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Abstract—We propose a mixed logical and game theo-
retic framework for modeling decision making under the
potential for deception. This framework is most appropri-
ate for online communities in which a decision maker must
act upon information being provided by various sources
with various different motivations. We show that in the
simple three-player game we propose there are always
equilibria in pure strategies. We then extend the three
player game to a case where there are mixed strategy
equilibria. We discuss how to approximate the truth of
a given statement using a logical construct and how this
can be used as a proxy in payoff functions. Finally we
discuss as future directions the use of regret functions and
live play.

Index Terms—Deception, Game Theory, Social Net-
works, Formal Models

I. INTRODUCTION

The head decision maker of a crisis response team

during a regional flood, receives notice that a shelter

the next town over that has taken in displaced persons

and is in need of food, water, and blankets. There are

conflicting reports as to whether the main road to the

next town is passable, Vetted personnel are not in the

area and aerial imagery is not available. Checking the

message stream on Twitter offers conflicting accounts.

Some posts read the road has been washed out, other

read that road is passable. Who does the decision maker

trust when the person tweeting is unknown? Even if

the person seems trustworthy, how do you know the

information offered is true?

Trust is the foundation for all human interaction.

Trust allows people to feel comfortable taking risk when

interacting or exchanging with others. Without trust,

people would cease interacting with each other, societal

functions would slow to a crawl as would business

operations, countries would seal themselves off from

each other if not start outright war. From buying a pack

of gum, to asking for directions on a city street, trust

enables people to establish expectations, weigh risks,

and proceed in a course of action until events unfold

that causes people to think and behave differently. Trust

is a heuristic decision rule that allows decisions to be

made in a matter of seconds rather than engaging in

long mental processes of rational reasoning.

While trust is largely recognized as a varied con-

cept across disciplinary study, there is little consensus

among researchers as to how trust should be properly

defined. Early research on the concept is grounded in

interpersonal interaction on psycho-social and business

relations, while more recent studies focus on a business

perspective in virtual environments, privacy concerns in

social media, and the use of microblogging in crisis

research.

Since the Middle Ages, technology has played a

part in mediating peoples perception of trust. From the

invention of Gutenbergs printing press to the creation

of the Internet and World Wide Web, people have

always had an ambivalent relationship with communi-

cation technologies and the information gleaned from

them. With the introduction of each new technological

artifact, society often questions whether this new tool

will benefits or harm society as we know and operate

within it.

As more and more of our communication occurs

online, our ability to use critical cues such as knowledge

of the information source, facial or body language and

common references becomes difficult or impossible. This

leaves few alternatives. Dax Norman, a cryptologist

in the United State National Security community, de-

veloped a trust-scale by which consumers of online

information could evaluate the trustworthiness of a web-

site [1]. Author reputation, author affiliations, expert

recommendations of the site, corroborated information,

identifiable sources, official branding, and professional

look all serve to instill a sense of trust in the content

that a consumer views [2]. While most of the attributes

Norman describes were recommended by professional
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analysts interviewed for his thesis, the overall study

lacked academic rigor in the ethnographic methodology

as the author also included personal perceptions as trust

factors. Nonetheless, the trust scale still serves as a

model within the intelligence community.
Alternate approaches include the Wikipedia approach

of crowdsourcing. Enabling the public to crowdsource

in online problem solving, allows the online consumer

to pick and choose information they trust is relevant and

useful. However, this also allows for the contribution

of poor quality and even false information [OO00].

Wikipedia, the most popular interface for crowdsourcing,

mitigated this problem by requiring registration in order

to contribute to the wiki and by also employing wizards

(editors) who manage and question content [3]. Despite

a public perception of the wiki lacking veracity, a

procedure of vigorously edited and reviewed articles that

earn the Wikipedia bronze star for accuracy, has resulted

in an populist system that has been shown these select

articles to be as accurate as the Encyclopedia Britannica

[3], [4], [5].
Lastly, the use of reputation systems [6] in e-

commerce is common. In these systems, potential de-

ceivers (sellers) are given a reputation which can be

influenced by the users of the system. [6] attempts to

deal with the problem of sybil-attack, which can bias a

reputation positive. Problems of sybil-detection have also

been considered [7] for cleaning reputation systems.
In this paper, we attempt to build a model for moti-

vating deception through both game theory and semantic

content. We eschew the challenging problem of automat-

ically recognizing the semantics information in online

communication and assume via deus ex machina that a

collection of logical assertions is available that will be

played by a teller. An actor will have to decide whether

to act on specific information provided by the teller and

will use information about the world she already has.

Payoffs are received based on the actions of both players.

II. NOTATION

A language L is a triple 〈F,R,C〉 where:

1) F is a set of function symbols f , each with positive

integer arity nf ,

2) R is a set of relation symbols R, each with non-

negative integer arity nR, and

3) C is a set of constant symbols c.

For us, the constants in the logical language represent

the elemental constituents of the real-world. Functions

are used to describe the interactions between these basic

components that produce new structures. The set of all

interactions is called the set of L-terms; it is the smallest

set T such that

1) c ∈ T, where c is a constant of the language L,

2) x ∈ T, where x is a variable in V and

3) if f is an n-ary function and t1, . . . , tn are terms,

then f(t1, . . . , tn).

We assume a finite but arbitrarily large reserve of

variables V. Relationships between various terms are

described by formulas. We consider only a special type

of formula, namely the smallest set Φ such that:

1) R(t1, . . . , tn) ∈ Φ, where t1, . . . , tn are L-terms

and R ∈ R is an n-ary relation symbol,

2) if ϕ ∈ Φ, then ¬ϕ ∈ Φ, and

3) if ϕ, ψ ∈ Φ, then ϕ ∗ ψ ∈ Φ, where ∗ ∈ {∧,∨,→
,↔}.

A formula with no free variables is called a sentence.

The reader familiar with logic will recognize that we

are somewhat restricting ourselves, considering only

bounded quantifier formulas. Our assumption will allow

us to specify the correspondence between logical for-

mulas and mixed integer linear programming problems.

Finally it should be noted that any existential quantifier

in bounded predicate calculus can be reduced to a

disjunction over the universe of objects, while a universal

quantifier can be reduced to a conjunction.

To complete our logical description of a system, we

must describe the system itself. An L-structure or model
is a tuple M = 〈M,FM,RM,CM〉, such that

1) M is a set called the universe,

2) FM is a set of functions fM : Mnf → M , with

nf the arity of the function symbol f ∈ L,

3) RM is a set of relations RM : RM ⊆MnR , where

nR is the arity of R ∈ L,

4) and CM is a set of constants in M .

By |M|, we mean |M |. When |M| is finite, we call M

a finite model. Models provide a way of assigning truth

values to sentences. Let M be a model of a language

L. We say that an L-sentence ϕ is true in M if when

we replace each function, relation and constant in ϕ
with its corresponding function, relation or constant in

M, then the resulting statement holds in the grounding

provided by M. Otherwise, the sentence is false. (This

is the Tarskian definition of truth [8].) If this is the case

we write M |= ϕ, where ϕ is the sentence in question.

Let Φ be a set of sentences, by Mod(Φ) we mean the

set of all models that make each sentence in Φ true.

III. A MEASUREMENT OF TRUTH AND FALSEHOOD

We assume the existence of a language L = 〈C,R〉
consisting of constants C and predicates R and no

functions. Any arbitary language can be converted to

such a language as needed [8]. We will also assume we
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are working in the first order predicate calculus, though

extensions to higher-order logics may be permissible.

Without loss of generality, we will impose a finite

model hypothesis on sentences constructed in our lan-

guage and thus given a fixed model size any sentence

can be written in conjuctive normal form. A formula is

in conjunctive normal form (CNF) if it may be written

as:

ω =
M∧
i=1

ϕi (1)

where for each i,

ϕi =

Ni∨
j=1

ψij (2)

and ψij = Rij(t1, . . . , tnij
) or ¬Rij(t1, . . . , tnij

), with

Rij a predicate.

It is well known that any formula ϕ in propositional

calculus may be rewritten as an equivalent formula in

CNF [8]. Since we assume that our logic has a bounded

universe, we may assume formulas are given in CNF.

Clearly given any model M that instantiates the lan-

guage L, the Tarskian definition of truth maybe applied.

However, this definition is far to narrow to suit our

purposes. To each sentence ω, we wish to associate a

rational value pω|M that is the proportion of truth within

the sentence. If ω is as given in Equation 1 then:

IMi (ω) =

{
1 if M |= ϕi

0 otherwise
(3)

Then:

pω|M =
1

N

M∑
i=1

Ii(ω) (4)

We assert that this definition gets to the very heart of

deception insofar as it attempts to capture the notion of

“a little true.” Deception hinges on the believability of

the underlying story being told. A story that is 90% true

with 10% falsehood is more likely to be accepted as

factual than a story that is 10% true and 90% falsehood,

particularly in the presence of additional, corroborating,

information. Clearly, for any sentence ω with pω|M <
1, ω is a false sentence, but the degree to which it is

false is what is measured by pω|M. For the remainder of

this paper, we will assume there is a special (potentially

unknowable) model G, ground truth which describes the

absolutely true state of world. We will discuss G later.

IV. GAME THEORETIC MODEL OF DECEPTION

Consider a simplified world in which there are two

players, Actor, Player 2 and Teller, Player 1. Player 2

will choose to act upon the information received from

Player 1. We will assume time to be epochal and without

loss of generality, we assume that at any time n both

players have a common set of sentences Φn. These

sentences may be axiomatic (e.g., “the sky is blue in the

daytime”) or they may be common information shared

by the players over the course of the evolution of the

situation. At time n = 0, there is an original (potentially)

empty set of axioms Φ0 that are introduced.

At time n, suppose Player 1 wishes to provide a

sentence σ �∈ Φ to Player 2. The result will be Φn+1 =
Φn∪{σ} if Player 2 agrees to act. There are three (gross)

possibilities:

1) For every model M so that M |= Φn, M |= σ.

That is, in every possible way the world could be

so that all sentences in Φn hold simultaneously, it

is also true that σ must be true.

2) For every model M so that M |= Φn, M |= ¬σ.

That is, in every possible way the world could be

so that all sentences in Φn hold simultaneously, it

is also true that σ must be false.

3) There are two models M1 and M2 so that

M1,M2 |= Φn but M1 |= σ and M2 |= ¬σ. That

is, σ is independent of the set Φn.

Since Player 1 is providing the information σ, we

assume that Player 1 knows whether G |= σ even if G is

not completely knowable. Furthermore, we assume that

Player 1 knows pσ|G. In the absence of this assumption,

we can assume that Player 1 can compute a proxy value:

pσ|Φn =

∑
M∈Mod(Φn)

pσ|M
|Mod(Φn)| (5)

This can be approximated, if necessary, by sampling the

space of models. An algorithm for such sampling can be

obtained from the hypothesis space search algorithm in

[9].

At any given time n, Player 1 will have a finite

(but perhaps large) set Ψn of sentences that can be

told to Player 2. Thus, the strategy set for Player 1 is

Ψn while the strategy set for Player 2 is B = {0, 1},
where 0 indicates no action is taken and 1 indicates an

action is taken. Let Player 2’s strategy be x ∈ B given

σn ∈ Ψn. Then Player 1 receives reward π(1)(x, σn).
We will assume that the marginal payoff π(1)(1, σn) is

monotonically increasing with pσn |G while π(1)(0, σn)
is monotonically decreasing with pσn |G. That is, given

Player 2 chooses to act, he obtains a better reward the

more true σn is and if Player 2 chooses not to act, he

obtains a higher cost (worse reward) the more true σn
is. At any time epoch, ignoring global concerns, Player
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2’s problem is:

max
x∈{0,1}

x · π(2)(1, σn) + (1− x) · π(2)(0, σn) (6)

However, since Player 2 does not know pσn |G, he may

use pσn |Φn as a proxy. To differentiate this case, we

write: π(2)(x, σn|Φn) to denote the computed payoff

based on an estimate of the veracity of σn from Φn,

while π(2)(x, σn) is the true payoff.

At any time epoch, we have a simple two player

sequential game illustrated in Figure 1. Let

1

2 2

σn1 σnm

0 1 0 1

Fig. 1. A notional game tree describing the interaction between Teller
and Actor.

x∗(σn) = arg max
x∈{0,1}

x·π(2)(1, σn)+(1−x)·π(2)(0, σn).

(7)

Then, Player 1’s problem is:

max
σn∈Ψn

x∗(σn) · π(1)(1, σn) + (1− x∗(σn)) · π(1)(0, σn)

(8)

V. MULTI-TURN GAME MODEL

Based on the simple two player game described above,

we now provide a simplified multi-turn game that de-

scribes the interaction between players over time.

1) At time 0, all players have an initial information

set Φ0

2) At each time n ≥ 0, Player 1 chooses a strategy

σn from Ψn and presents it to Player 2.

3) Player 2 chooses a strategy x ∈ B.

4) Player 2 determines whether G |= σn, Φn is

updated to Φn+1.

5) Player 1 gains a reward of π
(1)
n (x, σn) and Player

2 gains a reward of π
(2)
n (x, σn).

6) Player 2 decides whether to continue the game or

halt play. If play continues, then return to Step 2.

Halting play occurs when Player 2 no longer wishes

to accept information from Player 1. This occurs in

the real-world when an actor decides that a source is

untrustworthy and will no longer act on information

provided by that source.

The objective of the game is to obtain the largest net

payoff possible. We can assume a time discounted payoff

function to consider arbitrarily long games. That is:

R(i) =
N∑

n=0

βnπ(i)
n (xn, σn) (9)

where β ∈ (0, 1). We denote this game as G(N). It is

easy to see that this is just an extension of the game

defined in the previous section, which can be presented

by the multi-period game tree illustrated in Figure 2.

1

2 2

0 1 0 1

2 2

True False

1

Continue Stop

σ11 σ1m

σ2m2σ21

Fig. 2. A notional game tree describing the interaction between Teller
and Actor in a multi-period game.

Definition 1 (Strategy). Let V (i) represent the vertices

controlled by Player i in the game tree representing the

multi-period game (see Figure 2). A strategy is a rule

that determines the decision made by Player i for each

vertex in V (i).

Let s1, s2 be strategies for Player 1 and 2 respectively.

Let R(i)(s(1), s(2)) be the cumulative payoff for Player

i when the players use these strategies.

Definition 2 (Equilibrium). A strategy pair (s∗1, s
∗
2) is

an equilibrium if:

R(i)(s∗i , s
∗
−i) ≥ R(i)(si, s

∗
−i)

By (si, s−i) we simply mean the strategy for Player i
and a corresponding strategy for the alternate player −i.
Proposition 1. For any finite N , there is at least one
equilibrium strategy (s∗1, s

∗
2) for G(N).
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Proof: See the proof of Theorem 4.52 in [10].

Remark 1. Note the previous proposition also holds if

we allow randomness in the next Player 1 strategy set.

That is, if after Step 6 in going to Step 2, we randomly

choose Ψn from a finite set of possibilities, then there

is still at least one equilibrium strategy.

Player 1 has a motivation to deceive Player 2, if there

is at least one vertex in v ∈ V (2) so that the strategy

s∗1 causes Player 1 to play σv with the property that

pσv |G < 1.

We may add to the computational richness of this

game in a number of ways. The easiest one is to consider

a three player Markov game [11]. In this game, a player

Nature will determine the truth or falsehood of the

statement σn in an attempt to hurt Player 2 as much

as possible. Player 2 is then playing a modified zero-

sum game with Nature each time he moves; Player 2

has the four strategies: believe and continue, believe and

stop, disbelieve and continue, disbelieve and stop. The

resulting state of the game is then a function of choices

of the players. If we denote this game by G′(N), then

we have:

Proposition 2. For any finite N , there is at least one
equilibrium in mixed strategies for the players in G′(N).

Proof: The result follows from [11] and the proof

of Theorem 4.52 in [10] with an appropriate application

of dynamic programming.

Remark 2. Computationally, the game G′(N) is not

a traditional zero-sum game. Nature’s move may be

constrained by the nature of Φn. That is, if Φn represents

ground truth and Φn �|= σn then Nature cannot force σn
to be true. This information can be used by Player 2 to

constrain his loses to Nature (and indirectly to Player 1).

Another extension motivated by the functioning of

the Department of Defense or other Nongovernmental

Organization (NGO’s) is to break Player 2’s role into

two players: an analyst and an actor (generally a field

officer). The analyst will still make a decision on whether

to believe or disbelieve Player 1’s output while the actor

will decide whether to act on information provided by

the analyst. In this case, the payoff to the actor will be

much higher (or lower) than the payoff to the analyst.

Again, this game will have at least one Nash equilibrium.

VI. TRUST, MISTRUST, DISTRUST, MISPLACED

TRUST

Based on the above definition, we are now in a

position to define several common terms used in the trust

literature [12]. Fix two strategies s1 and s2 for the two

players in an instance of G(N). Then:

1) Player 2 trusts Player 1 at vertex v ∈ V (2) if

s2(v) = 1.

2) Player 2 trusts Player 1 if for all v ∈ V (2), s2(v) =
1.

3) Player 2 distrusts Player 1 at vertex v ∈ V (2) if

s2(v) = 0.

4) Player 2 distrusts Player 1 if for all v ∈ V (2),

s2(v) = 0.

5) Player 2 mistrusts Player 1 if there is some vertex

v at which Player 2 distrusts Player 1.

The concepts of trust and distrust are easy to see now

that a payoff is involved. A more interesting condition

is the case of incorrect trust. Suppose there is at least

one vertex v ∈ V (2) so that s2(v) = 1 so that when

we define a new strategy s′2 equal to s2 in every way

except s′2(v) = 0 we have R(2)(s1, s2) < R(2)(s1, s
′
2),

then Player 2 has incorrectly trusted Player 1.

VII. FUTURE DIRECTIONS: REGRET FUNCTIONS

AND LIVE PLAY

We would like to use this model to attempt to un-

derstand the behavior of individuals in situations where

trust is required. In real life, Player 2 will never play to

maximize his total payoff since computing this maybe

impossible. Instead, he may attempt to minimize a regret

function. Recall at vertex v ∈ V (2), Player 2’s problem

is:

max
x∈{0,1}

x ·π(2)(1, σv|Φv)+(1−x) ·π(2)(0, σv|Φv) (10)

Player 2’s vertex regret function [13] is defined as:

ρ(x) = −1
(
xπ(2)(1,⊥) + (1− x)π(2)(0,�)

)
(11)

This is the cost incurred from false positive and false

negative actions as a result of choosing to accept or reject

the statement given by Player 1.

By way of example, suppose Player 2’s payoff matrix

at a given vertex is given by:[
10 −100
−10 5

]
Here Player 1 is the row player and his strategies are to

tell the truth or lie. Player 2 is the column player and

his strategies are to accept the statement as true and act

or declare it false and act. In this case, Player 2 suffers

a large loss if he fails to act on true information. Then

the regret function is:

ρ(x) = 10x+ 100(1− x)
which has minimum when x = 1, suggesting that Player

2’s minimum regret strategy is to believe Player 2. We

can compare this to the case when Player 1 and Player
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2 are engaged in a zero-sum game (and Player 2 cannot

evaluate the veracity of Player 1’s assertion). In this case,

Player 2’s Nash equilibrium is to trust 84% of the time

and distrust 16% of the time (that is x = 0.84). Then the

regret function value is 8.4− 16 = 24.4. It is important

to recognize that this regret function is computed as the

worst possible case Player 2 can observe. Other regret

functions can be defined in other ways.

Regret can play an important role in decision making.

Suppose that pσn
|Φn is very small, but the cost of

making an incorrect decision is very high. The proba-

bility will bias an individual toward favoring disbelief,

but regret may bias an individual toward belief, just in

case. This is an important component of determining an

estimate of pσn
|Φn.

Computing π(2)(x, σv|Φv) (x ∈ B) the wall clock

time must be taken into consideration. It may be that

to compute the exact value of π(2)(x, σn|Φv) is very

computationally intensive because of the nature of Ex-

pression 5. However, sub-sampling Mod(Φv) can lead to

performance speedup. The question then becomes, how

little time should be allotted to confirming the veracity

of a given statement σn?

To answer this question, we may assign to the teller

a level of trust τv at each vertex v ∈ V (1). When τv
is small, exploration of the space Mod(Φv) is extensive

in an attempt to determine a good approximating value

of π(2)(x, σv|Φv). When τv is large, exploration of

Mod(Φv) is small because trust is placed in the behavior

of Player 1. We can think of 1/τv as determining the

amount of time we are willing to spend “checking out

Player 2’s story” as opposed to getting along with the

game. Naturally, we can monetize this in the game as

well, incurring a cost for each time unit spent computing

π(2)(x, σv|Φv). The result will be an incentive to trust

whenever it is unlikely that doing so will not increase the

regret function (or decrease overall payoff). Techniques

like those presented in [6] can be used for reputation

management. Clearly this extension should be studied in

greater detail.

VIII. EXPERIMENTAL TESTING OF THE MODEL

We have designed a simple computer game for evalu-

ating our assumptions on behavior in scenarios in which

they must evaluate the truth of statements made by

individuals. The game is a variation of Minesweeper
and will be played by students who hope to become

analysts for the United States Department of Defense.

In the game, a terrorist cell is hiding within a 10 × 10
grid. A terrorist organization must be located within two

units (by the Manhattan metric) of a cell phone store to

efficiently obtain radio communications parts for remote

Fig. 3. Screenshots of the test software to be delivered to analysts in
training.

detonation. A player can mark a cell as potentially

containing the terrorist cell or not possibly containing

the cell. The player can also initiate an attack (act).

False attacks are penalized (because local sentiment turns

against the aggressors). Players are given information

by five computer players who provide true and false

information at varying rates. The information is easy to

parse, to allow post-hoc analysis of the optimal strategy

for the player. The player advances the game by using a

“Done Turn” button, which triggers Player 1 to provide

his next statement. Occasionally, the terrorist cell will

strike and the player incurs a penalty. Attacks occur at

least two units from the terrorist cell but no more than

five units away. A score can be optionally displayed.

We will track the player’s behavior by recording

their moves in the game. This will allow us to analyze

strategic thinking after game play is done. We will also

analyze responses to questions regarding which of the

computer players seemed most trustworthy based on

repeated play. The objective of these experiments is to

determine whether the game-theoretic model proposed
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in this paper is a reasonable model of human behavior

in the presence of deception provided through text input

and in which the human can reason over true/false infor-

mation using established rules of behavior (representing

common knowledge).

IX. CONCLUSIONS

In this paper, we have presented a model of decision

making for an actor and a teller in an online setting when

semantic information is available about the statements

being made by the teller. We show the simple results

that in this game theoretic context there are equilibria

in pure strategies. In a richer context in which the

actor plays a constrained zero-sum game against nature

in which the truth of the teller’s statements is to be

determined by nature, there is an equilibrium in mixed

strategies. We suggest future directions that include the

use of a regret function and the incorporation of a

reputation management system that helps determine how

much wall-clock time should be spent in evaluating the

probability that a statement is false.
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