observe that these attacks
are unsuccessful in reconstructing any image resembling the
clients’ training data (details later in section[6.3). Both of the
generation strategies mentioned above demonstrate a high
probability of merging benign updates with each other, and

vice versa (section [6.4.T).

4.2.1. Bijective Representative Models. The fundamental
concept of bijective representative models involves utilizing
one local model update as the foundation and incorporating
input from other updates based on their similarity to the
foundation (i.e., the base model). Formally, let £ be the
representative model, w be the base update, and U/ be the set
of all updates. The bijective representative model is defined
as:

Zueu—{w} (s(uJ?u) X U X %

Zueu—{w}(s(w7 u) x lﬁ‘)

E=Gi+(1-T)w+T) 4)

where s(w,u) denotes the similarity between base update
w and another update w, and 7 denotes the proportionate
contribution (0 < 7 < 1) from other model updates to the
representative model. We further name the term associated
with 7 as the sibling contribution. Owing to the one-to-one
relationship between each representative model and local
model, we coin the term bijective representative model. In
section we discuss the requirements for the similarity
function s(w,u) and our approach to fulfill them. Sibling
contribution is incorporated into the representative model to
enhance its generalizability. This is because individual mod-
els trained on client-specific data subsets have weaker gen-
eralization than representative models which are composed
of models trained on multiple clients’ datasets. However, for
FLShield to mount a successful defense, two conditions
must be fulfilled: (1) the sibling contribution need to be
balanced to ensure the representative models achieve suffi-
cient generalization without compromising the preeminent
role of the base model, and (2) the benign representative

model must contain a lesser proportion of contribution from
malicious updates compared to those originating from other
benign updates. In sections [6.4.1 and [6.4.2] we demonstrate
how fulfilling these conditions lead to a successful defense.

4.2.2. Cluster Representative Models. The technique for
generating cluster representative models consists of two
steps: (1) dynamically clustering clients based on their
model updates, and (2) averaging the updates within each
cluster to create a representative model. Existing defenses
claim that benign and malicious clients can be separated by
clustering on the model updates [28]], [33]], [43]]. However, in
non-IID scenarios, distinguishing them becomes challenging
as data distribution shifts can cause benign model updates to
seem more divergent than malicious ones. Despite this, we
recognize the value of clustering as a useful tool. The non-
IID data prevalent among FL clients necessitates a clustering
algorithm that dynamically adjusts the number of clusters.
The dynamic clustering coupled with a quality evaluation
metric is expected to group clients in a way that mini-
mizes the intermingling of benign and malicious updates.
The veracity of the aforementioned claim is evidenced by
experimental findings presented later in section [6.4.4] This
fact holds significance as it suggests that we can distinguish
benign from malicious representative models during valida-
tion, presuming benign representative models surpass mali-
cious ones in performance. Consequently, the combination
of clustering and validation mechanisms not only aids in the
separation of benign and malicious clients but also ensures
that the selected representative models contribute positively
to the global model—enhancing its overall performance and
robustness against attacks. The specifics of our clustering
algorithm along with its associated hyperparameters are
discussed in detail in section 5.1.2]

Suitable Use-cases. FL systems host hundreds to tens of
thousands of participants. Bijective representative model
generation, while computationally demanding, ensures in-
dividual evaluation, making it apt for smaller systems.
Conversely, the clustering-based approach, offering higher
performance throughput, may blend benign and malicious
updates in smaller cohorts, thus proving more suitable for
larger systems.

4.3. Solving the Validation Integrity Dilemma

In FLShield, local clients act as validators for repre-
sentative models, assess them and report validation results to
the server. Nevertheless, verifying the integrity of these val-
idation results is challenging. Variations in data distribution
among clients could lead to different validation outcomes
from different benign validators for the same representa-
tive model—making the identification of false results based
on discrepancies from true results potentially challenging.
Therefore, we introduce a new validation metric, loss impact
per class (LIPC), which is computed class-wise to reduce
the influence of diverse data distributions on validation
results. Our experiments reveal that employing LIPC in the
validation process causes honest validation results to be

more consistent with each other (section [6.4.2)). We formally
define the LIPC metric as follows:

£le0) = |, Mean _ L(G. (@) ~ L(E)] i€ [1.d]
;)
M(E) = [£(,G,v)T| i€ [1,H] ®
N@) = [£En e iem] @

L, a vector of class-wise loss value differences between
the representative model and the prior round’s global model,
focuses on loss impact rather than raw loss values (due to
the incremental nature of FL). D, represents the validation
dataset of validator v, G denotes the global model from
previous round, £ is the representative model under valida-
tion, L is the cross-entropy loss function, and c signifies
the number of classes. M is a matrix for £ containing
all validators’ £ vectors. N is a matrix from v containing
L vectors computed for all representative models. k£ and
m represent the number of validators and representative
models, respectively.

For a validation sample (x,y) and a representative model
&, the cross-entropy loss is given by —log(E(z)[y]), which
represents the logit output for the correct class. A stable
and benign neural network should yield similar logit values
for all samples within a class, while a poisoned network is
expected to produce varying logits for the source class. By
computing the representative model’s £ for each class, we
anticipate similar A" from benign validators even in non-
IID scenarios. As shown later in section [6.4.2] and [6.2.2]
N from benign validators are indeed close to one another,
supporting this hypothesis.

We perform thorough testing in various distribution sce-
narios to confirm the effectiveness of LIPC metric in ensur-
ing validation integrity. We introduce label skew and feature
skew in validators’ validation data (section [6.2) as well as
vary false validation result injection strategies (section [6.3).
In all cases, use of LIPC enabled FL.Shield to detect false
validation results effectively. Moreover, using LIPC leads
to the best performance amongst the metrics we consider
later in section [6.4.2] These experiments substantiate the
robustness and efficacy of our proposed validation approach.

5. Design and Implementation of FLShield

FLShield’s pipeline in each FL training round consists
of the following steps: (1) Clients train local models and
submit them to the server. (2) Server generates representative
models from local model updates. (3) Validators evaluate the
representative models and report A to the server. (4) Server
filters outlier Ns. (5) Server selects top 50% representative
models after ranking them based on the projection of M
to a scalar value. (6) Local models in accepted representa-
tive models are selected. (7) Selected local model updates
undergo norm-bounded clipping. (8) Clipped local model
updates are averaged to obtain the new global model.

FLShield is designed to be flexible and adaptable
to various FL systems, considering factors such as client

numbers, client-server relationships, and computational re-
sources. We propose two algorithms for representative
model generation: bijective and cluster, detailed in sec-
tions and respectively.

Figure [I] illustrates one instantiation of the FLShield
defense algorithm using bijective representative model gen-
erator. Other defense algorithm components remain ab-
stracted, providing a high-level overview of FLShield.
The general framework of FLShield is outlined in the
Algorithm presented in Figure FLShield is divided
into five components: 1) representative model generator,
2) model validation, 3) filtering, 4) clipping, and 5) aggrega-
tion. We discuss each of these components in the following
sections.

5.1. Representative Model Generator

We mentioned two strategies for representative model
generation in section In this section, we explain the
implementation details.

5.1.1. Bijective Representative Model Generator. We pro-
vide an implementation of the bijective representative gen-
eration method in the Algorithm presented in Figure
This approach constructs a representative model for each
client using their local update as the base, and adding sibling
contribution using equation] The similarity function must
satisfy two conditions: (1) higher contribution from updates
with similar direction (2) zero contribution from updates
with opposing direction. We have chosen a combination
of ReLU and cosine similarity as the similarity function.
ReLU’s rectification meets the second criterion and cosine
similarity’s constrained output range meets the first criterion.

5.1.2. Cluster Representative Model Generator. This gen-
erator using the Algorithm presented in Figure [12] applies
K-Means clustering to local model updates. To identify the
optimal cluster count, the algorithm utilizes silhouette score
[40], a popular metric for optimal cluster determination, with
min-max limits set by the system designer. After determin-
ing the cluster count, it generates representative models by
averaging the updates in each cluster. Finally, it returns a
client-cluster mapping and the representative models.

5.2. Model Validation

The implementation of the model validation unit is de-
tailed in the Algorithm presented in Figure For each
representative model, k£ validators are randomly selected
from the clients. The outer loop (line 2) iterates over rep-
resentative models, allowing parallelization if many clients
are available, leading to lower computational cost and higher
throughput. In systems with fewer clients, these clients typ-
ically possess more computational resources, allowing one
validator to evaluate multiple representative models despite
high-latency communication.

Chosen Vn]:dnlors Filtered

Representative Models

Y

g 8

Random Sampling
Local

Participants

8 2 I ::::i:" Bijective Representative
o D : ..._;| Model Generator =1--

1 Local Model

Global Model

Model Generator

Bijective Representative

-
": Local Model

8 roamgmon |} —> Bijective Representative

Model Generator

n
Local Model Rep!

ive Model G

A

T
[Sending Models
to Validators

zlﬂii
J o r“ J

|

I
+ Validation
Reports

Model

Local|Models

[
g
/ Filtering

[Clipping |

| Aggregation |

fodel Validation Scheme

Figure 1: FLShield framework with bijective representative models.

Figure 2: FLShield Algorithm

Input: Go, T > Go is the initial global model, T is the number of training
iterations

Output: G > G is the final global model

1: for each training iteration t in [1, T] do

2: > Local Training

3: for each client i in [1, n] do

4: w; < ClientUpdate()

5: end for

6: M, (E1,...,Em) < RepresentativeGen(wi.,) DM : [1,n] X
[1, m] is the mapping function between local model updates and representa-
tive models &1, ..., &y, for bijective representative it is identity mapping

7: My, ..., My, — FedValidation(G¢, €1,y ..., Em) >

My,...,M,, are the M report for each representative model by
the unfiltered validators

8: I, < Filtering(Mi,...,M,,) >l is the set of indices of the
representative models that are accepted by the filtering scheme

9: I+ {M;:Viel,.} plisthe set of indices of the local models that are
accepted by the validation scheme

10: @11y < Clipping({w; : Vi € 1})
model updates

11: Giq1 + Aggregation(Gy, &y.1))

12: end for

13: return G

>y is the set of clipped local

5.2.1. £ Calculation by Validator. The Algorithm pre-
sented in Figure [I5] illustrates the £ calculation by the
validator, with lower and upper bounds (n; and n9) set for
the number of validation samples for each class. Validators
having fewer than n; samples are suggested to leave the
value empty for that class. On the other hand, employing
over no samples might slow down the validation process
without providing substantial defense benefits. Hence, val-
idators are discouraged from using more than ns samples.
Although validators might deviate from these specifications,
adherence is expected to maintain consistency and prevent
result discarding.

5.2.2. Filtering N anomalies by the Server. The server uti-
lizes Iterativelmputation algorithm [41]] (which outperforms
others as shown in section [6.4.4) to fill missing values in
L scores before applying an outlier detection algorithm to
N matrices to filter potential malicious validation reports.
We use elliptic envelope for outlier detection. However,
according to our observation, the choice of the algorithm
does not impact performance at all as long as it is a robust

one (section [B.I). We further show that the absence of
the outlier detector leads to failure under FL.Shield-aware

attacks (section [6.4.4).

5.3. Filtering

The filtering unit outlined in the Algorithm presented in
Figure[16]is responsible for filtering malicious representative
models based on their M matrix. We perform the following
steps on each M: (1) The matrix is averaged across the first
dimension i.e. all the £ vector reported by the unfiltered
validators for the corresponding representative model are
averaged (2) The minimum value of the average £ vector is
extracted. Afterwards, we examine the minimum value for
each representative model, selecting the top 50% based on
these scores across all classes. This choice reflects our threat
model’s assumption that malicious clients constitute less
than 50% of the total clients. Untargeted poisoning attacks
generally influence the £ vectors across all classes, whereas
targeted attacks predominantly impact one class. As a result,
utilizing the minimum validation scores proves to be an
effective measure for detecting both targeted and untargeted
poisoning attacks. Upon selecting the representative models,
we utilize the mapping to identify the local model updates
that contributed to these chosen representative models (line
9, FLShield Algorithm). In the remainder of the literature,
we refer to the minimum of the £ vector as the £ score and
the class-by-class evaluation as £ vector.

5.4. Clipping

In FL, malicious clients can send disproportionately
large model updates to unfairly and detrimentally influence
the global model. To counter this issue, FLShield incor-
porates a clipping technique similar to FLAME [33].

5.5. Aggregation

To obtain the new global model, we average the se-
lected local model updates and combine them with previous
round’s global model.

100 100

80 80

60 60

Recall (RCL)

40 40

Main Accuracy (MA)

20 20

Y

Z
/
% /
o o
% %
% %
% %
. .
= ¢

2=

0 4 7= Z= 0
-MNIST E- MNIST CIFAR-10 LOAN
Inner Product Manipulation Attack (IPMA)

o
o R

“MNIST ~E-MNIST
Targeted Label Flipping Attack (TLFA)

100
FedAVG

E= FLShield"
ESY FLShield"

80 =3 FedOracle

Backdoor Accuracy (BA)

2.
CIFAR-10

0
OAN F-MNIST E- MNIST

CIFAR-10
Distributed Backdoor Attack (DBA)

Figure 3: The performance of our defense against three different categories of poisoning attacks.

TABLE 1: Effectiveness of FLShield in comparison with state-of-the-art defenses against targeted poisoning attacks.

Targeted Label Flipping Attack (TLFA)

Distributed Backdoor Attack (DBA)

F-MNIST E-MNIST CIFAR-10

Defense

LOAN F-MNIST CIFAR-10

Defense

RCL ASR MA RCL ASR MA RCL ASR MA RCL ASR MA i BA MA BA MA
FedOracle 81.97 6.4 87.76 99.26 0.2 99.39 83.60 4.46 78.76 95.93 3.98 95.42 FedOracle 3.03 87.72 275 79.06
FedAvg 36.93 3597 82.87 64.36 34.46 95.95 50.65 42.08 76.16 47.64 5213 76.91 FedAvg 56.15 87.07 66.27 78.94
RFA 26.94 4473 82.03 77.84 20.86 97.31 52.8 7.83 79.35 32.85 65.74 70.65 RFA 91.44 86.84 6.06 79.75
AFA 36.91 3597 82.88 58.09 40.76 95.29 48.64 44.77 75.79 37.84 59.96 72.88 AFA 538 87.05 68.62 78.82
FLAME 42.04 41.4 81.64 78.2 20.68 97.26 48.92 45.38 72.88 82.18 6.19 90.16 FLAME 6.17 86.36 4.68 78.81
FLTrust 59.69 20.95 83.95 98.65 0.69 99.32 57.2 35.26 73.77 89.14 7.22 92.82 FLTrust 6.5 86.99 20.15 7745
FLShield™ 84 543 87.05 99.28 0.17 99.29 81.10 527 78.96 97.37 2.56 95.41 FLShield™ 325 87.64 1.73 79.75
FLshield! 80.95 6.4 87.08 99.11 0.27 99.35 83.60 6.14 78.66 97.7 2.22 95.29 FLshield! 5.13 87.18 1.69 77.85

6. Evaluation

6.1. Experiment Setup

Datasets. We conduct experiments with four datasets:
F-MNIST [52], E-MNIST [13]], CIFAR-10 [27], and LOAN
[17]. The first three pertain to the image domain while the
last one represents tabular data. More details of the datasets
are presented in Appendix [A1]

Attacks considered. We evaluate FLShield against three
categories of attacks: poisoning attacks, privacy inference
attacks, and attacks that are specifically designed against
FLShield. The poisoning attacks include both untargeted
(i.e., inner product manipulation attack or IPMA [54]) and
targeted (i.e., targeted label flipping attack or TLFA [45] and
backdoor) ones. Further, we consider three backdoor attacks:
distributed backdoor attack (DBA) [53]], edge-case backdoor
attack (ECBA) [48]], and semantic backdoor attack (SBA)
[2]]. We also consider a gradient inversion attack (GIA) [16]
to evaluate if the representative models used in FLShield
can be used by the malicious validators to reconstruct train-
ing data from other clients. As mentioned earlier, we design
FLShield-aware attacks where malicious participants at-
tempt to compromise the integrity of the validation process.
We design two such attacks: FLShield-aware adaptive attack
(FA-Adp) and FLShield-aware advanced attack (FA-Adv).
Table 3] (in Appendix) summarizes the attacks we investigate
in our experiments. Section [A.2] provides more details of the
attacks.

Baselines. We evaluate FLShield against two base-
lines: (1) FL aggregation without any defense (FedAvg),
and (2) FL aggregation with perfect detection and re-
moval of poisoned updates (FedOracle). FedAvg’s per-
formance illustrates undefended attack effectiveness while

FedOracle serves as a target
defense against FL poisoning.

baseline for any robust

Existing defenses considered. We compare FLShield’s
performance with the following state-of-the-art defenses:
FLAME [33]], FLTrust [10], Adaptive Federated Averaging
(AFA) [32], and Robust Federated Aggregation (RFA) [34].

Metrics. We consider the metrics main accuracy (MA),
recall (RCL), and backdoor accuracy (BA) as defined earlier
in section [2] These metrics evaluate the performance of
the final global model. To evaluate the effectiveness of
FLShield in filtering malicious model updates, we use
true positive rate (TPR) and true negative rate (TNR). TPR
(TNR) is computed as the ratio of malicious (benign) model
updates detected as malicious (benign) and is averaged
across all iterations.

Data distribution. We consider both IID and non-IID sce-
narios. For non-IID, we implement two strategies: one-
class-expert distribution (also used in [10]) and Dirichlet
distribution [31]]. In the first strategy, the clients are split
into 10 groups each corresponding to a class, and then each
client is given an equal number of samples where 50% of
the samples are from the class corresponding to the client
and the rest 50% of the samples are from the other classes.
For the Dirichlet distribution [31]], we use the same setup
as [2].

FL setup. Unless otherwise specified, we assume 40% of
the clients are malicious. We show the impact of varying the
percentage of malicious clients (upto 45%) on FLShield’s
performance in section [6.4.3] The settings/configurations of
the FL systems, classifier architecture, and hyperparameters
of the attacks are described in Appendix section [A]

Code. We used implementation from [48] and [22] and
extended it to cover the diverse range of attacks and de-

fenses that we experimented with. Should this manuscript
be accepted, we plan to make the associated code publicly
available.

6.2. Performance of FL.Shield

We show the overall performance of FLShield against
IPMA, TLFA, and DBA in Figure E] and the performance
against EBCA and SBA are reported in Table [4|b). Both
FLShield* and FLShield! are able to achieve per-
formances close to FedOracle for all datasets against
IPMA and TLFA. While FLShield!’s performance de-
grades when experimented with DBA on the LOAN dataset,
FLShield* is able to achieve a performance similar to
FedOracle for all cases. In section and section
6.4.2] we conduct an in-depth analysis to show how the
use of representative models and LIPC score contributes
to FLShield’s success. In section [6.4.3] we perform an
ablation study to understand how FLShield succeeds
against backdoor attacks. Also, we discuss the limitations
of FLShield in section E} According to our observation,
FLShield outperforms FedOracle in multiple instances.
This is due to the fact that FLShield’s design allows it to
filter not only the malicious updates but also the updates that
do not generalize well. Hence, FLShield produces global
models that are often more generalized compared to that
of FedOracle as FedOracle filters only the malicious
updates.

6.2.1. Comparison with Existing Defenses. Table [1| com-
pares our proposed defenses with existing defenses. The
results show that both FLShield* and FLShield' sig-
nificantly outperform the existing defenses. Note that, both
TLFA and DBA are covert attacks that do not significantly
affect the main accuracy (MA) of the model. State-of-the-art
defenses such as FLTrust [10], RFA [34]], AFA [32] fail to
detect these attacks because these defenses have primarily
been designed to defend against untargeted poisoning at-
tacks only (details of IPMA results in Table [§|in Appendix).
Even though FLAME [33]] has been designed to detect
targeted attacks (more specifically, backdoor attacks), it does
not perform well against TLFA. This is because HDBSCAN
is not able to separate the clusters of the benign and mali-
cious clients in the TLFA setting. In contrast, FLShield*
and FLShield are able to achieve performances close to
FedOracle in all datasets against both TLFA and DBA
across all metrics.

6.2.2. Performance in Non-IID Settings. We experiment
with two non-IID strategies as mentioned in section [6.1]
Also, note that, the LOAN dataset has a natural non-IID dis-
tribution. Figure [3|shows that FLShield is able to achieve
performances comparable to FedOracle for the LOAN
dataset. Figure [] shows the performance against TLFA at-
tack on F-MNIST dataset in non-IID settings. For both one-
class-expert and Dirichlet distributions, FLShield per-
forms similar to FedOracle. This is interesting since the
validators are picked from the non-IID client groups as

RCL
0 ASR
MA

A R 0 R
FedAvg FedOracle FLShield® FLShielc FedAvg FedOracle FLShield® FLShield'

(@ (b)

Figure 4: Evaluation of FLShield in non-IID scenario:
(left) one-class-expert, (right) Dirichlet

well. More specifically, this result shows that the validation
mechanism of FLShield does not require the validators
to be IID. We deem the following as the primary reason for
FLShield’s success in non-IID scenarios.

o The N matrices of validators are independent from
validation data distribution. We flattened each A/ matrix to
a vector and projected the vectors after performing PCA
in Figure 5(a)] The N matrices are taken from a one-
class-expert setting with the F-MNIST dataset and as such
there are 10 groups of clients with each group defined by
the dominant class sample in clients’ validation data. The
figure shows that the N matrices of validators are similar
irrespective of the group they belong to. In fact, the intra-
group mean distance of A/ matrices is 0.0126 which is close
to the inter-group mean distance of A matrices of 0.0128.
Hence, it is evident that the A matrix is not influenced
by the validation data distribution. This is because the N
matrix is computed in a class-wise manner. For a particular
class, a validator from the corresponding group has more
samples of the class than a validator from another group. If
the N was computed as only a vector containing the loss
impact of all the representative models on the validators’
data, then it would be biased by the dominant class of
the validator. Figure shows the PCA projection of A/
vectors in this alternate scenario. Some groups of validators
are reporting similar results to a group member but disparate
results from a non-member. The similarity of original N
matrices implies the absence of disagreement among the
validators which in turn enables FLShield to defend well
in non-IID scenarios.

6.3. FLShield-aware Attacks by Malicious Val-
idators

To evaluate FLShield’s robustness, we assume an
enhanced adversary which has the knowledge of FLShield
and has additional capabilities to: (1) manipulate the A
matrices computed by malicious validators, and (2) estimate
the A/ matrices computed by benign validators.

The enhanced adversary aims to achieve two objectives:
(1) Stealth objective: ensures that the N matrices by the
malicious validators cannot be distinguished from that of the
benign validators by FLShield’s outlier detection algorithm,

and (2) Infiltration objective: ensures that the malicious
representative models rank in the top 50%. However, it is
important to note that finding a set of crafted validation
results that meet both objectives could be difficult for the
adversary. This is because, for example, malicious repre-
sentative models able to poison the FL system may not
be stealthy. If these objectives cannot be achieved simul-
taneously, we can conclude that any attack that is aware
of FLShield would still fail to poison the FL system.
We design two enhanced adversaries to meet these two
objectives at the same time:

(1) FLShield-aware adaptive attack (FA-Adp): In this
approach, the adversary tries to achieve the two objectives
through the formulation of an optimization problem. Such
adaptive attacks have been designed to prove the effective-
ness of other defenses in the literature, e.g., in FLTrust [10].
In this tactic, we define a loss function combining the two
objectives. The optimal N matrices are then derived by
utilizing the stochastic gradient descent method to minimize
the loss function. The strategy details are presented in
Appendix [C] due to space constraints.

(2) FLShield-aware advanced attack (FA-Adv): In this
approach, the malicious validators first compute the true
N matrices and then attempt to achieve their stealth and
infiltration objectives by making minimal alterations to these
original validation results. The magnitude of alteration can
be quantified as the distance between the original and the
crafted N matrix by each malicious validator. While finding
the minimal change necessary to meet the infiltration objec-
tives is mathematically intractable, a suboptimal solution can
be derived by following the steps detailed in the Algorithm
presented in Figure [I7]in Appendix.

Evaluation Results: Table [2| compares the performance
of FLShield against FA-Adp and FA-Adyv attacks includ-
ing the case when there is no malicious validator. In the no
malicious validator scenario, when a malicious participant is
selected as a validator it does not manipulate the validation
results. The attacks in this experiment are performed on
the CIFAR-10 dataset. The results show that both versions
of FLShield-aware attacks achieve limited success in
terms of RCL, BA, TPR, and TNR. The only anomaly
is the performance of FLShield"* against the FA-Adv
attack that reduces TPR and TNR by 10% under DBA.
Figures [B(®)] display representative models ranked by
L score under DBA and TLFA respectively. DBA exhibits
a smaller benign-malicious model gap compared to TLFA.
FA-Adv’s strategy, aiming to narrow this gap, only finds lim-
ited success when minimum alterations don’t yield out-of-
distribution A'. However, such occurrences are rare, and the
limited infiltration is inadequate for an effective backdoor.
The recall is higher in some defense-aware attack scenarios
compared to non-defense-aware ones. However, recall is not
a robust metric for evaluating the defense’s effectiveness due
to various influencing factors in an FL system. Differences
in benign model updates selected in cases like None and FA-
Adp or FA-Adv lead to different recall values, even if they
are close. TPR/TNR, in contrast, serves as a direct measure

Malicious Validators — None FA-Adp FA-Adv None FA-Adp FA-Adv

Metrics | Attacks | FLShield® FLShieldf

RCL TLFA 81.10 83.10 81.60 83.60 84.80 83.70

BA DBA 1.73 1.72 247 1.69 1.48 1.87

TPR TLFA 100 100 100 100 100 100
DBA 100 100 90 100 100 100

TNR TLFA 91 90.75 90.75 86.67 86.67 86.67
DBA 100 100 90 86.67 86.67 86.67

TABLE 2: Evaluation of FLShield under FA-Adp and FA-
Adv

A
+ A N

AwWN RO
©mNow
A WwN e O
©w~ou

.
A

v %

h 3

vy

S el v
v

o

"

PCA Axis 2
PCA axis 2

A
XA+ °
v ee

i

o
24 H®dd
+x
Ay
M

20 0 20 40 60 80 T 30 40

PCA Axis 1

(a) With original N

0 20
PCA axis 1

(b) With modified N/

Figure 5: PCA projection of A/ (left) and a modified version
of NV (right) of 100 validators in the one-class-expert setting.
Each validator belongs to one of the 10 groups denoted by
the class index of the dominant class in their training data.

of the defense’s ability to eliminate poisoned model updates.

In section [6.4.2] we perform an ablation study to closely
understand the reason behind the success of FLShield
against malicious validator attacks.

6.4. Ablation Study

6.4.1. Why does FLShield work?. The following list of
observations coupled with visualizations from experimental
results shed light on the reasons behind the success of
FLShield.

]
L
-151 W .
g L - -
—2.0 s L]
[
H
-2.5
@ H °
g 3.0 ¢
O H
] L]
—3.54 . R
-4.0 e
]
s
L]
-4.5
L3
L]
1 2 4 8 16

Poisoning per batch

Figure 6: LIPC score of malicious representative models
vs poisoned sample per batch (PSPB) in DBA. The square
dot indicates the median LIPC score for the corresponding
setting.

Benign to Benign to Malicious to Benign to Benign to Malicious to
Benign Malicious Malicious Benign Malicious = Malicious

Benign to Benign to Malicious to
Benign Malicious Malicious 100

Malicious
Contribution

Malicious
Contribution

,_.
o
S

-

T
T

Euclidean Distance
N w

w

T
T T
-

N

=
——

Euclidean Distance
Euclidean Distance

H

(a) IID (b) One-class-expert

o a
«g 80 g T
“Sg “5_—5 90
&2 60 &4
83 g8
5% w0 55 "
£ I
g &g 7
L T T | ‘e o :
T = 8
0 60
Dirichl Benign Malicious
(c) Dirichlet (d) Representative (¢) Representative
Model Model

Figure 7: Euclidean distance between updates for three distribution settings: (a) IID, (b) one-class-expert, and (c) Dirichlet.
Percentage of malicious contribution to (d) benign representative models and (e) malicious representative models.

o The similarity between two benign (malicious) updates
is greater than the similarity between a benign update and
a malicious update. Models trained with similar objectives
are expected to bear resemblance with each other. Figure
and present results from the experiments to
support this. The three boxplots show the range of distances
between two benign updates, benign and malicious updates,
and two malicious updates in three distribution settings:
IID, one-class-expert, and Dirichlet. In all cases, the mean
benign-benign distance is smaller than the mean malicious-
benign distance. The experiments consider TLFA on F-
MNIST dataset.

o The contribution of benign (malicious) local models to
a benign (malicious) representative model is greater than
the contribution of the malicious (benign) local models.
This is because the contributions are weighted based on the
contributor’s similarity with the base model. Figure [7(d)|and
show the contribution of malicious participants to the
benign and malicious representative models, respectively.

o The performance of a representative model declines with
an increase in the ratio of the malicious updates’ contribu-
tion to that model. In other words, more malicious contri-
bution implies worse performance in terms of £ scores.
Figure presents evidence of this behavior by showing
the £ scores of 100 bijective representative model updates.
The scores reflect a single iteration of FL with CIFAR-
10 dataset and Dirichlet distribution where the adversary
is launching TLFA.

o All the representative models that have a malicious
majority contribution rank at the bottom 50% of all the rep-
resentative models in terms of performance. The decreasing
L scores with increasing malicious contributions in Figure
8(a)| complies with the above.

6.4.2. How does FLShield differentiate malicious val-
idation reports from benign ones?. We perform an ab-
lation study on the validation components of FLShield
and conduct a comprehensive inspection to evaluate the
efficacy of our filtering mechanisms. Our analysis helps us
identify some key reasons behind FLShield’s ability to
filter malicious validation results.

o The use of L as validation metric and the incorporation
of sibling contribution into the representative models make
the benign validation reports congruent and difficult to

manipulate. Figure casts the validation reports into two
dimensions using PCA and portrays the congruency among
the benign validators and the anomalous nature of the tai-
lored validation reports created by the malicious validators.
FLShield is able to achieve 100% TPR when sibling
contribution rate 7 is set to 75%, i.e., base model contributes
the rest 25%. We use this as the default ratio for our exper-
iments. The effects of varying sibling contributions in terms
of RCL, TPR, and TNR are demonstrated in Figure [3(c)
The results also show that when local models are validated
directly, i.e., when 7 is set to 0%, FLShield’s defense
fails. Sibling contributions’ success can be attributed to the
improved generalization ability brought to the representative
models as described in section [3.1]

o Stealthy poisoning can be identified using L metric
whereas accuracy-based metric fails. To demonstrate the
significance of £ metric, we design another metric accuracy
difference per class (ADPC) and define it as the difference
between accuracy values output by the global model and
the representative model for each class. Next, we run ex-
periments with an altered version of FLShield' that uses
this new metric instead of £. Figure and presents
the results from an experiment with DBA. The results show
that malicious and benign representative models are indis-
tinguishable when measured with ADPC. The experiment
results shown in Table [3[b) further ascertains that ADPC is
not a suitable metric to use in FLShield. The experiment
has been performed on CIFAR-10 dataset with FL.Shield'
used in aggregation and the adversary launches TLFA.

e Due to the robustness of the L metric, the choice of
outlier detector algorithm to filter malicious validation re-
ports does not matter significantly. We experimented with
Elliptic envelope, Isolation forest, Local outlier factor and
found no difference in terms of performance among them
(section . Note that, not using an outlier detector in the
presence of malicious validators leads to failure which sig-
nifies the importance of outlier detection. The experimental
results are presented in Table [3]a) for CIFAR-10 dataset
where FLShieldl defends against TLFA with malicious
validators performing FA-Adv.

6.4.3. How does FLShield defend against backdoor at-
tacks?. We perform an ablation study on various parameters
of the backdoor attacks to understand the reasons behind

3 Benign 22 Mal £ Benign 22 Malicious 3 Benign 22 Malicious
% Malicious = Benign 1001 —— RCL =
% TPR
o 80 g g g
L % x % [T = = =
4 * ~ "5 o= 70) 2l Bl ______
x K g nE i 5 i
S -4 e N - h = 2k 8
LR Ve ro : Ly .
6 Malicious = g o B H 2| g € =
Benign] 40 £
30 T T = f T
0.4 0.6 0.8 -04 -02 0C -2 -1 0 -5.0 -2.5 0.0
Adversarial Contribution PCA axis 1 0 1020 30 40 50 6070 ADPC LIpC LIPC
Sibling Contribution
(@) (b) © (d © ®

Figure 8: (a) LIPC vs. adversarial contribution, (b) visualization of validation reports after PCA projection, (c) performance
with varying sibling contributions, and (d-f) representative models ranked by metrics: (left) ADPC, (middle) LIPC under

DBA, (right) LIPC under TLFA.

Dirichlet 1D
Expert Sampling

Figure 9: Fidelity score comparison of multiple clustering
algorithms with: (left) dynamic clustering, (right) fixed num-
ber of clusters (2). Dataset: F-MNIST, attack: TLFA.

FLShield’s success against backdoor attacks.

o LIPC score of malicious representative models is neg-
atively correlated with poisoned sample per batch (PSPB)
of the backdoor attack. We conducted experiments under
DBA with varying numbers of PSPB and reported the LIPC
score of the malicious representative models in Figure [f] It
is evident that the more backdoored samples are introduced
to the training the more the LIPC score decreases from
the median value. Backdoor poisoning involves both clean
samples and backdoored samples to reduce the loss on the
main task and backdoored task respectively. The increase of
backdoored samples means the decrease of clean samples
which in turn results in diminished loss reduction on the
main task and that is reflected in the poor LIPC score of
the malicious representative models.

o The required PSPB to bypass FLShield is ineffective
at seiting up backdoors in the global model. In Figure [6] it
is shown that the malicious representative models get ranked
in the top 50% with an extremely low poisoned sample per
batch. However, if the PSPB is below 8, the poisoning is
ineffective even in FedAvg i.e. the final global model does
not perform well on the backdoor task (BA=3.31% at PSPB
4). Thus, it is clear that any effective backdoor poisoning
requires a certain level of PSPB which in turn results in a
discriminative LIPC score of the malicious representative
models enabling FLShield to defend against backdoor
attacks.

6.4.4. Explanation of Design Choices.

o Would FLShield work if the mean of L is computed
instead of minimum before ranking the representative mod-
els? Experimental results presented in Table [3|c) show that
using mean instead of minimum leads to an overall loss of
RCL, TPR, and TNR. The experiment is run on CIFAR-10
with FLShield' as defense and the adversary is launching
TLFA.

e Does the choice of clustering algorithm matter in
FLShield*? We conduct experiments employing a vari-
ety of clustering algorithms, including Agglomerative, K-
means, Spectral, and HDBSCAN. To compare their effec-
tiveness, we design a metric named fidelity score which is
defined in the following way— for each cluster, we first de-
termine whether it has a benign/malicious majority (ground-
truth) and then the member count ratio of the majority is
computed by dividing the count by the total number of
participants in the cluster. Hence, fidelity score is a suitable
metric to determine the overall purity of the clusters. The
results are presented in Figure [J] It shows that K-Means
have the best overall fidelity score among all which we use
in FLShield as the default clustering algorithm.

o Does the choice of imputation technique matter in filling
out the missing values in the N matrices? We undertake
an evaluation of different imputation techniques, namely
KNNImpute, SimilarityWeightedAveraging, Iterativelmpute,
Mean, and Median as implemented in [41]], by selectively
removing a random fraction of the validation results and
presenting the findings in Figure [I0] Most algorithms per-
form well even mean and median where the missing value
is simply replaced with mean and median respectively.
This again goes to show the congruency of the validation
reports. Iterative imputation slightly outperforms the others
overall and as such, we use it as the default imputation in
FLShield.

o Why doesn’t FLShield aggregate representative mod-
els to obtain the global model? The representative models
selected after outlier removal still include some malicious
contribution (see Figure and thus may still leave
some poisoning footprints in the global model. Experimental
results reported in Table @] 2) show that with the presence
of malicious contribution of only 8.6%, aggregating the

of Validators BA TPR TNR

Metric % of Malicious
RCL TPR TNR used RCL Representatives Accepted
x
clau : : : LIPC 88.66 0
@) (b)

RCL TPR TNR
10 3.61 97.50 81.67
Mean 73.00 80.60 73.73 15 3.46 100.00 88.89
Minimum 83.60 100.00 86.67 20 2.64 100.00 83.33
25 1.89 100.00 86.67

TABLE 3: (a) Result Comparison between two scenarios: (1) no outlier detector (2) default version of FLShield.(b)
Performance comparison between two validation metrics: LIPC vs Accuracy-difference-per-class.(c) Performance comparison
between mean and minimum (default) as the projection step in Algorithm [16| Line 4. (d) BA, TPR, and TPR vs. number of

validators.

=3 KN 0.12
Iterative

0.20 EY Mean 0.10
£ Median

°
s
IO

0.00

issssnannnsannn
o g

0 40
Missing Validation Result Percentage

20 30
Missing Validation Result Percentage

(@ (b)

Recall (RCL)
9
3

FedaVG

50{ 3 Fedoracte

£ FLShield" g 2
FLShield" N

10 15 20 25 30 3 40 45
Percentage of malicious participants

30
Missing Validation Result Percentage

© (d)

Figure 10: (a-c) Comparison of imputation techniques’ performance with varying missing validation results in different data
distribution: (from left to right) IID, one-class-expert, Dirichlet. (d) Effect of varying malicious client participation

N ECBA SBA
Defense —_—
Aggregation Malicious TPR TNR BA BA BA
of contribution % FedAvg 85.71 100
Representative 8.60 99 86 51 FedOracle 8.67 0
Individual N/A 100 86.67 0.43 FLShield™ 9.18 0
FLshield! 7.65 0
(@))

TABLE 4: (a) Aggregation of representative models vs.
individual local models. Dataset: CIFAR-10, Attack: DBA.
(b) Performance evaluation of ECBA and SBA on CIFAR-
10

representative models instead of the individual local models
may increase the backdoor accuracy to 51%.

o Does the number of validators selected in each iteration
matter? Table 3| d) presents comparison among experiments
run with different number of validators ranging from 10 to
25 with a step size of 5. With only 10 validators, there
is a slight drop in performance and in other cases, the
TPR is 100% which again demonstrates the robustness of
FLShield. The experiment is run on the CIFAR-10 dataset
against DBA.

6.4.5. Varying Percentage of Malicious Clients. We vary
the percentage of malicious clients in the TLFA setting
and measure the performance of FLShield. We use F-
MNIST dataset for this experiment and vary the percentage
of malicious clients from 10% to 45% in steps of 5%.
Figure shows how the percentage of malicious clients
influences FL.Shield* and FLShieldf. As shown in the
figure, unlike FedAvg, there is no noticeable drop in the
performance.

6.5. Gradient Inversion Attack

Since sharing gradients in FL may leak private informa-
tion [16], [22], [56], [60], we evaluate FLShield against a
state-of-the-art gradient inversion attack [16] leveraging the
attack implemented in [22f]. Note that, in FLShield, only
the representative gradients are sent to the validators. How-
ever, the malicious validators may still try to conduct gradi-
ent inversion attacks on the representative models to extract
private local data. To eliminate this concern, we evaluate the
robustness of the representative gradients on the CIFAR-10
dataset with ResNet-18 architecture. As mentioned in [16],
there are two adversary knowledge assumptions: (1) private
labels and (2) batch normalization statistics. The detailed
attack setting is provided in Appendix

Figure [[1] visualizes the images reconstructed from
local gradients (first row), cluster representative models
in FLShield* (second row), and bijective representa-
tive models in FLShield!. For FLShield* we launch
the attack under different assumption. With respect to
FLShield! we launch the attack under the strongest at-
tacker assumption (the attacker has knowledge of private
labels and batch normalization statistics) and variate the
number of clients. The results show that the reconstructed
images with representative gradients in FLShield are un-
recognizable even in the strongest attack setup. We use the
learned perceptual image patch similarity (LPIPS) score [58]]
to measure the performance of the gradient inversion attack
in Table [9] in Appendix.

ke g -
(a) Original images ~ (P) Reconstruction with (c) Reconstruction with (d)
no previous knowledge private labels

Reconstruction with
private labels and
batch normalization statistics

(a) Original images ~ (P) Reconstruction with (c) Reconstruction with (d) Reconstruction with
no previous knowledge private labels private labels and
batch normalization statistics

(a) 25 clients

(b) 50 clients

Figure 11: Comparison of images reconstructed from
local gradients (first row), representative gradients in
FLShield* (second row), and FLShield! (third row).

7. Related Work

Data Poisoning Attack against FL. Data poisoning is
an adversarial attack that manipulating training datasets by
injecting poisoned data to control the behavior of the trained
model. This attack have been demonstrated to be successful
on many machine learning systems [4]], [L1]], [12], [23],, [25]],
(291, [30], [51]). FL is also vulnerable to data poisoning. In
FL, this attack involve maliciously manipulating or poison-
ing the data contributed by specific clients in order to com-
promise the overall model’s performance [2], [3], [45], [48].,
[53]]. Depending on the attacker’s goal, this kind of attacks
can be categorized into untargeted attacks and targeted
attacks [2], [3]], [53]]. Untargeted attacks aim to make the
learned model unusable by degrading the performance of
the model, while targeted attacks only influence the model’s
behavior towards misclassifying certain target inputs.

Robust Aggregation Frameworks. A number of robust FL
aggregation frameworks have been proposed [1], [2], [3],
(101, [150, [24]. [32]. [33]. [38]. [43]. [44], to miti-
gate the threat of Byzantine participants. There are mainly
two categories of methods: (1) identifying and filtering out
malicious clients, and (2) adding noise to local updates.
Identifying and filtering out malicious clients is a com-
monly employed method. Some methods [5], [12], [32],
[43], mitigate malicious clients by removing local up-
dates which are far away from the majority. However, these
methods are highly sensitive to outliers in the client updates
and may exclude benign clients with significantly different
updates. FLTrust [10], which makes the assumption that the
defender has access to a server-side clean dataset, leverages

cosine similarity to identify malicious intent in client up-
dates deviating from a benign server model. However, the
challenge lies in assembling such a clean dataset.

Certain methods allow clients to act as validators to
detect malicious updates. Zhao et al. propose assessing
the integrity of local models using client’s local data, mark-
ing poorly performing models as malicious, but this method
is unable to detect targeted attacks that don’t diminish the
overall performance of the model. BaFFLe [1] lets selected
clients to validate the aggregated model but also shares the
same problem.

Recent works have introduced many novel statistical
techniques to identify abnormal updates. FLDetector
let the server predict local model updates based on the
historical updates and then identify the malicious updates by
comparing the predicted updates and the received updates.
However, it is not necessary for the malicious clients to
keep changing their local data distribution. Deepsight [38]]
remove the local updates that trained with datasets where
a single class dominates the majority of the labels by
estimating distribution of clients’ local data. Nevertheless,
it’s easy for an attacker to construct a training set to make
the malicious clients evade the detection and the benign
clients who only have homogeneous data will suffer from
bad model performance. Adding noise to local updates have
been explored as a potential option [2], [33], but the
noise injection causes utility loss to the trained model.

Gradient Inversion Attacks. Gradient Inversion At-
tack(GIA) [16], [50], aims to reconstruct training sam-
ples from gradient for image classification tasks. Adversaries
leverage various reconstruction techniques, such as opti-
mization algorithms or machine learning models, to analyze
the gradients and infer the underlying training samples. In
FLShield representative gradients are sent to clients for val-
idation. Malicious clients may try to reconstruct the training
samples from the these gradients.

8. Limitations

One limitation of FLShield is that it has been de-
signed to work in FL systems with a classification task. The
extension of FLShield’s validation mechanism to other
tasks, e.g., text generation and recommendation systems
seem challenging. It remains a future work to investigate
how the insights gained from FLShield could be used
in those tasks. In FLShield, all model updates selected
post-validation receive equal weight, despite their respective
scores. We did not integrate an adaptive weighting scheme
that might assign a higher weight to models achieving better
validation scores. Although this has not resulted perfor-
mance drop in terms of any metric, investigating alternative
schemes may be advantageous for an FL system that uses
an incentive mechanism to stimulate the provision of high-
quality data. Nevertheless, we leave this exploration as a
future work.

9. Conclusion

We introduce a novel validation-based defense frame-
work for Federated Learning (FL) FLShield which is
adept at resolving the validation dilemmas without creating
any system vulnerabilities and exhibits robustness against
three types of poisoning attacks. Further, FLShield can
efficiently defend against two defense-aware attacks, specif-
ically, FA-Adp and FA-Adv. We also perform gradient in-
version attack experiments, demonstrating that malicious
validators are incapable of reconstructing training data from
the shared representative models. This design aligns well
with existing privacy precautions against inference attacks.
We demonstrate that employing a validation process is the
sole reliable defense strategy against poisoning attacks in
FL. Despite our framework being tailored for training clas-
sifiers, we anticipate its potential extension to other machine
learning tasks, an area we earmark for future research.

References

(1]

[2]

[3]

(4]

[3]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

ANDREINA, S., MARSON, G. A., MOLLERING, H., AND KARAME,
G. BaFFLe: Backdoor detection via feedback-based federated learn-
ing. In Proceedings - International Conference on Distributed Com-
puting Systems (2021), vol. 2021-July.

BAGDASARYAN, E., VEIT, A., HuA, Y., ESTRIN, D., AND
SHMATIKOV, V. 20-AISTATS-C-18-17-How To Backdoor Federated
Learning. AISTATS (2018).

BHAGOII, A. N., CHAKRABORTY, S., MITTAL, P., AND CALO, S.
Analyzing federated learning through an adversarial lens. In 36th
International Conference on Machine Learning, ICML 2019 (2019),
vol. 2019-June.

B1GGIO, B., NELSON, B., AND LASKOV, P. Poisoning attacks against
support vector machines, 2012.

BLANCHARD, P., EL MHAMDI, E. M., GUERRAOUI, R., AND
STAINER, J. Machine learning with adversaries: Byzantine tolerant
gradient descent. In Advances in Neural Information Processing
Systems (2017), vol. 2017-December.

BoNAWITZ, K., EICHNER, H., GRIESKAMP, W., HUBA, D., INGER-
MAN, A., IVANOV, V., KIDDON, C., KONECNY, J., MAZZOCCHL, S.,
MCMAHAN, B., ET AL. Towards federated learning at scale: System
design. Proceedings of Machine Learning and Systems 1 (2019),
374-388.

BoNnAwiTZ, K., IVANOV, V., KREUTER, B., MARCEDONE, A.,
MCMAHAN, H. B., PATEL, S., RAMAGE, D., SEGAL, A., AND
SETH, K. Practical secure aggregation for privacy-preserving ma-
chine learning. In proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017), pp. 1175-1191.

BRENDAN MCMAHAN, H., MOORE, E., RAMAGE, D., HAMPSON,
S., AND AGUERA Y ARCAS, B. Communication-Efficient Learning
of Deep Networks from Decentralized Data. Proceedings of the
20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017 (2 2016).

Brisimi, T. S., CHEN, R., MELA, T., OLSHEVSKY, A., PASCHA-
LIDIS, I. C., AND SHI, W. Federated learning of predictive models
from federated electronic health records. International journal of
medical informatics 112 (2018), 59-67.

CAo, X., FANG, M., L1U, J., AND GONG, N. Z. Fltrust: Byzantine-
robust federated learning via trust bootstrapping. In 28th Annual
Network and Distributed System Security Symposium, NDSS 2021,
virtually, February 21-25, 2021 (2021), The Internet Society.

CHEN, X., Liu, C., L1, B., Lu, K., AND SONG, D. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning.
arXiv e-prints (Dec. 2017), arXiv:1712.05526.

CHEN, Y., Su, L., AND XU, J. Distributed Statistical Machine
Learning in Adversarial Settings. ACM SIGMETRICS Performance
Evaluation Review 46, 1 (2019).

COHEN, G., AFSHAR, S., TAPSON, J., AND VAN SCHAIK, A. Em-
nist: Extending mnist to handwritten letters. In 2017 international
Jjoint conference on neural networks (IJCNN) (2017), IEEE, pp. 2921-
2926.

FANG, M., Cao0, X., JIA, J., AND GONG, N. Z. Local Model Poi-
soning Attacks to Byzantine-Robust Federated Learning. Proceedings
of the 29th USENIX Security Symposium (11 2019), 1623-1640.

FUNG, C., YOON, C. J., AND BESCHASTNIKH, I. The limitations
of federated learning in sybil settings. In RAID 2020 Proceedings
- 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (2020).

GEIPING, J., BAUERMEISTER, H., DROGE, H., AND MOELLER, M.
Inverting gradients - how easy is it to break privacy in federated
learning? In Advances in Neural Information Processing Systems
(2020), H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33, Curran Associates, Inc., pp. 16937-16947.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

GEORGE, N. All lending club loan data, 2019. URL

https:/fwww.kaggle.com/datasets/zaurbegiev/my-dataset.

Hao, M., L1, H., Luo, X., XU, G., YANG, H., AND LIU, S. Efficient
and privacy-enhanced federated learning for industrial artificial intel-
ligence. IEEE Transactions on Industrial Informatics 16, 10 (2019),
6532-6542.

HARDY, S., HENECKA, W., IVEY-LAW, H., NOCK, R., PATRINI, G.,
SMITH, G., AND THORNE, B. Private federated learning on vertically
partitioned data via entity resolution and additively homomorphic
encryption. arXiv preprint arXiv:1711.10677 (2017).

HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), pp. 770-778.

HITAJ, B., ATENIESE, G., AND PEREZ-CRUZ, F. Deep models under
the gan: information leakage from collaborative deep learning. In
Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security (2017), pp. 603-618.

HUANG, Y., GUPTA, S., SONG, Z., L1, K., AND ARORA, S. Eval-
uating gradient inversion attacks and defenses in federated learning.
In NeurIPS (2021).

JAGIELSKI, M., OPREA, A., BIGGIO, B., LIU, C., NITA-ROTARU,
C., AND L1, B. Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning. In 2018 IEEE Symposium
on Security and Privacy (SP) (2018), pp. 19-35.

JEBREEL, N., AND DOMINGO-FERRER, J. Fl-defender: Combating
targeted attacks in federated learning, 2022.

KoH, P. W., AND LIANG, P. Understanding black-box predictions
via influence functions, 2017.

KONECNY, J., MCMAHAN, H. B., Yu, F. X., RICHTARIK, P,
SURESH, A. T., AND BACON, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016).

KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of
features from tiny images.

L1, X., Qu, Z., ZHAO, S., TANG, B., LU, Z., AND L1U, Y. Lomar:
A local defense against poisoning attack on federated learning. /IEEE
Transactions on Dependable and Secure Computing (2021).

Liu, Y., MA, S., AAFER, Y., LEE, W.-C., ZHAI, J., WANG, W., AND
ZHANG, X. Trojaning attack on neural networks. In NDSS (2018),
The Internet Society.

MEL, S., AND ZHU, X. Using machine teaching to identify op-
timal training-set attacks on machine learners. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015),
AAATI'15, AAAI Press, p. 2871-2877.

MINKA, T. Estimating a dirichlet distribution, 2000.

MuNo0z-GONZALEZ, L., Co, K. T., AND LupPu, E. C. Byzantine-
robust federated machine learning through adaptive model averaging,
2019.

NGUYEN, T. D., RIEGER, P., CHEN, H., YALAME, H., MOLLERING,
H., FEREIDOONI, H., MARCHAL, S., MIETTINEN, M., MIRHO-
SEINI, A., ZEITOUNI, S., KOUSHANFAR, F., SADEGHI, A.-R., AND
SCHNEIDER, T. Flame: Taming backdoors in federated learning,
2021.

PILLUTLA, K., KAKADE, S. M., AND HARCHAOUI, Z. Robust
Aggregation for Federated Learning.

POKHREL, S. R., AND CHOI, J. A decentralized federated learning
approach for connected autonomous vehicles. In 2020 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW)
(2020), IEEE, pp. 1-6.

POKHREL, S. R., AND CHOI, J. Federated learning with blockchain
for autonomous vehicles: Analysis and design challenges. IEEE
Transactions on Communications 68, 8 (2020), 4734-4746.

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(51]

[52]

[53]

[54]

QU, Y., POKHREL, S. R., GARG, S., GAO, L., AND XIANG, Y. A
blockchained federated learning framework for cognitive computing
in industry 4.0 networks. IEEE Transactions on Industrial Informatics
17, 4 (2020), 2964-2973.

RIEGER, P., NGUYEN, T. D., MIETTINEN, M., AND SADEGHI, A.-
R. DeepSight: Mitigating backdoor attacks in federated learning
through deep model inspection. In Proceedings 2022 Network and
Distributed System Security Symposium (2022), Internet Society.

RIEKE, N., HANCOX, J., L1, W., MILLETARI, F., ROTH, H. R.,
ALBARQOUNI, S., BAKAS, S., GALTIER, M. N., LANDMAN, B. A.,
MAIER-HEIN, K., ET AL. The future of digital health with federated
learning. NPJ digital medicine 3, 1 (2020), 1-7.

ROUSSEEUW, P. J. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Journal of computational and
applied mathematics 20 (1987), 53-65.

RUBINSTEYN, A., AND FELDMAN, S. fancyimpute: An imputation
library for python.

SHEJWALKAR, V., AND HOUMANSADR, A. Manipulating the byzan-
tine: Optimizing model poisoning attacks and defenses for federated
learning. In NDSS (2021).

SHEN, S., TOPLE, S., AND SAXENA, P. Auror: defending against
poisoning attacks in collaborative deep learning systems. Proceedings
of the 32nd Annual Conference on Computer Security Applications
(2016).

SUN, Z., KAIROUZ, P., SURESH, A. T., AND MCMAHAN, H. B. Can
you really backdoor federated learning?, 2019.

TOLPEGIN, V., TRUEX, S., GURSOY, M. E., AND LIu, L. Data
poisoning attacks against federated learning systems. In European
Symposium on Research in Computer Security (2020), Springer,
pp. 480-501.

TRUEX, S., BARACALDO, N., ANWAR, A., STEINKE, T., LUDWIG,
H., ZHANG, R., AND ZHOU, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th ACM
workshop on artificial intelligence and security (2019), pp. 1-11.

TRUONG, N., SUN, K., WANG, S., GUITTON, F., AND GUO, Y.
Privacy preservation in federated learning: An insightful survey from
the gdpr perspective. Computers & Security 110 (2021), 102402.

WANG, H., SREENIVASAN, K., RAJPUT, S., VISHWAKARMA, H.,
AGARWAL, S., SOHN, J.-Y., LEE, K., AND PAPAILIOPOULOS, D.
Attack of the tails: Yes, you really can backdoor federated learn-
ing. Advances in Neural Information Processing Systems 33 (2020),
16070-16084.

WEI, K., LI, J., DING, M., MA, C., YANG, H. H., FAROKHI, F.,
JIN, S., QUEK, T. Q., AND POOR, H. V. Federated learning with
differential privacy: Algorithms and performance analysis. [EEE
Transactions on Information Forensics and Security 15 (2020), 3454—
3469.

WEI, W., Liu, L., LOPER, M., CHOW, K.-H., GURSOY, M. E.,
TRUEX, S., AND WU, Y. A framework for evaluating gradient
leakage attacks in federated learning, 2020.

X1A0, H., BIGGIO, B., BROWN, G., FUMERA, G., ECKERT, C., AND
RoLI, F. Is feature selection secure against training data poisoning?

X1A0, H., RASUL, K., AND VOLLGRAF, R. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747 (2017).

XIE, C., HUANG, K., PIN-YU, C., AND L1, B. Dba : Distributed
Backdoor Attacks. 8th International Conference on Learning Repre-
sentations, {ICLR} 2020 (2020).

XIE, C., KOYEJO, O., AND GUPTA, I. Fall of empires: Breaking
byzantine-tolerant sgd by inner product manipulation. In Proceedings
of The 35th Uncertainty in Artificial Intelligence Conference (22-25
Jul 2020), R. P. Adams and V. Gogate, Eds., vol. 115 of Proceedings
of Machine Learning Research, PMLR, pp. 261-270.

[55] YIN, D., CHEN, Y., RAMCHANDRAN, K., AND BARTLETT, P.
Byzantine-robust distributed learning: Towards optimal statistical
rates. In 35th International Conference on Machine Learning, ICML
2018 (2018), vol. 13.

YIN, H., MALLYA, A., VAHDAT, A., ALVAREZ, J. M., KauTz, J.,
AND MOLCHANOV, P. See through gradients: Image batch recovery
via gradinversion, 2021.

ZHANG, C., L1, S., XI1A, J., WANG, W., YAN, F., AND LIU, Y.
{BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo}
federated learning. In 2020 USENIX annual technical conference
(USENIX ATC 20) (2020), pp. 493-506.

ZHANG, R., IsOLA, P., EFROS, A. A., SHECHTMAN, E., AND
WANG, O. The unreasonable effectiveness of deep features as a
perceptual metric, 2018.

[56]

[57]

[58]

[59] ZHANG, Z., CA0, X., JIA, J., AND GONG, N. Z. Fldetector: Defend-
ing federated learning against model poisoning attacks via detecting

malicious clients, 2022.

[60] ZHAO, B., MOPURI, K. R., AND BILEN, H.

leakage from gradients, 2020.

idlg: Improved deep

[61] ZHAO, L., HU, S., WANG, Q., JIANG, J., SHEN, C., Luo, X., AND

Hu, P. Shielding collaborative learning: Mitigating poisoning attacks
through client-side detection, 2020.

Appendix

1. Details of Experiment Setup

All experiments have been conducted using the PyTorch
framework. The backdoor attack codes and all the existing
defenses’ codes except FLTrust [10], FLAME [33] and
AFA [32] were directly used from implementations by Xie
et al. [53]]. The TLFA and IPMA attacks, FLTrust, FLAME,
and AFA defenses have been re-implemented for compari-
son purposes.

1.1. Datasets. We evaluate the performance of our defense
on classification tasks trained on four datasets of whom
three are image datasets (F-MNIST [52]], E-MNIST [[13]],
CIFAR10 [27]) and the rest is a tabular dataset (LOAN [[17]])).

1.2. Attacks Considered for FLShield Evaluation. We
first describe the specific attack strategies for each and then
provide an overview of the attack parameters used in our
experiments.

Inner Product Manipulation Attack [54]. This attack
assumes the adversary has access to the benign updates of
the FL system. Specifically if the benign updates are w!, for
i € [e;n+1,n] at iteration ¢ then the malicious clients send
the following as the poisoned update:

> ®)

j€E[cen+1,n]

wt - _ €att
v [[een + 1, n]]|

We set the attack strength €,4 to 1.0. To measure the
performance of the attack, we use the MA of the target class
as the metric.

Targeted Label Flipping Attack [45]. This attack aims
to misclassify a specific class of samples (source class) to
another class (farget class). The malicious clients flip the

TABLE 5: Attack taxonomy

Untargeted Poisoning Attacks

Inner Product Manipulation Attack (IPMA) [54]

Poisoning Attacks Targeted Poisoning Attacks

Targeted Label Flipping Attack (TLFA) [45]

Backdoor Attacks

Distributed Backdoor Attack (DBA) [53]
Edge-case Backdoor Attack (ECBA) [48] |
Semantic Backdoor Attack (SBA) [2:;

Privacy Inference Attack

Gradient Inversion Attack (GIA) [16]

FLShield-aware Attacks

FLShield-aware adaptive attack (FA-Adp)

FLShield-aware advanced attack (FA-Adv)

TABLE 6: FL system parameters

Parameter E-MNIST [F-MNIST [CIFAR-10 LOAN
of Clients 100 51
of Clients per Round 25 10 20
of Rounds 150 400 300
of Samples per Client 600 500 Variable
of Classes 10 9
batch size 64
learning rate 0.1 [0.001
TABLE 7: Attack Parameters
Parameters* F-MNIST [E-MNIST [CIFAR-10 LOAN
No. of Malicious Clients 40 20
PSPB 20 10
Attack iterations [36, 150] [201, 300]

* All parameters apply to TLFA, DBA, and IPMA except PSPB for IPMA

labels of the samples from the source class to the target class
in their local dataset and train the malicious local model.
The (source, target) class pairs for the datasets F-MNIST,
E-MNIST, CIFAR-10, and LOAN are (coat, shirt), (digit
5, digit 3), (automobile, truck), and (current, charged off)
respectively.

Distributed Backdoor Attack [53]. In this attack, the
adversary split the trigger pattern into multiple parts, and
each client injects one of the partial triggers into a fraction of
their training samples. For our experiments, we use the same
trigger pattern as in [53]], and we split the trigger pattern
into 4 parts. The target class for the datasets F-MNIST, E-
MNIST, CIFAR-10, and LOAN are pullover, digit 2, bird,
and ’Does not meet the credit policy. Status: Charged Off’
respectively.

Edge-case Backdoor Attack [48]. Edge-case backdoors are
generated by altering label data points that, while usually
correctly classified by the model, are under-represented, or
unlikely to be part of the regular training or test data. We
followed the experimental setup of [48|]. The adversary uses

TABLE 8: Effectiveness of FLShield in comparison with
state-of-the-art defenses against Inner Product Manipulation
Attack

Defense F-MNIST CIFAR-10

MA MA
FedOracle 85.41 79.08
FedAvg 31.56 15.28
RFA 87.15 80.41
AFA 81.23 65.77
FLAME 86.59 79.62
FLTrust 86.03 80.07
FLShield™ 85.33 80.76
FLShield! 85.13 80.76

images of the planes class from Southwest Airlines as edge-
case samples and labels them as truck.

Semantic Backdoor Attack [2]]. In this attack, the adversary
aims to poison the model with the goal for it to produce
an attacker-chosen output on visual semantic features (e.g.
green cars). We followed the experiment setup of [2]] and
conduct the image classification task on CIFAR dataset. We
selected the green car images as backdoor and labeled them
as bird.

Gradient Inversion Attack [16]. An attacker aims to find
the reconstructed samples x,. that minimize the loss function
Lgraq between the gradient from client k, VGj(xy), and
the reconstructed gradient VG(x,.), according to the op-
timization problem argmin(Lg,qaa(VG(2r), VG(zk))) +

Rouz(x) where Ry, represents auxiliary knowledge used
for regularization. We implement the attack proposed in [[16]
with [22]. The attack necessitates a smaller batch size for
success, thus we utilize a batch of 16. We optimize the attack
for 5,000 iterations using Adam, with an initial learning rate
of 0.1.

1.3. FL Data Distribution. For image datasets, We con-
sider an FL system containing 100 clients. For I1ID data
distribution, we assign each client an equal number of
samples from the training set. The distribution strategies for
the two non-IID scenarios are described in section
For the LOAN dataset, we split it into 51 segments each
corresponding to one of the states in the US. The addr_state
attribute denotes the state where the loan applicant is from.
This splitting mechanism provides a natural non-IID distri-
bution.

1.4. Models. For CIFAR-10 and LOAN dataset, we use a
lightweight Resnet-18 model [20] and a Soft Decision Tree
following the implementation in [53]]. For F-MNIST and E-
MNIST, we train a standard convolutional neural network
(CNN) as used in [53]].

1.5. Experiment Parameters. The FL system parameters
are summarized in Table [6] The attack parameters are given
in Table [/| For FLShield®*, the minimum and maximum
number of clusters k; and ko are set to 2 and [n/2]
respectively. For validation of FLShield, the minimum
and maximum number of samples per class n; and ny are
set to 10 and 30 respectively. For each client, we hold
out 30% of its data for the validation task. However, the
resulting reduction of the training data does not impact the
performance at all as demonstrated in section

Figure 12: Clustering-based Representative Generation Al-
gorithm

Input: wy,ws2,...,w, > local model updates,
G b the global model
Output: m > the mapping of each client to a cluster,
E1,...,Em D the representative models of the m clusters
1: pky and k2 are the lower and upper bounds of the number of clusters respectively

n

tai,...,am < DynamicClustering(wi:.n, k1,k2) > a; is a set con-
taining indices of updates in cluster ¢
: for each 4 in [1, m] do

E; +— G¢ + Meanw;
j€a; -

mj <1 Vj € a;

: end for

creturn m, &1, ..., En,

Figure 13: Bijective Representative Generation Algorithm

Input: wi,ws,...,w, > local model updates,
G > the global model
Output: £1,E&2,...,&, > the bijective representative models

1: for each i in [1,n] do
2: &€ < BijectiveRepresentativeGen(Gy,w, T)

3: >BijectiveRepresentativeGen(.) uses equalionto calculate £
4: end for
5: return £1,E2,...,En

2. Additional Experiment Results

2.1. Performance Comparison between the use of dif-
ferent outlier detection algorithm in FLShield. We
performed an experiment to compare the performance of
three outlier detection algorithms - Local Outlier Factor,
Isolation Forest, and Elliptic Envelope - in FLShield in all
3 different distribution scenarios. In all scenarios, the TPR is
reported to be 100% and TNR is 86.67%. This demonstrates
that the choice of outlier detection algorithm does not impact
the TPR and TNR values.

3. FLShield-aware attack Implementation

3.1. FLShield-Aware Adaptive Attack (FA-Adp). For-
mally, the attacker solves the following optimization prob-
lem:

arggnax (f1(1) = A1 x fa(l) — X2 x f3(1))

Nmal = {MI .7 € Vm}
2
11 Womat) = 3 | (Mgan (il 1))
€8y, | ¢ \IEVm ©)
2
) = 3 | (atgam il D)
fS(Nmal) = iezv:m |~/\/1 -]\7/[66\9‘;;”(]\/])‘

In the above equation: &,, is the set of malicious represen-
tative models, & is the set of benign representative models,
Vo 1s the set of malicious validators, Vj, is the set of benign
validators, Ay and A, are the regularization parameters for
the second and the third term respectively. f1, f2, f3 are the
three objectives of the optimization problem. f; (fs) refers
to the sum of the £ scores of the malicious (benign) rep-
resentative models. Increasing f; and reducing fo achieves

Figure 14: Validation Algorithm

Input: {£1,&2,...,&,} > representative models,
G > global model,
S b set of clients,
c¢ > number of classes

Output: My, Ma, ..., M,, > M report of each representative model
1: for i in [1, m] do

2 randomly sample k validators v1,v2,...,v, € S

3 for v in vy, v2,...,v; do

4 send both GG and e to current validator

S: calculate £(€, G, v) using Algorithm [13]

6: send L(&;, G, v) back to the server

7 end for

8: end for

9: calculate M (E) for each representative model £ using equation (6)

10: calculate N'(v) for each validator v using equation (6)

11: use I'mputation to fill the missing values in each N and M

12: use Outlier Detection on all N to filter out-of-distribution values
13: use remaining N to update each M

14: retarn (Mq, Mo, ..., M,,)

Figure 15: LIPC Calculation Algorithm

Input: e > the representative model to be validated,
G > the global model at previous iteration,
v > the validator

Output: £ > vector of the representative model

1: D1,Ds2,...,D. + SplitByClass(D)

2: for each i in [1, c] do

3: if |D;| > n1 then

> D is validation dataset of v

4: D, «+ RandomSample(D;, min(nz, D;)) >ny and no are
the lower and upper bounds of the number of samples of each class
respectively

5: L; + Mean (Loss(G(z),y)) — Mean (Loss(e(x),y))

(z,y)eD} (z,y)eD}

6: else

7: L; < nan >nan (not-a-number) value assigned to the class with less
than n1 samples

8: end if

9: end for

10: return £

the infiltration objective. f3 refers to the sum of the absolute
difference between the £ vector of each malicious validator
and the mean £ vector of the benign validators. Reducing
f3 achieves the stealth objective.

The optimization problem is solved using the gradient
descent algorithm, where the attack updates the N, ma-
trices by calculating the partial derivative according to the
equation [9] repeating this process for 1000 iterations. During
a grid search over the regularization parameters \; and Ao,
the attack simulates the steps of FLShield selecting the
hyperparameter combination that maximizes the change in
the £ score which is then used to craft the malicious A
matrices.

3.2. FLShield-aware Advanced Attack (FA-Adv). In
this strategy, the adversary calculates the A/ matrices that

Figure 16: Filtering Algorithm

Input: M > matrices of the representative models

Output: I > indices of the selected representative models

1: > calculate mean £ of all unfiltered validators for each M

2: M+ Mean (M]v,:]) YM

3: > extract minimum value from each M and find the top 50% representative

models based on the minimum
4: 1+ argsort(min(My, ..., My,))
5: return I;,1o,... ,HLn/QJ

Figure 17: FA-Adv Algorithm

Input: A of all the the benign validators

Vim: malicious validators, V}: benign validators, £,,: malicious validators, Ep:

benign validators,
Output: N for all malicious validators
1: scorey + m'én (Ex)Vz €€ UEp

c

min
z€EM U &y
,Tm argsort (|score, — scoreys|)

z€EM U &y

4: for each z in {z1,z2,...,%m} do

2: scoreys (scoreg)

3z, 2, ...

5: [< i M Exlv,:
c a'r‘g;rlnzn vevriaUan(v]))

6: if = is benign then
7 y < benign representative with the highest £ score that will be accepted
8: else if x is malicious then
9: y < malicious representative with the lowest £ score that will be filtered
10: end if
11: cl’ + argmin (Mean(gm [v,:]
cl vEVY
12: Lz, vm)[cl] + Zi€VyUVm E(yrt)‘[j/:izievb Ll il Yv €
Vim ’
13: end for

14: return (Updated N for all malicious validators)

clients | pa /*
.
o STPC
disntance

clienti sove | Representative

=
.

.

. e

central sever

Arthmstic share A of data

coticent |, Seoure —
Jessregation Representative Vaiidation
> Modsls > and Fittring ———> Global Model

ot
cisong e

Generator

Arthmatic share B of dsta

external server

Figure 18: Server-side Privacy Strategy

meet the infiltration objective with the minimal alteration.
We can safely assume that the £ score given to the malicious
representative models is higher than the £ score given to
the benign representative models. The malicious validators
in this attack bridge the gap between the L scores of the
malicious and benign representative models by giving a
lower score to the benign representative models in the class
malicious representative models are underperforming and
a higher score to the malicious representative models. We
formalize this strategy in the Algorithm presented in Figure

17

4. Server-side Privacy

Existing Defenses. Existing defenses employ one of
the three following defense strategies: differential privacy
(DP) [21], [46], [49], homomorphic encryption [19]], [57]
and secure multi-party computation(SMC) [6]], [7]l, (8], [46].
DP ensures privacy by adding noise to local updates but can
compromise the model’s performance if too much noise is
added. Homomorphic encryption allows the central server
to compute encrypted data, but its practical application is
limited by substantial computational overhead. SMC enables
global model updates with aggregated local updates but is
only effective when participants are honest. [47].

Our Defense. Inspired by FLAME [33], we utilize
secure two-party computation (STPC) to prevent the threat
from malicious central server. The overhead on the runtime

il) ¥ 2 i
(c) Reconstruction with (d) Reconstruction with
private labels private labels and
batch normalization statistics

(b) Reconstruction with
no previous knowledge

(a) Original images

Figure 19: Images reconstructed from representative gradi-
ents in FLShield* when batch size is 32

caused by STPC is acceptable given it can help maintain
privacy.

The idea is to prevent access to all local updates by a single
central server. In order to achieve this goal, a third-party
server called External Server is introduced. Figure[I8]shows
the pipeline of our method. In every training round, client
i € {1...n} first splits its update P; into 2 arithmetic shares
P and PP, where P; = P+ P}. Then, P® and P? are sent
to the central server and the external server separately. This
division of data allows both servers to possess partial access
to the local updates. Once the central server and the external
server receive the partial updates, they can employ STPC to
collaboratively generate a representative model and send the
generated model to the validators. Last, the servers can clip
the local updates based on the output of the validators and
update the global model together via STPC.

Private labels
None | Private labels +
BatchNorm Statistics
Attack on a single client’s gradient with batch size = 16
Avg. LPIPS | 0.48 0.48 0.46
Best LPIPS | 0.13 0.12 0.09
LPIPS std. 0.12 0.13 0.14
Attack on cluster representative gradient with batch size = 16
Avg. LPIPS | 0.61 0.61 0.61
Best LPIPS | 0.53 0.51 0.48
LPIPS std. 0.03 0.04 0.04
Attack on cluster representative gradient with batch size = 32
Avg. LPIPS | 0.60 0.59 0.60
Best LPIPS | 0.46 0.50 0.45
LPIPS std. 0.03 0.03 0.04

TABLE 9: We evaluate the gradient inversion attack against
cluster representative gradient in FLShield* on a subset of
50 CIFAR-10 images. ({: lower values suggest more privacy
leakage). The averaged and the best results for the metric
of reconstruction quality are provided as average-case and
worst-case privacy leakage.

	Introduction
	Preliminaries
	Federated Learning
	FL Poisoning Attacks
	Untargeted Poisoning Attack
	Targeted Poisoning Attack

	FL Privacy Attacks

	Threat Model
	Challenges and Key Insights of FLShield
	Challenges
	Challenge 1: Validation Subject Dilemma
	Challenge 2: Validation Integrity Dilemma

	Solving The Validation Subject Dilemma
	Bijective Representative Models
	Cluster Representative Models

	Solving the Validation Integrity Dilemma

	Design and Implementation of FLShield
	Representative Model Generator
	Bijective Representative Model Generator
	Cluster Representative Model Generator

	Model Validation
	L Calculation by Validator
	Filtering N anomalies by the Server

	Filtering
	Clipping
	Aggregation

	Evaluation
	Experiment Setup
	Performance of FLShield
	Comparison with Existing Defenses
	Performance in Non-IID Settings

	FLShield-aware Attacks by Malicious Validators
	Ablation Study
	Why does FLShield work?
	How does FLShield differentiate malicious validation reports from benign ones?
	How does FLShield defend against backdoor attacks?
	Explanation of Design Choices
	Varying Percentage of Malicious Clients

	Gradient Inversion Attack

	Related Work
	Limitations
	Conclusion
	References
	Appendix
	Details of Experiment Setup
	Datasets
	Attacks Considered for FLShield Evaluation
	FL Data Distribution
	Models
	Experiment Parameters

	Additional Experiment Results
	Performance Comparison between the use of different outlier detection algorithm in FLShield

	FLShield-aware attack Implementation
	FLShield-Aware Adaptive Attack (FA-Adp)
	FLShield-aware Advanced Attack (FA-Adv)

	Server-side Privacy

