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Abstract—An optimistic rollup (ORU) scales a blockchain’s
throughput by delegating computation to an untrusted remote
chain (L2), refereeing any state claim disagreements between
mutually distrusting L2 operators via an interactive dispute
resolution protocol. State-of-the-art ORUs employ a monolithic
dispute resolution protocol that tightly couples an L1 referee
with a specific L2 client binary—oblivious to the system’s
higher-level semantics. We argue that this approach (1) mag-
nifies monoculture failure risk, by precluding trust-minimized
and permissionless participation using operator-chosen client
software; (2) leads to an unnecessarily large and difficult-
to-audit TCB; and, (3) suffers from a frequently-triggered,
yet opaque upgrade process—both further increasing auditing
overhead, and broadening the governance attack surface.

To address these concerns, we outline a methodology for
designing a secure and resilient ORU with a minimal TCB, by
facilitating opportunistic 1-of-N-version programming. Due to
its unique challenges and opportunities, we ground this work
concretely in the context of the Ethereum ecosystem—where
ORUs have gained significant traction. Specifically, we design
a semantically-aware proof system, natively targeting the EVM
and its instruction set. We present an implementation in a new
ORU, Specular, that opportunistically leverages Ethereum’s
existing client diversity with minimal source modification,
demonstrating our approach’s feasibility.

1. Introduction
Public blockchains, such as Ethereum [1], have strug-

gled to scale with growing demand, resulting in exorbitant
transaction fees during congestion. Blockchain nodes are
generally required to disseminate, reach consensus over and
execute transactions—presenting multiple potential perfor-
mance bottlenecks. A recent line of work [2]–[6] aims to
mitigate the execution bottleneck, by securely offloading
computation to a more powerful off-chain system (L2)
operated by untrusted parties (validators), and efficiently
guaranteeing state transition validity on-chain (L1). Opti-
mistic rollups (ORUs) are currently the most popular of
such protocols, with several billions of dollars in total value
locked, despite outstanding security risks [7].

An ORU protocol defines, at minimum, (1) an off-chain
execution semantics, and (2) an on-chain bridge [3], secured
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Figure 1: Proof system toolchain comparison. (Top) state-
of-the-art ORUs suffer from a large and complex TCB. The
binary toolchain of the compiled approach is inherently re-
sistant to TCB simplification. (Bottom) the native approach,
instantiated with 1-NVP, enables a simpler TCB.

by a dispute resolution protocol that enforces the execution
semantics. During normal operation, an L2 validator locally
applies the specified state-transition function T to inputs
ordered and disseminated on L1. The validator then makes
claims about L2 state changes by posting state commitments
to the bridge. The finalization of a claimed state is delayed
until its confirmation period has elapsed, allowing other
validators to contest it if they disagree. If a claim is contested
with a deviating counterclaim, an L1 referee must determine
which is valid. To do so, it engages participating validators
in a dispute resolution protocol, consisting of an interactive
fraud proof (IFP) game. The protocol enables the referee to
efficiently find the first step in a trace at which participants’
claims deviate. An honest validator may then submit a one-
step proof to convince the referee of the correct step-level
transition. Through this mechanism, false claims are ulti-
mately rejected (within a delay). This ensures the security
of the bridge under a 1-of-n honest minority assumption [8].
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An honest validator must by definition operate using L2
client software that conforms to the specification. As a mat-
ter of implementation convenience, state-of-the-art ORUs,
such as Arbitrum Nitro [5] and Optimism’s Bedrock release
[6], rely on an IFP that referees disputes over the execu-
tion trace of—not the abstract specification semantics, but
rather—a specific compiled binary (from the client source),
entrusted to conform to the specification. That is, the referee
neither verifies nor is necessarily aware of any higher-level
semantics. By conflating the binary with the protocol, the
referee blindly enforces excessively over-constrained seman-
tics at best, and incorrect exploitable semantics at worst.

This approach therefore has three fundamental disadvan-
tages: it (1) magnifies monoculture failure risk by hinder-
ing modular, trust-minimized and permissionless N-version
programming (NVP); (2) leads to an unnecessarily large
and complex trusted computing base (TCB) that is difficult
to independently audit and impractical to formally verify;
and, (3) suffers from a frequently triggered upgrade process,
both increasing security audit overhead and broadening the
governance attack surface.

First, by binding the verifier to a specific L2 client
program binary, the protocol increases the risk of mono-
culture failures and weakens the credibility of the 1-of-
n honest minority assumption. This is because validators
are given limited operational choice and are required to
run the pre-authorized binary during IFP execution. Con-
sequently, invalid state transitions induced by software bugs
can slip by undisputed—ultimately resulting in loss of user
funds. Ongoing community efforts [9], [10] to address
this concern by introducing limited redundancy through in-
protocol, monolithic NVP [11]–[13]—as we will establish
in this work—face fundamental trust, permissioning and
operational limitations, among others.

Second, because the L1 verifier is tasked with verifying
the execution of the client at the target ISA instruction-level,
the TCB includes the source code of the L2 client software,
target ISA compiler and vector commitment generator (as
illustrated in Figure 1). Adding another layer of complexity
to the TCB in practice, the refereed binary differs—as a
function of both the source and target—from that of the val-
idator’s normal operation. Namely, the source is a modified
L2 client program that replaces select software components
with oracles to abstract away I/O and non-determinism; the
target is a different easily-emulated (and possibly custom
[5]) virtual ISA. Altogether, this leads to a large attack
surface and commensurately increases auditing overheads.
Formal verification against an executable protocol specifica-
tion is also infeasible in this regime, given the unbounded
and concurrent nature of these programs.

Third, auditing overheads compound with the high fre-
quency in upgrades resulting from a large TCB. Client pro-
grams, for example, are naturally upgraded more frequently
than their underlying specification [14], [15], in order to
ship performance improvements and vulnerability patches.
Moreover, any off-chain component upgrade requires an on-
chain upgrade of the binary commitment in-tandem, putting
L1 governance on the critical path. Such upgrades not only
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Figure 2: Opportunistic 1-NVP in Specular. Specular
opportunistically reuses an Ethereum EL client for its own
execution-layer. (Purple) Components are minimally mod-
ified to enable finer-grained control over payload creation,
and expose sufficient trace state to the prover. (Green) All
other components are fully reused.

require developer trust, but are also often slow, contro-
versial and disruptive to the system [16]. For this reason,
ORU protocol maintainers have expressed a desire to forfeit
upgrade control over the L1 referee in the long-term [9].
However, this is ill-advised and unrealistic, given all off-
chain software upgrades—including vulnerability patches—
must be reflected on-chain in a new binary commitment.
Requirements. An ORU should therefore fulfill four high-
level design goals. First, the protocol’s IFP should at mini-
mum, permit NVP, and preferably facilitate it in a modular,
trust-minimizing and permissionless form, to achieve re-
siliency against bugs. Second, the TCB must be sufficiently
small and simple to enable effective security audits and
ideally, resiliency through NNVP [13] and/or formal verifi-
cation against an executable specification [21], [22]. Third,
TCB upgrades should ideally be only as frequent as up-
grades to the protocol specification; semantically-equivalent
L2 client software upgrades should not be hindered by L1
governance. Last, these properties should not come at an
adverse cost to performance during normal operation and
dispute resolution.
Native IFPs. We argue that compiled binary-based IFPs are
vulnerability-prone. We instead propose an alternative L2-
native IFP protocol design approach that proves and verifies
L2 semantics directly. That is, the proof system should
make minimal assumptions beyond the specified semantics.
This unlocks several advantages relative to prior work.
Most notably, different L2 client software systems share an
abstract higher-level execution trace, independent of their
implementation details, and are therefore interoperable. That
is, two validators running different software can still engage
with one another in an IFP game. As a result, only a single
L2 client software system must conform to the specification
to maintain ORU security. We term this variant of traditional
(majority-rule based) NVP as 1-of-N version programming,
or 1-NVP.

This approach permits out-of-protocol, permissionless
NVP, allowing any software implementing the specification
to participate, without governance intervention [23]. Ad-
ditionally, richer IFP protocol semantics provide modular,



ORU system Properties
Exec target IFP target NVP capability TCB L1 upgrade trigger Efficient referee

Fuel v2 [17] FuelVM FuelVM [18] 1-of-N ∗,a L1 referee∗ L2 spec upgrades ✓
Arbitrum v1 [2] AVM AVM [2] 1-of-N ∗,a L1 referee∗ L2 spec upgrades ✓

Arbitrum Nitro† [5] EVM+ WASM [19] K-of-N ∗,p,m Full system L2 software upgrades ✓
Optimism Bedrock‡ [6] EVM MIPS [20] K-of-N ∗,p,m Full system L2 software upgrades ✓∗

Specular EVM EVM [1] 1-of-N L1 referee L2 spec upgrades ✓

TABLE 1: System comparison. ∗ denotes theoretically realizable properties (applying a liberal interpretation), with varying
feasibility. † targets the EVM with extended semantics, making opportunistic NVP less feasible; ‡ has a nascent but under-
specified proposal [9]. a denotes ad hoc-only NVP capability; p denotes permissioning limitations; m denotes monolithism.

finer-grained control over redundancy at various abstraction
levels. For example, NVP can be applied to the L1 referee
to achieve a more resilient and trustworthy TCB—without
adding complexity at L2 (as with the compiled approach).

Earlier generation ORUs [2], [17], as outlined in Table 1,
target the ISA of a bespoke VM both in normal operation
and at the IFP-level. Such VMs are natively designed to
support IFPs efficiently. Unfortunately, while they permit
trust-minimized and permissionless 1-NVP in theory, re-
alizing this property in practice requires ad hoc, de novo
development of independent client software systems. Knight
& Leveson [12] argue that the resiliency improvement from
doing so does not merit the engineering effort required, due
to its ineffectiveness in preventing correlated bugs.

However, we observe that this challenge can be circum-
vented. There are existing efforts towards achieving client
diversity at L1, motivated by a similar objective of reducing
the likelihood of consensus failures [24]. This provides a ba-
sis for opportunistically bootstrapping multiple trustworthy
L2 client software systems from existing L1 infrastructure.
Opportunistic 1-NVP. The Ethereum blockchain itself, as
well as its execution semantics [1] is overwhelmingly pop-
ular. The chain has demonstrated considerable resilience
in spite of occasional mass client failures caused by soft-
ware bugs [25]–[27], owing to the diversity of permis-
sionlessly participating L1 client software1. Its consensus
rules uniquely incentivize client diversity [24], and as a
fortunate byproduct, has made client software available as an
opportunistically reusable resource [28], [29]. In this work,
we therefore take particular interest in designing an L2-
native IFP, specifically for Ethereum and its VM semantics.

Indeed, state-of-the-art ORU projects [5], [6] have
adapted one particular Ethereum execution-layer (EL) client,
Geth [14], to support L2 operation. A validator runs this L2-
adapted EL client, along with a custom consensus-layer2

(CL) client. The L1 referee enforces the semantics of a
binary, generated by monolithically compiling a program
containing cherry-picked components from both clients, to
a lower-level target ISA. Unfortunately, while such systems
may still leverage a limited form of opportunistic NVP, the
IFP constrains the design space for doing so (see Table 1).

Combining opportunistic NVP with an L2-native IFP
approach addresses these shortcomings. Specifically, we

1. In the cited case, the deciding factor was software version diversity.
2. In a rollup, consensus is generally derived deterministically from L1.

propose a one-step proof scheme that directly targets a
higher-level L2 semantics composed from that of Ethereum.
The key challenge in this setting is to support proof gener-
ation directly over all EVM instructions, block creation and
inter-transaction semantics, without significantly modifying
L1 client internals. This facilitates 1-NVP by preserving the
ability to use any existing or future Ethereum client software
that conforms to the specification. Conventional wisdom in
the blockchain industry [30], [31] has held the sentiment
that to do so would pose a significant challenge, due to the
general complexity of the EVM. However, we demonstrate
its feasibility, with the use of a simple authenticated data
structure (ADS) [32] using standard primitives—supporting
efficient on-chain emulation of the EVM stack, memory,
persistent storage and other auxiliary data structures.
Contributions. To our knowledge, this is the first work to
study the relationship between NVP techniques [11]–[13],
[28], [29] and RDoC-based protocols [2], [6], [8], [33].
We make both conceptual and technical contributions. In
Section 3, we propose the use of an L2-native IFP that
enables opportunistic 1-NVP—drawing from classic ideas
in systems literature [11], [12], [28], [29], and more recent
efforts in the blockchain setting [13], [24]. We motivate the
necessity of this approach in the context of prior work.

The rest of this work focuses on Ethereum specifically.
In Section 4, we provide the first concrete scheme for
an L2-native IFP to target the EVM. Finally, we intro-
duce Specular, a new secure and trust-minimized optimistic
rollup. Specular leverages multiple Ethereum EL client im-
plementations, namely Geth [14] and Erigon [34], adapted
to support an L2-native IFP with only 99 and 148 lines-of-
code modified respectively.

2. Background
We briefly survey relevant background in both traditional

distributed systems and blockchain systems. We also de-
scribe concurrent open-source efforts pursuing the applica-
tion of NVP in ORUs [9].

2.1. Refereed delegation
Refereed delegation of computation (RDoC) [8], [33]

consists of a family of protocols that allow a resource-
bound client to efficiently and verifiably compute a function
by delegating it to multiple untrusted servers, provided at
least a single server is honest. Canetti et al. introduce an



interactive protocol, instantiated from any collision-resistant
hash function—summarized as follows.

Suppose a client delegates the computation of a function
to two non-colluding servers. If the servers unanimously
agree on a result, the client accepts it immediately—since
by assumption, one server is honest. If the servers disagree,
it initiates a bisection protocol with a logarithmic number
of rounds to search for inconsistencies between the trace
intermediate states of the servers’ delegated computation. In
each round, the servers send the client binding commitments
of their respective intermediate states at the computation
step requested, generated using the hash function (to avoid
sending the entire state).

On identifying the inconsistency at the level of a single
trace step (e.g. an instruction), the client determines which
party is dishonest by (1) requesting the initial state, revealing
the commitment previously received and agreed upon by
both servers; and (2) locally emulating the step, accepting
the result claimed by the honest server. Because the client
is resource-bound, the protocol may employ the use of an
authenticated data structure (ADS) [32], [35], [36], such as
a Merkle tree [37] or a more generic data structure [35],
[38], to enable space-efficient emulation.

In cases of unanimous agreement, there is no additional
computational overhead for both the servers and the client.
During a disagreement, the overhead is poly-logarithmic in
the size of the computation. The protocol is computationally
sound, assuming a single server is honest. It is also general-
purpose (supports any efficiently computable, deterministic
function) and full-information (requires no private state).

2.2. Optimistic Rollups
In this section, we describe a typical (but simplified) op-

timistic rollup (ORU). An ORU is specified by its off-chain
execution semantics S and a dispute resolution protocol D
that defines state claim confirmation and rejection semantics,
to enforce S.
Normal operation. We define the following state machines,
hierarchically (loosely following a similar model as [1]):

Si := (Ti,Mi, S) | Ti : S ×Mi → S | 1 ≤ i ≤ 4

operating at the abstraction levels of (1) VM instructions, (2)
transactions, (3) blocks, and (4) sequenced batches, respec-
tively. This captures the semantics at each key abstraction
level of an L2 blockchain, for convenience—a sequenced
batch contains multiple blocks; a block contains multiple
transactions; and finally, a transaction involves the execution
of multiple VM instructions. Informally, for convenience
we define each Ti to recursively subsume the semantics of
Tj ∀j < i, applied iteratively. For example, T4 applies a
transaction batch to the L2 state in its entirety, building all
contained transaction blocks.

Users can submit their L2 transactions either directly to
the L1 bridge, or as a matter of convenience and cost, to a
uniquely-permissioned (and untrusted) L2 operator, known
as a sequencer. We note that the role of the sequencer is
orthogonal to this work, since an ORU can function securely

without designating one; we therefore ignore its details for
the rest of this work.

Validators—fulfilling the RDoC server role—read, de-
code and apply messages from the L1 bridge to their local
state machine. A validator submits claims to the bridge,
attesting to a binding commitment on the state output by
T4 (applied to the sequenced inputs), claiming the state’s
validity. Once a claim is confirmed, the bridge unlocks any
associated funds to be withdrawn. However, the protocol
delays its confirmation for a pre-determined time period3,
allowing any party to contest it by submitting a disagreeing
counter-claim. The claim is only confirmed at the end of
this period if it is not rejected through a dispute.
Dispute resolution. An L1 referee allows any party to
contest an unconfirmed claim by submitting a disagreeing
counter-claim. This triggers the execution of a dispute reso-
lution protocol between all parties that have attested to the
claims. Ultimately, all but the correct claim are rejected.

IFP protocols extend RDoC to the permissionless
blockchain setting, where the L1 blockchain can be con-
sidered a trusted resource-bound client, and L2 validators
the more computationally-powerful untrusted servers. How-
ever, because there is no pre-determined committee of non-
colluding servers that can be relied upon by the referee
(as is assumed in RDoC protocols), ORUs typically aim
to maximize participation (subject to computational and
time constraints), by allowing any party to participate as
a validator (with dishonest behavior disincentivized through
a financial penalty for attesting to rejected claims).

As in the case of RDoC, security is therefore guaranteed
under a 1-of-n honest-minority assumption. That is, as long
as a single honest party exists (and is live) to faithfully
follow the protocol, an invalid claim will not be confirmed.

Kalodner et al. [2] introduce a dispute resolution proto-
col, naturally extending the interactive protocol from [33] to
the permissionless blockchain setting—albeit with liveness
limitations in the presence of multiple adversaries or sybils.
Recent work [39], [40] addresses these limitations with more
elaborate protocols, providing stronger liveness guarantees.
While these protocols differ—namely, in how they scale to
multiple parties—all of them fundamentally rely on inter-
active trace bisection, punctuated with the verification of a
one-step proof.
One-step proof. The first ORU systems [2], [18] utilized
straightforward constructions that natively targeted the off-
chain execution semantics directly. However, to target richer
semantics (specifically, the EVM) more conveniently, popu-
lar protocols [5], [6] shifted towards constructions that target
a lower-level ISA. In this design, there is an initial offline
setup phase (e.g. at protocol instantiation), where (1) a bi-
nary is compiled from an L2 client program (expected to im-
plement the semantics correctly); (2) a vector commitment
is generated from the binary (over each instruction); and (3)
the commitment is submitted to the referee responsible for
resolving disputes.

3. This is a system parameter, often set conservatively to 1 week.



The target ISA is typically chosen to be a reduced
instruction set (e.g. MIPS [20]) to preserve proof system
simplicity and support flexible compilation from higher-
level languages. We note that the ISA itself is often sim-
plified further from its standard usage; for example, both
Optimism (post-Bedrock) [6] and Arbitrum Nitro [5] remove
floating point arithmetic.

This work takes particular interest in the choice of
proving target, and its implications on the security and trust
assumptions of the broader system.

2.3. N-version programming
N-version programming (NVP) [11], [12] is a classic

systems technique, initially proposed to strengthen the fault
tolerance, or liveness, of software. This is carried out first by
preparing N independently developed programs, intended to
be functionally equivalent, and defining a decision function
f to transform the results of their execution on the same
input. In its simplest form, f is invoked on the values output
by the N programs, selecting the value that appears in a
majority quorum, if such a value exists.

In the absence of a quorum, a liveness-preferring f may
output a fallback value, while a safety-preferring f would
output abort ⊥. While NVP has traditionally been utilized
in the former setting [12], we instead primarily consider its
impact in the latter, for security [13]. In the rest of this work,
we refer to the setup where the decision function outputs ⊥
in the absence of a K-quorum (for K > N

2 ), as KNVP.

2.3.1. NVP in distributed systems

The effectiveness of NVP rests on the assumption that
independently developed programs fail independently. It has
been shown, however, that this is often not the case in
practice, due to hidden correlations [12]. Moreover, software
development and maintenance costs grow linearly [41].

Another line of work [28], [29], [42] partially addresses
these concerns, particularly in the BFT-SMR setting, by
seeking to exploit opportunistic NVP. In particular, BASE
formally introduces the notion of reusing a set of distinct,
existing off-the-shelf implementations—made equivalent via
custom wrappers conforming to a common abstract speci-
fication—instead of developing bespoke independent pro-
grams. This eliminates the high development and mainte-
nance costs of prior approaches.
NVP in blockchains. The Ethereum network is the most
prominent existing example of actively practiced NVP in
the blockchain setting. As demonstrated for traditional BFT
systems [29], [42], NVP prevents cascading failures and
safety violations [24] in Ethereum—the effectiveness of
which depends on the extent of client diversity across node
operators [43]. Ethereum full nodes run two types of client
software—a consensus layer (CL) client, responsible for
participating in consensus and validating block payloads re-
ceived from the network; and an execution layer client (EL)
client, responsible for constructing and executing blocks of
transactions upon request from an authenticated CL client.
Substantial community efforts have improved network re-
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Figure 3: Compilation-based KNVP in ORUs. Compo-
nents of independent CL and EL clients are composed as a
single program. Programs are compiled to multiple targets.
Each binary is committed to on-chain (not shown).

siliency through the independent development of multiple
client implementations at both layers [14], [34], [44], [45].

2.3.2. Opportunistic KNVP in ORUs

While client diversity exists in Ethereum, no rollup in
production today employs NVP. As discussed previously,
this allows invalid state transitions induced by software
bugs to slip by undisputed. Optimism’s protocol maintainers
have acknowledged this as a security risk; the community
has therefore proposed—and is actively moving forward
with the engineering of [10], [46]—a scheme that intends
to mitigate the risks posed [9]. We describe the intended
scheme4 and its design considerations below.

The scheme consists of a straightforward application of
KNVP within the compilation-based IFP paradigm, at the
binary-level. That is, the offline setup phase of the ORU
involves committing to N binaries rather than just 1. Then, a
disputed claim is resolved by applying a K-quorum decision
function to the outputs of N independent invocations of the
IFP game (one for each binary). If no quorum exists, the
decision function outputs ⊥, indicating the chain must be
halted until a more sophisticated referee—such as protocol
governance—can manually resolve the dispute. Assuming
an implementation-honest party exists (i.e. conforms to the
implementation, but not necessarily the specification), a
submitted claim is therefore confirmed only if at least K
binaries agree with it.

Under this assumption, the following conditions are
trivially derived. First, the existence of a K-quorum for
any given input is necessary for liveness. Otherwise, dispute
resolution is triggered when at least one binary deviates on
an input, and the decision function—unable to establish a
quorum—by definition outputs ⊥. Second, the system is
secure if and only if for any input (1) a K-quorum does
not exist, or (2) the quorum output conforms to S.

A key design choice in this paradigm is choosing which
binaries to provision and commit to in-protocol. Since it is
infeasible to develop several completely independent imple-
mentations, the Optimism proposal [9] suggests producing
each binary through several combinations of authorized
software toolchain components, as illustrated in Figure 3.

4. A concrete spec. is nonexistent, but the scheme is straightforward.



This includes opportunistic reuse of Ethereum EL clients
(with some non-trivial modifications to their semantics). The
source of both the CL and EL clients—normally maintained
as separate programs—are partially composed to produce
a single program, through white-box reuse of internal li-
braries. The program is then compiled to multiple targets,
to distribute trust among compilers and ISA targets.

We make two observations here. First, the resulting
binaries are assumed to be functionally equivalent to the
corresponding systems utilized during normal execution that
they represent, despite different sources and compilation
targets. Second, an exhaustive combination of all authorized
toolchain components, as illustrated in the Figure 3, is ideal
to decorrelate bug incidence. However, this may not be feasi-
ble in practice due to performance impact and compatibility
challenges, leading to a more selective binary provisioning.

Ultimately, while a KNVP scheme provides incremen-
tally improved defense against monoculture failures, it in-
troduces other fundamental challenges. We enumerate these
in the next section.

3. An L2-native IFP
In the same spirit as classic systems work which outlines

a methodology for using abstraction in NVP to improve
fault tolerance [28], [29], we propose the use of abstraction
in NVP to improve security guarantees. Namely, we argue
for defining a common abstract trace that decomposes the
specified semantics S to a sequence of steps. Unlike in the
compiled approach, steps are defined to preserve semantics
at the highest-possible abstraction level, while preserving
the tractability of efficient verification (without TCB bloat).
The referee then operates over the abstract trace for a claim,
relying on a proof system that natively targets the defined
step-level semantics of S.

Figure 4 illustrates how such a trace may be constructed,
in a hierarchical bottom-up manner. Specifically, a trace for
all batches in a claim is constructed such that (1) at the
lowest level, each transaction consists of the sequence of
executed L2 VM instructions—each considered a step—as
specified by T1; (2) the remaining transaction-level (T2)
semantics not captured are encapsulated in initiation and
finalization steps for each transaction; (3) the remaining
block-level (T3) semantics not captured are encapsulated in
block initiation and finalization steps for each block; and
(4) the remaining batch-level semantics (T4) not captured
are encapsulated in a batch validation step for each batch.

We outline the trade-offs between the compiled and
proposed approaches, the latter of which we refer to as
the L2-native approach, below. Specifically, we study their
impact on the trust characteristics of the broader system.

3.1. N-version programmability
NVP is necessary to mitigate trust in any one par-

ticular implementation. As previously touched upon, the
two IFP approaches lead to fundamentally different NVP
capabilities. The concrete instantiation of a KNVP scheme
in practice is constrained by trust, operational and access
control considerations.

3.1.1. In-protocol KNVP

TCB complexity. The system is only secure if the KNVP-
transformed program conforms to the specification. This
implies that no K-quorum exists to produce semantically
incorrect outputs. A choice of an insufficiently large K or
N binaries produced through highly-correlated toolchains
weakens the credibility of this condition. However, the
precise configuration of these parameters presents trade-offs.

A cost-benefit analysis may indicate that the most sen-
sible choice for K is to favor safety over liveness, by
setting K := N [13]. However, in trading off liveness,
a slower higher-tier referee with a different (potentially
weaker) trust model—such as protocol governance—bears
larger decision-making responsibility. The choice of K can
therefore have unclear trust implications. Similarly, using a
large set of binaries may only additively impact security if
hidden correlations are absent; otherwise, the TCB is further
bloated, while negatively biasing the decision function.
Operational impact. Dispute resolution cost and opera-
tional overheads scale linearly with N , as the referee must
conduct an IFP game for each binary. Additionally, valida-
tors must themselves manage the operational complexity
of deploying and executing each binary to participate in
each game without additional external trust. This presents
a conflict, since uncorrelated bug incidence may require a
large N . For example, exhaustive combination of authorized
toolchain components, as previously described, results in
a combinatorial explosion in the number of binaries. The
dispute resolution cost and operational complexity should
therefore ideally grow independently of N .
Access control. The use of a particular binary in dispute
participation is permissioned. To enfranchise a binary in
the decision function, it must be explicitly granted access
to the dispute resolution protocol by committing to the
binary on-chain. This places another practical constraint on
N : if the set of binaries is not fixed a priori, a trusted
administrative mechanism (such as protocol governance)
must exist to manually grant their addition and removal. The
burden on this mechanism compounds if toolchain upgrades
are allowed, as we will elaborate further on in Section 3.3.
Ideally, any binary that conforms to the specification can be
utilized without permission.

3.1.2. Out-of-protocol 1-NVP

The L2-native approach enshrines only the semantics
S in-protocol that the referee must enforce. All L2 client
software systems (i.e. the client and its prover) must interact
against the same referee-enforced abstract trace. An honest
validator can therefore interoperably play against any other
validator in the system. We call this 1-NVP—this can be
interpreted as a variant of NVP where the decision function
is the referee itself.

Critically, we assume that the referee’s one-step proof
verifier itself conforms to S. The following condition is
then trivially derived: the existence of a single honest party
(conforming to S) is sufficient for both security and liveness.
An honest party disputes invalid claims to ensure security,
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and submits (and defends) valid claims to ensure liveness—
the latter guaranteed to the extent provided by the IFP game.

In this paradigm, there is no explicit access control
mechanism—validators are afforded the option of running
the L2 software system of their choice. A validator can
permissionlessly participate and win a dispute, utilizing any
L2 system that conforms to S. Furthermore, the TCB, as we
describe further in Section 3.2, is limited to only the referee.

3.2. TCB trustworthiness
The TCB of an ORU must be auditable, and amenable

to further trust-minimization techniques, such as NNVP [13]
and formal verification, to ensure its trustworthiness.
Auditability. In the compiled approach, because the ref-
eree enforces the execution of a binary at the target ISA
instruction-level, inspecting the lower-level VM verifier
alone is not sufficient to determine the enforced semantics.
In practice, auditing the entire binary toolchain is necessary
to determine with high confidence whether the semantics of
the generated binary conform to the specification. Moreover,
as discussed in Section 2.3, in-protocol KNVP necessitates
audits for at least a majority of (if not all) the binary
toolchains. Such TCB bloat magnifies security vulnerability
risk, and commensurately increases auditing overheads.

In contrast, because semantics are explicitly enforced
by the verifier in the native approach, we consider a signif-
icantly reduced TCB size. With 1-NVP, ORU security does
not rely significantly on the correctness of any individual
client program. The TCB of an L2-native ORU instantiated
appropriately with permissionless participation through 1-
NVP, in the limit, only includes the referee. This reduction
of scope improves auditability, and renders the application
of other trust-minimization techniques more tractable.
TCB size reduction. We can further minimize the TCB
through formal verification and NNVP.

In the compiled approach, to verify the correctness of the
binary against a formal specification, either its semantics
must be verified directly, or through indirect verification
of the individual toolchain components. In practice, both
paths are intractable, due to the size and complexity of each
component. While it is practical to formally verify limited
components, such as an on-chain RISC emulation-based
verifier, this does not provide strong assurances regarding
the enforcement of L2 semantics. As described earlier, this
is because a computationally sound proof system is still
agnostic to binary-level bugs. For the same reason, applying
NNVP at the verifier-level is not generally useful.

On the other hand, in the L2-native approach, the VM
verifier is the largest TCB component. It is therefore desir-
able to formally verify the VM verifier against a formal
specification. Fortunately, in the case of Ethereum, there
are multiple specifications that can be reused—such as the
Dafny-EVM [22] and KEVM [21]. By detecting inconsisten-
cies between the L1 verifier implementation and the formal
specification, the L1 verifier can be formally proven at the
bytecode level to conform to the intended L2 semantics (c.f.
Section 7.2). This constrains the size of the TCB further to
just the verification framework and specification.

Alternatively (or in composition), while we leverage 1-
NVP at L2, we can independently apply KNVP to the VM
verifier. Unlike in the case of the compiled approach, KNVP
is applied to the verifier, rather than the binaries. As a result,
IFP interoperability between L2 systems does not break.

3.3. Upgrades
Frequency. While blockchain client software is frequently
upgraded (both for L1 and L2 networks), protocol specifica-
tion upgrades tend to move slower. Ethereum, for example,
has historically hard-forked at most twice each year [15].
Hard-forks that actually modify relevant semantics are gen-
erally even less common, at around once-a-year; semantic
changes, such as those to consensus, often do not affect L2
execution semantics.

Nevertheless, the compiled approach requires a bridge
upgrade every time a binary toolchain component is up-
graded, since changes to the source must be reflected in
a new commitment on-chain. For a protocol leveraging
opportunistic KNVP, this includes every time changes from
an upstream client source are synced. On the other hand, up-
grades to the bridge of an L2-native ORU are as infrequent
as those to the protocol specification.
Long-term access control. A deliberately designed L1 pro-
tocol will eventually stabilize, while implementations will
likely continue to commonly experience upgrades, e.g. to
fix bugs, patch vulnerabilities and generally improve perfor-
mance. For the reasons highlighted above, the eventual for-
feiture of bridge upgrade keys—a desired trust-minimization
property [9]—is likely implausible.

In comparison, the source code of L2-native ORU clients
can stabilize in tandem with those of the L1 chain. In the
L2-native approach, the bridge must be upgraded only as
frequently as semantic upgrades; therefore, the expectation
is that with L1 stabilization, protocol governance can even-
tually forfeit upgrade keys, without forfeiting the ability to



ship client-side changes. We therefore argue that the safest
and most practical path to relinquishing upgrade keys (and
hence, mitigating trust in governance) is through an L2-
native ORU design.
Transparency. The size and complexity of the TCB in the
compiled approach results in an opaque upgrade process,
despite the use of opportunistic KNVP. For example, EL
client implementations are upgraded in a less transparent
manner than the Ethereum specification, which undergoes
a deliberate, public and peer-reviewed RFP process [15].
Additionally, while maintaining a fork of the upstream EL
client—as is common for ORUs [6], [47]—allows develop-
ers to keep their L2 EL client in sync, it hinders the ability
to distinguish what changes are semantically relevant to the
L2 system. Upgrades to other ad-hoc components, such as
the compiler, are less transparent still.

In the native approach, there is a clear separation be-
tween verification of semantics and the client software sys-
tems implementing those semantics. Therefore, it is easier
to discern whether or not an upgrade can potentially affect
the interpretation of semantics—auditors need only inspect
the diff in the referee source.

4. An EVM-native proof scheme
In this section, we apply the takeaways from Section 3

to design a proof scheme with the trust implications of the
broader system in mind. Specifically, we target Ethereum
semantics to take advantage of opportunistic 1-NVP. A one-
step proof (OSP) convinces a verifier that given an initial
EVM state—partially revealed and verified to be consistent
against a commitment—executing the current instruction
will result in a transition to the claimed final EVM state.
The scheme should address the following requirements.

1. EVM-native. The proof attests to the validity of a state
transition at the granularity of a single EVM instruction
(or inter-transaction operation). All EVM instructions
and inter-transaction operations are supported.

2. Specification-compatible. A proof can be constructed
exclusively from state specified by the EVM (i.e. with-
out relying on knowledge of a specific EVM client
implementation).

3. Simple. The scheme requires only standard crypto-
graphic assumptions and can be achieved with a small,
auditable TCB.

4. Efficient. Proof size is at most logarithmic in the size
of the EVM state b, linear in contract size and linear
in bytes accessed.

The key objective is therefore to design a simple proof
scheme for the EVM. We also note that while proof verifi-
cation efficiency is a concern, it is secondary to simplicity.
The IFP paradigm allows for tiered composition with a more
efficient proof system (such as a SNARK-based construc-
tion [48]), without inheriting stronger trust assumptions (we
elaborate on this in Section 7.2).

The rest of this section describes the semantics of the
system, followed by the associated one-step proof scheme.
The construction uses standard assumptions, requiring only
a collision-resistant hash function.

4.1. Preliminaries

We first summarize Ethereum’s execution semantics. We
build an L2 semantics upon this, followed by a description
of our proof scheme.

4.1.1. L1 execution semantics

Ethereum is a permissionless, programmable blockchain
that exposes a general-purpose state machine with a quasi-
Turing complete ISA. This subsection focuses on the EVM
state relevant to transaction execution. The EVM is a virtual
stack machine that defines how bytecode instructions alter
the Ethereum state. It has a volatile memory represented by
a word-addressed byte array and a non-volatile storage, rep-
resented by a word-addressed word array. Both memory and
storage are zero-initialized at all locations. EVM bytecode is
stored in virtual read-only memory, accessible only through
a specialized instruction. The EVM state (both volatile and
non-volatile) is split across the EVM world state, machine
state, accrued substate and environment information. We
summarize each of these below. A full definition of this
state can be found in the Ethereum Yellow Paper [1]. The
semantics and gas cost corresponding to each instruction
which mutates the state can be found there in Appendix H.

The world state σ is a mapping between addresses and
account states, stored in a Merkle Patricia tree (trie). Each
account σ[a], identified by its address a, is comprised of
an intrinsic monetary balance and transaction count nonce.
An account is also optionally associated with storage state
and EVM code through a storageRoot (256-bit hash
of storage MPT root) and codeHash (hash of bytecode
stored in a separate state database) respectively. All fields are
mutable except codeHash, which is write-once on contract
creation.

The machine state µ of the current messsage-call or con-
tract creation is a 6-tuple (g, pc,m, i, s,o) of the remaining
gas available g, program counter pc ∈ N256, memory con-
tents m, active number of words in memory i, stack contents
s, and the return data from the previous call o5.

The execution environment information is a tuple of
read-only data I := (Ia, Io, Ip, Id, Is, Iv, Ib, IH , Ie, Iw) that
can be accessed by specific instructions. This includes ex-
ecuting bytecode’s account address Ia, transaction sender
address Io, gas price Ip, input data Id, invoker account
address Is, monetary value Iv, bytecode Ib, block header
IH , call depth Ie, and state modification permission bit Iw.

The accrued transaction substate A is state accrued
during a transaction’s execution and is used to update EVM
state immediately post-transaction. This is defined as a tuple
A := (As, Al, At, Ar, Aa, AK), containing the self-destruct
set As, series of logs emitted Al, set of touched accounts
At, refund balance Ar, set of accessed account addresses
Aa and set of accessed storage keys Ak.

5. This field is omitted from the definition of µ in the EVM specification
[1]—possibly unintentionally—but can be found in Appendix H where the
semantics of RETURNDATASIZE and RETURNDATACOPY are described.



Finally, the 4-tuple of the above-defined state
(σ,µ, I, A) comprises the complete EVM state that
can be read from or written to by a bytecode instruction.

4.1.2. L2 execution semantics

We instantiate the L2 execution trace as described in
Figure 4 for the L2 execution state. We define the one-step
state (OSS), which encapsulates the state between execution
trace steps as an authenticated data structure (ADS) [32],
[38]. The OSS has three forms: intra-transaction state, inter-
transaction state, and block state. We define the commitment
of an OSS as HOSS.
Intra-transaction state. The EVM intra-transaction state ω
represents states between instruction execution. It is directly
constructed from the full EVM execution state (σ,µ, A, I).
It contains every state field modifiable by an EVM opcode—
including gas, stack, memory and world state.

The commitment of the intra-transaction state does not
directly hash the contents of fields that have inner structures
(referred as components), such as the stack, memory, and
world state; instead, these components are also encapsulated
using suitable ADSs (e.g. Merkle tree for the memory), and
HOSS hashes on the commitments of these components.

This allows us to create the state proof (described in
Section 4.3.1) without having to reveal the full contents of
every component. A separate proof is submitted to prove
the validity of the state transition in the component. Since
opcodes do not use every component (e.g. ADD doesn’t
access or modify the memory or the world state), the OSP
provides only the necessary proofs.
Inter-transaction state. To encode EVM behavior that takes
place between the consecutive execution of transactions, we
define a special type of one-step state, the inter-transaction
state ωint. The inter-transaction state lies between the ex-
ecution of two transactions, representing the finalized state
after the execution of the first.
Block state. Similarly, to encode EVM behavior that takes
place between the consecutive execution of blocks, we de-
fine another special type of one-step state, the block state
ωb. The block state lies between two blocks, representing
the finalized state of the first.

During normal execution, commitments to the block
state alone are computed and posted as claims. See Sec-
tion A.1 for a full state and commitment definition.

4.2. Motivating example: EXTCODECOPY
We begin with an example: verification of the

EXTCODECOPY opcode, to illustrate the verification pro-
cedure. EXTCODECOPY copies a bytecode segment from
a contract other than the current execution environment, to
memory. The designated contract address and copying range
are provided at the top of the stack.

The prover first reveals the current EVM intra-
transaction state to the verifier using a state proof. The
verifier checks if the revealed state is consistent with the
commitment that both validators agreed upon during the
interactive game.

Algorithm 1 One-step proof verification procedure

procedure VERIFY(π, h, h′)
assert h ?

= HOSS(πω)
VERIFYDATA(π)
ω′ ← EMULATE(π)
assert h′ ?

= HOSS(ω
′)

end procedure
procedure VERIFYDATA(π)

cactual ← read on-chain commitment for πdata_idx
assert cactual

?
= COMMITDATA(πd)

end procedure
procedure EMULATE(π)

if next step is a consensus validation step then
ω′ ← EMULATECONSENSUSSTEP(πω, πd)

else
for each component proof πc in πC do

hc ← corresponding commitment in πω

authenticate πc against hc

end for
ω′ ← EMULATEEXECSTEP(πω, πd, πC)

end if
return ω′

end procedure

The prover provides stack, memory-write, account-read,
code, and opcode proofs that partially reveal each corre-
sponding EVM component state so that the verifier can
compute the state transition. The verifier first checks if
the stack proof is consistent with the stack commitment
inside the state proof, and obtains the parameters of the
EXTCODECOPY opcode, as well as the new stack hash after
these parameters are popped. Given this proof, the verifier
is able to compute the required gas for instruction execution
and verify the validity of its parameters. If a parameter is
invalid or the gas charged exceeds gas available (revealed in
the state proof), the verifier will execute the revert process,
for which the prover is expected to provide the necessary
proofs to prove the revert.

If validation is successful, the verifier then obtains the
code hash from the account-read proof, and the bytecode
segment to be copied from the code proof. Given the
revealed bytecode segment, the verifier updates the new
memory root using the memory-write proof, which pro-
vides Merkle proofs of the designated memory writing
range. The verifier also updates the opcode field inside
the state proof using the opcode proof to finalize the one-
step EXTCODECOPY execution, as well as incrementing the
program counter, charging gas, etc.

4.3. Proof system
We describe the construction of a simple one-step proof

system. At a high level, the one-step proof system provides
a verification scheme to support the execution of a single
trace step as an update operation of the OSS. The prover
attempts to update the OSS—whose commitment is known
to the verifier—by executing one trace step, and convinces
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the verifier of the correctness of the execution through a
one-step proof.

Formally, the one-step proof system (P, V ) consists of
a prover P (ω, ω′) = π and verifier V (π, h, h′) = v | v ∈
{0, 1}, where h := HOSS(ω), h′ := HOSS(ω

′). π is a witness
to a stateless emulator (as outlined in Figure 5), which
outputs the image of the L2 state-transition function if it
were to be executed on the pre-image of h. π is a one-step
proof of the transition ω → ω′. Specifically, π authenticates
ω, and establishes (1) that a single step results in ω → ω′;
and (2) ω′ hashes to the claimed h′. V outputs ACCEPT
if and only if π proves the transition ω → ω′, or REJECT
otherwise. This procedure is captured in Algorithm 1.

The types of sub-proofs that π consists of depend on
the type of the state transition (for state transitions between
intra-transaction states, also the opcode of the current in-
struction) and consequently which EVM data structures are
read from or written to. We describe each sub-proof below.

4.3.1. Common proofs

We provide the following proofs for all instructions
in state transitions between intra-transaction states. First, a
state proof is simply the pre-image of the OSS hash; this
is provided for the initial state. Second, an opcode proof is
the pre-image of the code hash, and authenticates the next
instruction to be executed (at offset µ′

pc).
Third, an L1 data proof πd authenticates the execution

environment information I (c.f. Section 4.1.1), including
for example, the sender and recipient of the executing
transaction, as well as the block context associated with
the transaction (such as the timestamp and block number).
During normal operation (at sequencing-time), only a com-
mitment to the execution environment information is saved
on L1. Therefore, the prover is required to provide πd to
the verifier, which contains the calldata of transactions that
were posted on L1. The verifier can verify the correctness of
πd against the saved commitment and derive I from πd. We
note that in a forthcoming upgrade, Ethereum will provide
a special transaction primitive that automatically computes
a KZG commitment over temporarily-stored data [49]. This
can be used to verify data availability directly.

4.3.2. Stack
The stack proof attests to the validity of the state tran-

sition of the EVM stack µs → µ′
s. We define the stack

hash Hstack as a simple hash-chain over the elements of
the EVM stack µs, from the bottom of the stack to the top.
This allows the prover to selectively reveal the top elements
of the stack, read or popped by an EVM instruction, with
only a single additional hash. Specifically, the stack proof is
the tuple (h0, p), where h0 is the stack hash after elements
are popped from the stack by the instruction, and p is the
subsequence of the elements popped from the stack. The
verifier verifies the correctness of p by chain-hashing p onto
h0 and comparing it against the stack hash committed to in
ω. To emulate a stack-push, the verifier can obtain the stack
hash of µ′

s by chain-hashing p′ onto h0, where p′ is the
sequence of elements to be pushed to the stack after pops.

4.3.3. Memory
Since the EVM’s memory µm is a form of virtual

RAM, we must utilize a commitment that supports effi-
cient random-access partial reveals and updates. An obvious
choice is to use a Merkle tree over the EVM memory space.
HOSS commits to a Merkle tree root computed over the entire
contents of the EVM memory space µm, where each leaf i
is KEC(µm[32i, 32i+ 32]).

The memory-read proof (i, c, p, r) authenticates the byte
array c starting at offset i of µm, with respect to memory
Merkle root r. The Merkle proof p can be either a single-
proof or a compact multi-proof, depending on the length of
c. A compact Merkle multi-proof [50] authenticates multiple
Merkle tree leaves succinctly, by aggregating Merkle proofs
for tree leaves and de-duplicating the tree nodes in the proof.

Likewise, the memory-write proof attests to the validity
of a write to memory. That is, it proves the validity of
the new content at the location written to and that the
contents at no other location were changed. This proof is
of the form (i, c, c′, p, r, r′), where r′ is the new Merkle
root after the byte array c′ overwrites c at the contiguous
location starting at offset i of µm. The verifier first verifies
(i, c, p, r) as performed in the memory-read proof to verify
p is a correct proof of the consistency of c in r. It then
performs memory writes based on (i, c′, p) to calculate the
new Merkle root and compares with r′, the new memory
Merkle root provided in the proof. This proves that only the
memory starting at location i was modified.

The memory-read/write proofs are also applicable to the
calldata Id and return data µo of EVM since they act as
read-only memory during transaction execution.
Unbounded memory access. Certain EVM opcodes, in-
cluding KECCAK256 and those related to memory-copying,
allow unbounded access to the EVM memory (subject to
block gas limits). Since the memory-read/write proof con-
tains the accessed memory content, the proof size and there-
fore verification cost of such opcodes may be unbounded.
To prevent verification costs from exceeding the L1 block
gas limit, we introduce a sub-step proof allowing these
opcodes to be treated as multiple sub-steps, each operating
on a constant-size memory chunk. As a concrete example,



based on Keccak-256 hash function specification [51], the
KECCAK256 opcode is divided into three sub-step phases:
init, which initializes a Keccak-256 hash state; absorb,
which reads a constant size of the EVM memory and updates
the hash state by emulating the Keccak-256 block permu-
tation function in solidity; and squeeze, which calculates
the hash from the hash state and pushes the result back onto
the EVM stack.

4.3.4. World state

Reads. Recall that the account object and its storage are
both encoded as Merkle Patricia trees (MPTs). The account-
read proof authenticates the account state σ[a] associated
with address a, as read by an instruction. The MPT proof
can be used to compute and verify the root as well as
provide information corresponding to each account field
(nonce, balance, storageRoot, codeHash). Like-
wise, the storage-read proof authenticates a value read from
a storage slot in the MPT with root σ[a]s (assuming the
consistency of σ[a]), as read by an instruction. It includes
the content of the storage slot, with its MPT proof.

The code proof similarly authenticates a contiguous
sequence of instructions in an account’s bytecode. Similarly
as in the case of the opcode proof, the code proof naively
consists of the entire bytecode. The verifier can verify the
consistency of the bytecode by computing the code hash
from the code proof and comparing it to the code hash stored
in the contract account.
Writes. A nice property of MPT proofs is that it allows
the verifier to perform a single write (including update,
insertion, and deletion) on the proven path and recalculate
the trie root after the write. This is possible because the MPT
proof simply comprises all the relevant trie nodes along
the proven path. Therefore, the verifier can derive the trie
root after the account write with a account-read proof and
the updated account, which is essentially the account-write
proof. Similarly, the storage-write proof includes a storage-
read proof for the content during initial state σ, the new
content to be written to the storage slot, and an account-
read proof of the account where the storage belongs.

4.3.5. Inter-transaction, block and consensus

The inter-transaction proofs attest to the validity of
the transaction initiation and finalization steps. Depending
on the type of transaction, the inter-transaction proof may
include different types of proofs and additional information.
For example, the transaction initiation proof always includes
an account-read proof of the sender and the contract to
be executed, if the transaction is not regular. Similarly, an
account-write proof is required for the transaction finaliza-
tion proof to authenticate the remaining gas refund, and code
changes if the transaction is a contract creation.

The block proof attests to the validity of the block
initiation and finalization steps. The block-initiation proof
simply reveals the field of the block state to be proven
because there is no state change in the block initiation step.
The block-finalization proof reveals the necessary state, such
as the transaction trie root and receipt trie root for the verifier
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to reconstruct the block header. It also provides the Merkle
proof of the block hash tree, so that the verifier can verify
the block hash update.

The consensus proof authenticates the transaction data
posted on L1 according to rollup-specific consensus rules.
Since transaction data is posted in batches, each batch only
requires one step of consensus proof verification before the
execution of any block in the batch to ensure the validity of
the entire batch. In its simplest form, the consensus proof
enables direct witness checking: it authenticates transaction
data, allowing the verifier to check if it is correctly encoded.

4.3.6. Other components

There are some additional types of components inside
the intra-transaction state, most of which are used for
proving specific opcodes. For example, for LOG opcodes,
we accumulate all the logs emitted using a hash chain
for the receipt calculation; for SELFDESTRUCT opcode
we accumulate all the accounts that are self-destructed for
transaction finalization; for BLOCKHASH opcode we use the
Merkle proof of the block hash tree to authenticates block
hashes of previous blocks.

5. Implementation
In this section, we describe the implementation of a new

ORU, Specular. Specular’s software stack consists of an L2
client software—including both an L2EL and L2CL client,
as well as an auxiliary node manager; and an L1 bridge,
implemented as a set of contracts.

We focus NVP efforts on the most complex component
in the stack, the L2EL client, which opportunistically reuses
an Ethereum EL client for block building. We have adapted
two distinct Ethereum EL clients to support L2 operation:
Geth [14] and Erigon [34]. In this section, the former is
referred to as SpecGeth, while the latter as SpecErigon.



While a fully trust-minimized system requires applying NVP
to the L2CL client and prover, we leave this to future work.

The node manager, responsible for orchestrating valida-
tion, proving and batch submission (as a sequencer), is im-
plemented as an external module, interfacing with Ethereum
through standard JSON-RPC. The L1 batch submission, L2
chain derivation and L1 claim creation are functionalities
that operate at independent intervals. Claims can be posted
at lower frequency relative to batch sequencing; therefore,
a claim may represent a state transition larger than a single
sequenced batch. Similarly, a batch may contain the trans-
actions and metadata corresponding to several blocks.

5.1. L2 client
5.1.1. L2CL client

A validator’s L2CL client is primarily responsible for
orchestrating derivation of the L2 chain state as a function of
L2 transaction date disseminated on L1. It monitors the L1
chain for new transactions to the inbox contract, indicating
new transaction data has been made available. It then reads
the calldata, containing encoded batches of transactions,
along with metadata necessary to recompute the chain state
deterministically (e.g. the associated L2 block numbers and
timestamps). The metadata is validated and subsequently
used to reconstruct execution payloads, containing a list of
block payloads, for local chain insertion. These payloads are
delivered to the local L2EL client using Engine API, fol-
lowing the approach introduced by Bedrock [6]. Specular’s
L2CL client is a fork of a Rust-based Optimism client [10]—
modified to support a simpler consensus-level semantics.

5.1.2. L2EL client

The L2EL client maintains the local blockchain. It ap-
plies fork-choice update requests from the local (authorized)
L2CL client, marking blocks as safe and finalized
once they appear on-chain, and are finalized on Ethereum
respectively. The L2EL client is also responsible for build-
ing unsafe blocks from payload-building requests, using
transactions from the local transaction pool if allowed to,
and from the request if explicitly provided.

As mentioned previously, Specular opportunistically
leverages two L2EL clients, adapted from the Ethereum
ecosystem—Geth and Erigon. Specular is secure as long
as one L2 client software stack is implemented correctly.
Geth. We adapt Geth to L2 and implement all necessary
functionality for both normal operation and dispute resolu-
tion. This includes support for the prover and deterministic
execution via Engine API. To support the proof generation,
99 lines of code are introduced to Geth’s StateDB imple-
mentation, extending the EVMLogger API.
Erigon. Erigon [34] is a deeply modified Geth fork, focusing
on achieving high performance. It has undergone extensive
modifications and has diverged significantly from the origi-
nal Geth codebase since July 2020, making it a non-trivially
distinct Ethereum client implementation. Erigon uses staged
sync [52] for local blockchain construction, and relies on
multiple caching layers in their EVM implementation.

Therefore, wrappers over some Erigon components, such
as StateDB, are necessary to ensure that Erigon implements
all interfaces required by the proof module (e.g. copying
StateDB results in a deep-copy). We adapt Erigon to support
OSP generation, modifying and adding only 148 lines-of-
code. A shim is responsible for implementing the necessary
interfaces between the prover (same as that used for Geth)
and SpecErigon. The Erigon IFP shim consists of ~1.3k lines
of Golang code.

We note that SpecErigon is an incomplete prototype
intended to demonstrate NVP capability. Missing function-
ality includes support for deterministic payload building via
Engine API and fee semantics. However, there are no fun-
damental barriers to implementing this set of functionality.

5.1.3. Node manager
The node manager is responsible for creating, attesting

to and disputing claims, as a function of the local L2 chain
state it derives and the L1 claim chain contract state. On
observing a claim which conflicts with one that it has already
posted and validated, the validator can invoke the dispute
initiation mechanism in the bridge contract against the claim
creator, or any other validator that has attested to it. It
then participates in an IFP against another validator and
invokes the prover to produce a one-step proof at the end
of the dispute. This follows the simple protocol introduced
by Aribtrum [2]; however, the system and proof scheme is
also generally compatible with newer protocols [39], [40].

5.1.4. Prover
We implemented the prover (illustrated in Figure 6),

which exposes a set of RPC APIs to validators for com-
mitment and OSP generation. During normal execution, the
prover is able to produce claims by constructing the inter-
transaction states directly from transaction data or receipts.

When a dispute begins, the validator re-executes the
transaction that is ultimately disputed, and interacts with
EVM through an extended EVMLogger API, which records
sufficient EVM state information in each execution step. The
prover relies on the API to obtain internal EVM states that
are not exposed by standard Ethereum APIs. For instance,
the extended API includes a copy function, enabling the
prover to obtain a deep-copy of a certain EVM state. This
recorded EVM state information at the disputed execution
step is then used to construct one-step states for intermediate
commitments and to generate the final OSP. The prover is
implemented in ~5k lines of Golang code.

5.2. L1 bridge
The L1 bridge includes the referee and OSP verifier for

the scheme outlined in Section 4. The L1 bridge contracts
are implemented in Solidity 0.8.4, and follow the design
of Arbitrum’s [2]—the key difference being in the OSP ver-
ifier. The bridge functionality is split across: (1) a sequencer
inbox, where L2 transaction data is made available within
the calldata on the L1 blockchain; (2) a claim chain, where
claims are created, attested to and disputed; (3) a referee,
which is deployed by the claim chain contract upon dispute
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Figure 7: Proof sizes and verification gas costs for
transactions of 3 evaluated applications (sans contract
effects). (a) shows the distribution of one-step proof sizes.
(b) shows the distribution of verification gas costs.

initiation, to referee an interactive game; and (4) the OSP
verifier, called in the final round.

The OSP verifier comprises of verifier contracts and
library contracts. To avoid exceeding the maximum contract
size limit, we split the verifier into a VerifierEntry
contract and a set of Verifier contracts. The former
dispatches OSP verification requests to different subproof-
specific verifiers. The Verifier contract set consists of
8 different verifiers, each of which implements verification
of several types of one-step proofs. The library contracts
provide common utilities for all verifiers, including one-step
proof definition and decoding, verification context, EVM gas
metering, and EVM consensus parameters. The verifier is
implemented in ~4k lines of Solidity code.

6. Evaluation
In this section, we aim to show that our system’s dispute

resolution performance is practical. We leave performance
improvements to future work and discuss low-hanging fruit
in Section 7.2. All experiments are performed on a desktop
with an Intel i9-13900K @ 5.80 GHz processor, 64 GB
memory, and Ubuntu Windows Subsystem for Linux. To
study the performance characteristics of our OSP in real
world conditions, we carry out disputes on state transitions
resulting from interactions with 3 popular applications, with
setups outlined as follows.
Uniswap V2. Uniswap V2 is a popular decentralized auto-
mated market maker. We deployed the Uniswap V2 contract
[53], along with 4 ERC-20 token contracts, on Specular.
We then generated and executed 100 transactions, each of
which is a call to one of the following Uniswap contract
functions (sampled uniformly at random) with random pa-
rameters: AddLiquidity, RemoveLiquidity, Swap-
TokensForExactTokens, SwapExactTokensFor-
Tokens. These functions will interact with the follow-
ing contracts (with bytecode size in parenthesis): ERC20
(2.1KB), UniswapV2Pair (8.6KB), and UniswapV2-
Router02 (17.5KB).
Ethereum Name Service. Ethereum Name Service (ENS)
is the most popular naming service on the Ethereum
blockchain, and one of the largest NFT applications. We
deployed the ENS registry contract [54] on Specular. In
this experiment, we generate and execute 100 random ENS
registration transactions, each of which interacts with the

ENSRegistry contract (4.2KB).
Ballot. On-chain voting is also a popular blockchain applica-
tion used by numerous DAOs for governance. We deployed
a basic voting contract called ballot [55] on Specular and
generated 100 random voting or delegation transactions for
evaluation. These transactions interact with the Ballot
contract (3.8KB).

For evaluation purposes only, we construct one-step
states and generate one-step proofs for all executed state
transitions (during normal execution in a real deployment,
we do neither). In total, we execute 300 transactions, result-
ing in a total of ~400k steps. We construct one-step states
for each step for the purpose of this experiment. We then
evaluate one-step proof generation and verification on each
executed state transition in next sections. Figure 7 illustrates
the overall proof size and verification gas cost distributions.

As mentioned in Section 4.3.1, we naively include the
entire contract bytecode in the proof, to prove consistency
of the bytecode. Therefore, to better illustrate the actual
properties of the one-step proof evaluated, Figures 7 and 8
do not include the effects of contract bytecode (however, the
associated text in this Section does). We note that Specular’s
approach is practical even if the entire contract bytecode is
included in the proof—as shown in the next subsections.

6.1. One-step proof size
We measure the latency of generating a one-step proof

(across ~400k steps) on SpecGeth to be ~0.739ms on aver-
age. Proof generation therefore has negligible latency.

The average size of the one-step proofs generated—
without contract bytecode included—is 558B (min. 323B,
max. 3684B). The proof sizes with contract bytecode in-
cluded for opcode and code proofs are an average of 11.6KB
(min. 2.63KB and max. 29.6KB). This size depends largely
on the contract in which the step occurs. As a baseline,
Arbitrum claims that the average size of an AVM one-
step proof is ~200B, with a maximum of ~500B. However,
we expect the proof sizes in both Nitro and Cannon to
be significantly larger than that of the AVM, since they
generate one-step proofs on lower-level ISAs, which use a
flat memory model like that of the EVM (no experimental
results have been made public yet by either project).

The EVM is not designed to generate succinct one-step
proofs. However, given the rarity of disputes, we argue that
the OSP sizes are practical.

6.2. One-step proof verification cost
The average gas cost for the verification of the one-step

proofs generated—again, ignoring contract size effects—is
109k gas (min. 78k, max. 897k). For reference, a typical
Uniswap v2 swap transaction on Ethereum consumes ~170k
gas. This is 2-3 orders of magnitude under the Ethereum
block limit. Figure 8 provides a distribution of verification
gas cost on a per-opcode basis.

When contract bytecode is included in one-step proof
for either opcode proof or code proof, the average gas cost
is 629k gas (min. 155k, max. 1,874k). This increase in gas
cost includes the cost of including the contract bytecode
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Figure 8: Verification gas costs for evaluated transactions (sans contract effects). Illustrates gas cost distribution on a
per-opcode basis, along with the distribution of opcodes in the contract.

in calldata, copying it into memory, and hashing to verify
its consistency. Given that contracts deployed on Ethereum
cannot exceed the size limit of 24KB, we estimate that the
maximum gas cost in the worst case will not exceed 3,000k
gas (i.e. only 10% of the Ethereum block gas limit). Thus,
the worst case verification cost is still practical.

Aside from the gas cost introduced by the contract
bytecode inclusion, a significant factor in proof verification
gas cost is MPT proof verification for opcodes that access
the world state, as shown in Figure 8. SSTORE requires
four MPT proofs, including two for the account and storage
(one for the storage slot of the committed state for gas
charges and one for the storage slot write). For opcodes that
may access unbounded memory, the gas costs of verifying
different sub-steps are grouped together. For KECCAK256 in
particular, there are significant differences in the gas costs
associated with verifying each of its three types of sub-
steps—giving the appearance of a bimodal distribution.

6.3. Erigon proof generation
We also evaluated the SpecErigon prover on the ran-

domly generated 300 transactions. The SpecErigon prover
successfully generated the same proofs (non-determinism
such as block timestamps aside) as SpecGeth, which were
able to pass verification. We measure the latency of generat-
ing a one-step proof on SpecErigon to be ~6.5ms on average.
While 10x slower than SpecGeth because of the adapter
efficiency, the proof generation latency is also negligible.

7. Discussion
7.1. Related Work

Existing rollups can be categorized as either optimistic
rollups or validity rollups (also colloquially referred to as
zk-rollups). We now touch on the relevance of our work in
the context of the latter.

In a validity rollup, a state update posted on-chain
must be accompanied with a validity proof (for example,
a SNARK) that convinces the L1 verifier of the correctness
of the computation. The security of a validity rollup relies
on the soundness of the SNARK verifier. The TCB therefore
contains a complex SNARK compiler and proof verifier that
use heavy cryptographic machinery. Not only can this be
difficult to understand and audit, there is a non-trivial risk of
encountering soundness or circuit-level semantic bugs [56]–
[58]. Incidentally, this machinery also poses a challenge
for popular formal methods tooling, such as SMT solvers.
While there has been some progress towards the formal
verification of simple SNARK constructions [59], proofs of
soundness for more complex constructions, such as those
used by zkEVM systems, have thus far been out of reach.

7.2. Future Work
Formal verification. We plan to formally verify our L1
verifier against an existing executable Ethereum formal
specification [21], [22] to further reduce the TCB size.
Specifically, the objective is to verify the correctness of
the EVM bytecode compiled from the Solidity contracts,
eliminating the compiler from the TCB in the process.

However, directly verifying against the specification
at the EVM bytecode level is beyond the capabilities of
current tooling. Fortunately, Solidity compilers operate on
a semantically-rich intermediate representation (IR), Yul.
Therefore, to achieve modular and incremental verification,
one approach is to leverage Dafny to (1) verify the L1
verifier against the specification at the Yul-level; and (2)
establish a refinement relation between the verifier IR and
bytecode. This removes trust in the compiler altogether.
Lower-cost proof verification. The proof system relies on
naive instruction emulation to introduce minimal crypto-
graphic assumptions and facilitate the application formal
methods. This comes at the price of verification performance



and cost. However, this can be easily addressed through a
two-tiered proof system design as follows, without signifi-
cantly modifying the TCB.

A more efficient proof system (P1, V1) (e.g. using a
SNARK [48]) is chosen to serve as a default fast-path,
while the simpler proof system (P2, V2) serves as a more
trustworthy fallback, only in case the verifier V1 is differ-
entially determined to be unsound off-chain. This is made
possible by simply adding an additional short time delay
post-verification by V1, in which a disagreeing proof may
be submitted to V2. There is no additional on-chain cost,
except when V1 is unsound.
Lower-cost normal execution. The majority of the cost
to transact is a function of storing transaction batch data to
L1. We can therefore reduce L2 transaction fees by an order
of magnitude through the compression of transaction batch
data prior to sequencing. DEFLATE [60] is used by other
rollups [6] and works well in practice. Moreover, because
DEFLATE is well-specified by its RFC and comes packaged
in several compression libraries, it lends itself to 1-NVP.

8. Conclusion
In this work, we examine the problem of designing and

implementing a secure, trust-minimized optimistic rollup.
We study the connection between IFP protocol design and
NVP, and outline the properties of prior and existing ORU
systems in this context. We propose an approach that ad-
dresses the limitations of the state-of-the-art, and realize
this approach in practice by building Specular, an ORU that
leverages opportunistic 1-NVP to provide a secure, trust-
minimizing scalability solution for Ethereum.
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Appendix A.
One-step proof
A.1. One-step state definition

We elaborate on the structure of the one-step state ω and
the structured commitment to it below (including notation
defined in [1]):
Block state. A block state ωb has the following fields to
completely describe the state of a finalized block:
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State type Structure
inter-block batch || blockNumber || r(σ) || cumulativeGasUsed || r(Tb)

inter-tx
batch || blockNumber || transactionIdx || r(σ) ||cumulativeGasUsed ||

blockGasUsed || r(Tb) || r(Tt) || r(Tr)

intra-tx

batch || blockNumber || transactionIdx ||Ie || µg || Ar || HOSS(lastDepthState) || Ia || σ[Ia]c ||
Is || Iv || callFlag || out || outSize || µpc || Ib[µpc] || size(µs) || Hstack(µs) ||size(µm) ||

r(µm) || size(Id) || r(Id) || size(µo) || r(µo) || r(σ) ||H(At) || r(accessList) || H(Al)

TABLE 2: One-step state serialization structure. Passed into a collision-resistant hash function (e.g. KEC). size(·)
represents the size of the input structure in bytes, and r(·) represents the root hash of a Merkle tree or a Merkle Patricia
tree. Note: some parameters are omitted when they are not needed or can be derived.

batch The batch number of the current block.
blockNumber The number of the current block.
σ The EVM world state after finalization of the current

block represented in a trie.
cumulativeGasUsed Cumulative gas used by this

block and all its ancestors.
Tb a Merkle tree of 256 previous block hashes (including

current block). The block hash of block i is stored at
the leaf of index i%256, given block i is the current
block or one of the 255 ancestors of the current block.

Inter-transaction state. An inter-transaction state ωint has
the following fields to completely describe the state between
transactions:
batch The batch number of the current block.
blockNumber The number of current block.
transactionIdx The idx of the transaction right be-

fore this state.
σ The EVM world state after finalization of the previous

transaction, represented in a trie.
cumulativeGasUsed Cumulative gas used within the

current block.
blockGasUsed Cumulative gas used before the current

block.
Tb the Merkle tree of 256 previous block hashes (exclud-

ing current block).
Tt the transaction list with all transactions before this

state, represented in a trie.
Tr the receipt list with receipts of all transactions before

this state, represented in a trie.
Intra-transaction state. An intra-transaction state ω has
the following fields to completely describe the EVM state
during its execution:
batch The batch number of the current block.
blockNumber The number of the block where the cur-

rent transaction belongs.
transactionIdx The index of the current transaction

in the block.
Ie The execution depth (i.e. how deep the call stack is) in

the current point of execution. If the current executing
contract is directly called by the transaction, the Ie is
1.

µg The gas available to the current call.
Ar The gas to refund at the end of execution.
lastDepthState The OSS of the caller at the time

when the current contract is called without calling

arguments on stack. If Ie is 1, the lastDepthState
is σ0, the EVM checkpoint state before transaction
execution.

Ia The address of the current executing contract.
Is The address of the caller.
Iv The value that passed along with the call in the current

point of execution.
callFlag The type of calling opcode is used when

the current contract is called. 0 for CALL, 1
for CALLCODE, 2 for DELEGATECALL, 3 for
STATICCALL, 4 for CREATE, 5 for CREATE2. If Ie
is 1, the callFlag is always 0 if the transaction is
a contract call, or 4 if the transaction is a contract
creation.

out The starting offset of where the return data should be
copied to the caller’s memory when the current contract
returns.

outSize The size of the return data that should be
copied to the caller’s memory when the current contract
returns.

µpc The offset of the current executing opcode.
Ib[µpc] The current executing opcode.
σ[Ia]c The codeHash in the account state of the current

executing contract.
µs The EVM execution stack in the current point of

execution, with each element of 256 bits. The hash of
the stack is defined of hash chain of the elements in the
stack, starting with the bottom of the stack. The hash
of an empty stack is zero hash.

µm The EVM execution memory in the current point of
execution as a byte array. The byte array is segmented
in 256 bits to form cells. The last cell is padded with 0s
if its length is less then 256 bits. Then cells are stored
in a Merkle tree, the leaf node of which is in format of
offset || cell, where offset is the offset of the
cell.

Id The input data to the contract being executed. It is built
as a Merkle tree similar to µm.

µo The return data of the last returned call, empty if no
contract is returned yet. It is built as a Merkle tree
similar to µm.

σ0 The World State of EVM before the transaction exe-
cution represented in a trie.

σ The World State of EVM in the current point of exe-
cution represented in a trie.



At the self-destructed set. In Specular, the hash of the
self-destructed set is defined as the hash chain of self-
destructed contract addresses in order.

Al logs emitted during the transaction. The hash of the log
series is defined as the hash chain of all logs emitted
in order.

Tb the same block hash tree as of the inter-transaction
before the current transaction.

T (Aa, AK) the set of accessed account addresses and
storage keys for changing gas metering behaviors. In
Specular, the access list is constructed as a Merkle
Patricia trie where the key is the account address and
the value is the storage keys accessed.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary
This paper presents Specular, an L2-native and inter-

active fraud proof optimistic rollup (ORU) framework and
provides concrete instantiations for EVM-based systems.
The main issue of current EVM-based ORUs that Specular
addresses is that the rollup program binary and the on-
chain verifier are too tightly coupled, which leads to their
inability to support n-version programming, complex trusted
computing base, and opaque upgrade processes.

B.2. Scientific Contributions
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance
1) L2-native interactive fraud proof ORU is a novel so-

lution to known problems in EVM-based ORUs, with
the advantages of supporting diverse Ethereum clients
and reducing the size of TCB.

2) The paper demonstrates careful and reasonable state
commitment and proof engineering considerations.
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