
LOOKING FOR NON-COMPLIANT DOCUMENTS USING

ERROR MESSAGES FROM MULTIPLE PARSERS

MICHAEL ROBINSON

Abstract. Whether a file is accepted by a single parser is not a reliable

indication of whether a file complies with its stated format. Bugs within both
the parser and the format specification mean that a compliant file may fail

to parse, or that a non-compliant file might be read without any apparent

trouble. The latter situation presents a significant security risk, and should be
avoided. This article suggests that a better way to assess format specification

compliance is to examine the set of error messages produced by a set of parsers

rather than a single parser. If both a sample of compliant files and a sample of
non-compliant files are available, then we show how a statistical test based on a

pseudo-likelihood ratio can be very effective at determining a file’s compliance.

Our method is format agnostic, and does not directly rely upon a formal
specification of the format. Although this article focuses upon the case of the

PDF format (ISO 32000-2), we make no attempt to use any specific details of
the format. Furthermore, we show how principal components analysis can be

useful for a format specification designer to assess the quality and structure of

these samples of files and parsers. While these tests are absolutely rudimentary,
it appears that their use to measure file format variability and to identify non-

compliant files is both novel and surprisingly effective.

1. Introduction

Modern file formats are often quite complex, yet the formal specifications for
some common formats can be ambiguous or confusing. A single parser is therefore
not a reliable arbiter of file format compliance: it may incorrectly deem a compliant
file as non-compliant, or conversely it may parse a non-compliant file (perhaps with
disastrous consequences). For widely used file formats, there are usually several
readily available parsers. It is natural to ask if a statistical approach that lever-
ages multiple existing parsers – but is otherwise format agnostic – might suffice to
discriminate between compliant and non-compliant files.

This article describes an exploratory technique and a statistical test for iden-
tifying files whose parser behavior is unusual. The techniques presented perform
no direct inspection of the contents of any file. Certainly the content of a given
file plays an important role in its usage, but the techniques of this article only
“see the content” through the lens of an ensemble of parsers. Our techniques are
therefore also well-suited to assessing the background variability of parser behavior
on different classes of files. Since our approach aims to leverage existing parsers in
their unmodified, uninstrumented state, the statistical techniques could be used on
many different file formats without much alteration.

For the purpose of this article, a file format consists of a set of compliant files and
a set of non-compliant files. Formal specifications specify properties that compliant
files must have, but formal specifications need not be present for there to be an

1

ar
X

iv
:2

01
2.

10
21

1v
1

 [
cs

.O
H

]
 1

5
D

ec
 2

02
0

2 MICHAEL ROBINSON

agreed-upon file format. This article presents a new statistical test, which we call
the Bernoulli misclassification test, that determines whether a given file is more
representative of the compliant files or of the non-compliant files. In order to
perform such a test, we require samples of both sets: namely a sample of compliant
and a sample of non-compliant files. Because realistic samples of files are large and
difficult to curate, the sample of compliant files may be contaminated with files
that should not be considered as compliant. Conversely, there may be some files in
our sample that are erroneously marked as non-compliant. Our statistical test is
designed to identify these misclassified files.

The foundation of any statistical approach necessarily relies on both data cov-
erage and sufficient sampling to ensure good estimation of the relevant governing
parameters. Our approach here is no different, as the basis of the statistical test
relies upon parameters estimated from the data in order to be effective. Given that
our approach is format agnostic, it is reliant upon not only a good sample of files
but also a good sample of parsers.

To test our approach, this article presents a case study using the PDF speci-
fication (ISO 32000-2), because there are many extant open source parsers with
distinct underlying codebases. The test data presented in this article were de-
veloped by an independent test and evaluation team in support of the “DARPA
SafeDocs Evaluation 2” exercise. The data consist of two datasets corresponding
to the samples explained above: a sample of largely compliant files and a sample of
largely non-compliant files. Each of the files (in both samples) was manually tested
for compliance, so that the performance of our statistical test could be determined.
While the fraction of misclassified files in the two datasets differ, the two datasets
were sufficiently clean so as to allow reliable enough parameter estimation for our
statistical test.

While the statistical methods discussed in this article are absolutely rudimen-
tary, they did locate files that were truly misclassified with surprising effectiveness.
Although these statistical methods surely do not suffice on their own for all pur-
poses, they are easy to deploy and understand. We suggest that they ought to be
part of the format hacker’s toolbox.

2. Historical context

There appears to be very little work in analyzing file format compliance using
statistical tools. In contrast to what we present here, most format compliance
assessment that the author is aware of is performed using techniques common in
compiler theory. For instance, [1; 11] explain the typical approaches.

The closest connections to this article appear to be various techniques for iden-
tifying malware using the structure of file contents rather than responses to those
contents. For instance [6] looked for statistical features characteristic of malware
present in headers of executable files. Using the structure of file contents, ran-
somware can be classified statistically [2; 12]. Similar to our use of error messages
on files, the distribution of API calls can be useful in identifying malware as it
executes [3]. Other behavioral indicators, such as performance counters [7] can be
useful as well. However, it appears that the use of statistical tools to determine file
format compliance is completely unanticipated and novel.

In a few cases, statistical methods are useful in identifying file formats that might
be difficult to archive or curate [8; 10; 9].

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 3

Table 1. Counts of files in the internet sourced and dangerous datasets

Dataset Valid Rejected Total

internet sourced 7206 1794 9000
dangerous 488 516 1000

Totals 7694 2306 10000

3. Data description

This article focuses on the analysis of PDF files, whose format is determined
by the PDF specification (ISO 32000-2). It is recognized that the specification
is ambiguous in places, and that there are many proprietary extensions to the
specification. Because of this, many “PDF files” may not be completely compliant
or may be close enough to compliance to parse correctly. On the other hand, bugs
within the parsers may cause them to accept non-compliant files. To explore these
issues, the test and evaluation team collected a corpus of “PDF files” into two
datasets: internet sourced and dangerous comprising a total of 10000 files.

Within each dataset, the files were manually determined to be either “valid”,
that is that they are compliant with the PDF specification, or “rejected”, which
means that they fail to comply with the specification. In this article, we treat
the “valid” or “rejected” determinations as experimental ground truth for the files.
Since our Bernoulli misclassification test did not use these determinations, we were
able to use them to estimate the test’s accuracy (discussed in Section 5). The overall
statistics of both datasets are shown in Table 1. A standard χ2 test reveals that
the differences in compliance between the two datasets is statistically significant
(p < 0.0001). Although it is far from true, we took the internet sourced set to
be our sample of predominantly compliant files, and we took the dangerous set
to be our sample of predominantly non-compliant files. The significant difference
between the two samples is precisely what our misclassification test leverages in
order to find misclassified files.

Rather than looking at the contents of each file, we reasoned that there are
already many extant parsers that do just that. Therefore, we ran each file through
each of a large collection of parsers shown in Table 2. We selected these parsers
based on their easy availability and with the understanding that many of them do
not share code. This latter fact ensures that places within the PDF specification
that are ambiguous may receive several interpretations by different parsers. The
output to stderr from each parser was collected for each file, and a set of 955
regular expressions were used to identify which error messages had occurred for
each parser-file pair (see Table 2).

As an example, the 1000-th file in the internet sourced dataset was considered
“valid,” yet produced 7 distinct messages:

58: caradoc extract: Type error : Invalid variant type,
254: caradoc stats: Type error : Invalid variant type,
393: caradoc stats strict: PDF error : Syntax error,
589: hammer: uncategorized error,
683: pdfium: uncategorized error,
910: xpdf pdfinfo: uncategorized error, and
911: xpdf pdftops: uncategorized error.

4 MICHAEL ROBINSON

M
es

sa
ge

 #
0

200

400

600

800

911

M
es

sa
ge

 #

0

200

400

600

800

911 0 250 500 750 1000

File # File #
(a) internet_sourced (b) dangerous

0 3000 6000 9000

Figure 1. The relation matrix for (a) internet sourced, (b)
dangerous. Rows correspond to the error messages listed in Ta-
ble 2. Columns correspond to files. In each matrix entry, white
indicates no error, black indicates error.

It is important to recognize that our method makes no attempt to interpret the
semantic meanings of these error messages. Instead, we are merely interested in
the statistics of the co-occurrence of these messages.

The data can be tabulated as an integer relation matrix, in which each row
corresponds to a particular regular expression (an error message in what follows)
and each column corresponds to a particular file. Each entry records the number of
times a given error message occurred for each file. Return values to the operating
system were not collected, though if desired these could have simply been added as
additional “messages” as rows in the relation matrix.

We constructed two relation matrices, one for internet sourced (Figure 1(a))
and one for dangerous (Figure 1(b)). Each relation matrix has the same rows (955
distinct error messages, as shown in Table 2) but different numbers of columns
(9000 for internet sourced and 1000 for dangerous).

Continuing our example of the 1000-th file in internet sourced, this file corre-
sponds to the 1000-th column of the relation matrix in Figure 1(a), and has 1s in
rows 58, 254, 393, 589, 683, 910 and 911, because each of these messages occurred
exactly once. It has 0s in all other entries in that column.

The horizontal dark bands present in both relation matrices shown in Figure 1
correspond to error messages that could not be categorized easily: not syntax errors
or other specific malformations. Some parsers produce these kind of messages more
frequently than others, which explains why some portions of the matrices show a
greater prevalence of dark horizontal bands than others.

Although there is some apparent structure visible in Figure 1, namely the dark
horizontal bands, it is difficult to discriminate any column-by-column differences.

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 5

Table 2. Error message counts and rows per parser

Parser First row Last row Total message regexes
caradoc extract 1 196 196
caradoc stats 197 392 196
caradoc stats strict 393 588 196
hammer 589 589 1
mutool show 590 635 46
mutool clean 636 681 46
origami pdfcop 682 682 1
pdfium 683 683 1
pdfminer dumppdf 684 703 20
pdfminer pdf2txt 704 723 20
pdftk server 724 724 1
pdftools pdfid 725 729 5
pdftools pdfparser 730 734 5
peepdf 735 735 1
poppler pdfinfo 736 792 57
poppler pdftocairo 793 849 57
poppler pdftops 850 906 57
qpdf 907 907 1
verapdf greenfield 908 908 1
verapdf pdfbox 909 909 1
xpdf pdfinfo 910 910 1
xpdf pdftops 911 911 1
caradoc extract 912 913 2
caradoc stats 914 915 2
caradoc stats strict 916 917 2
hammer 918 919 2
mutool clean 920 921 2
mutool show 922 923 2
origami pdfcop 924 925 2
pdfium 926 927 2
pdfminer dumppdf 928 929 2
pdfminer pdf2txt 930 931 2
pdftk server 932 933 2
pdftools pdfid 934 935 2
pdftools pdfparser 936 937 2
peepdf 938 939 2
poppler pdfinfo 940 941 2
poppler pdftocairo 942 943 2
poppler pdftops 944 945 2
qpdf 946 947 2
verapdf greenfield 948 949 2
verapdf pdfbox 950 951 2
xpdf pdfinfo 952 953 2
Total 955

6 MICHAEL ROBINSON

(a) internet_sourced (b) dangerous

Figure 2. Principal components plots for (a) internet sourced

and (b) dangerous. Black indicate “valid”, and gray indicates
“reject”. The axes correspond to the three principal vectors, and
so are not plotted on the same scale.

These differences are indeed present, but require more sophistication to extract.
That statistical analysis forms the basis of most of this article.

4. Principal components analysis

To build some intuition about the structure of the relation matrices, let us de-
velop a dimension-reduced visualization of the columns (files) of both relation ma-
trices shown in Figure 1. While there are many possible techniques for dimension
reduction, principal components analysis is generally the easiest to construct and to
interpret. To better understand the structure of the data, we will incorporate the
ground truth as part of the visualization. This will help explain the performance
of the Bernoulli misclassification test statistic in the next section.

Principal components analysis is a way to render a high dimensional data set
that shows the “most important” dimensions and suppresses the rest. It is therefore
a convenient way to visualize data that are formatted as a set of points in Rn where
n is large. The output of principal components analysis is a scatter plot in which
the axes are chosen as the linear combinations of rows yielding the largest variance.
These axes are called the principal vectors, and are sorted from largest variance to
least variance. In our analysis, the largest three principal vectors were used because
they represented the majority of the variance in the data.

To apply principal components analysis, we reinterpret our tabular data as a
discrete subset of Rn (a point cloud) in which columns (files) are points, rows
(messages) are components of the coordinates for each point. In both datasets,
there are n = 955 messages. Because a file exhibits an error or not, the components
are all either 0 or 1. Although one might argue that this could result in quantization
error, many interesting features are nevertheless visible in the two datasets.

Figure 2 shows the principal components analysis plots for both datasets. Points
in both plots are colored according to the ground truth so that a point corresponding
to a “valid” file is black, and a point corresponding to a “rejected” file is gray.
The most striking difference in the principal components analysis plots is that the
internet sourced dataset is apparently much more “clumpy” than the dangerous
dataset. The three dense clusters in Figure 2(a) consist entirely of “valid” files, with

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 7

(a) internet_sourced (b) dangerous

Figure 3. Scree plots for (a) internet sourced and (b) dangerous.

most of the “rejected” files in the internet sourced data appearing as a “haze”
of files outside of those clusters. Although the cause of these three dense clusters
of “valid” files cannot be determined solely from the relation matrix – which files
are accepted by which parsers – we hypothesize that these clusters correspond to
popular tool chains for creating PDF files.

In stark contrast, the dangerous set shown in Figure 2(b) contains two loose
clusters that are mixed “valid” and “rejected” files. Intuitively, if one is looking
to identify “valid” files, one would have a much harder time doing this with the
dangerous set, so we might argue that the apparent signal-to-noise ratio is much
lower in the dangerous set.

Principal components analysis can be misleading if only a small fraction of the
overall variance in the data is explained by the first few principal vectors. It is
easy to determine if this problem is occurring – simply plot the variance in the
data explained by each principal vector. This is called a Scree plot [13], and is
shown in Figure 3. In both datasets, the Scree plots decrease quite rapidly over the
first few principal vectors. This shows that principal components analysis reliably
represents the data.

We can conclude that if one is generally working with files that are naturally
occurring (like the internet sourced set), one probably does not need to dig too
deeply to determine whether a given file is valid or not. The rest of this article
buttresses this claim by providing a statistical test that does just that. On the
other hand, if one is routinely handling files that test the limits of their format (like
the dangerous set), statistical analysis alone will likely be insufficient to determine
which files are valid. A deeper format-aware analysis would be necessary in that
case.

5. Bernoulli likelihood ratio misclassification test statistic

In order to determine file validity implicitly – by consulting parser behavior
rather than the specification itself – we need exemplars of parser behavior on
typical compliant and non-compliant files. We propose to use the fact that the
two datasets have rather different statistics (Table 1) with the majority of files in
internet sourced being “valid” while a (slim) majority of files in dangerous are
“rejected”. We can attempt to identify files in internet sourced that exemplify

8 MICHAEL ROBINSON

the parser behavior present in the dangerous dataset – these files probably should
be treated with suspicion, and are perhaps not “valid.” Conversely, files within
the dangerous set that behave more like those in internet sourced may well be
“valid.”

A file is misclassified if the set of messages it produces is more characteristic of
the other dataset but not the one in which it is presently found. We suspect that
such a misclassified file will have a collection of error messages that is unusual when
compared to the others in that dataset. We estimate the probability that each error
message occurs in each dataset, and estimate a likelihood for each file assuming the
error messages are independent. Since both datasets have the same error messages,
we can also estimate the likelihood that the file came from the other dataset. A
likelihood ratio statistic can thereby detect when a file is misclassified, because it
is more likely to belong to the other dataset.

Since we cannot assume that the occurrence of any given set of error messages is
statistically independent, it is difficult to write a proper likelihood function. To that
end, we use a pseudo-likelihood, which makes the incorrect assumption that error
messages are statistically independent [5]. On the other hand, this assumption
merely reduces the sensitivity of the test without producing extra outliers. The
pseudo-likelihood assumption trades recall to get better precision. As such, pseudo-
likelihoods are useful for classification but not for uncertainty quantification.

For the Bernoulli misclassification test, we assume each error message is gov-
erned by a Bernoulli distribution, which means that it either occurs or does not
occur. Multiple instances of the same error are ignored. The test assumes that
each error message occurs with a probability that depends on the dataset (either
internet sourced or dangerous). When a parser processes a given file, sometimes
it produces multiple copies of the same error message. This can happen if the parser
attempts to repair a slightly non-compliant file as it proceeds, for instance. If this
happens, then the Bernoulli distribution is no longer valid because it assumes at
most one instance of a given error message. Ultimately, the performance of the
Bernoulli misclassification test was good even though we ignored duplicate error
messages.

Let us consider the internet sourced dataset first. It is straightforward to
compute the probability pk of error message k occurring from the relation matrix:
simply take the average value of row k in the relation matrix shown in Figure 1(a).
The resulting probabilities for both datasets are shown in Figure 4. Said another
way, if file f is drawn from the internet sourced dataset, then the probability
that f produces error message k is pk. Conversely, the probability that f does not
produce this error message is (1− pk). If we let fk = 0 if the file f did not produce
error k and fk = 1 if the file did produce error k, then the probability that f is
from the internet sourced dataset is

pkfk + (1 − pk)(1 − fk),

if we only consider error message k.
Since we have many error messages available for analysis, the pseudo-likelihood

that file f (column in the relation matrix) is correctly classified is simply the product
of each of these individual probabilities, namely

Linternet sourced(f) =

955∏
k=1

(pkfk + (1 − pk)(1 − fk)).

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 9

(a) internet_sourced (b) dangerous

Figure 4. Error probability for (a) internet source and (b) dangerous.

We define Ldangerous(f) similarly using the error message probabilities p′k from the
dangerous set instead,

Ldangerous(f) =

955∏
k=1

(p′kfk + (1 − p′k)(1 − fk)).

We define the Bernoulli misclassification test statistic to be the ratio of these two
pseudo-likelihoods,

λinternet sourced(f) =
Ldangerous(f)

Linternet sourced(f)
.

If f is a file drawn from the internet sourced dataset, then we generally ex-
pect that Linternet sourced(f) will be larger than Ldangerous(f), which implies that
λinternet sourced(f) < 1. Conversely, if a file is drawn from the dangerous dataset,
which means it is a misclassification if it actually is present in internet sourced,
we would expect that λinternet sourced(f) > 1. The intuition is that since files in
the dangerous set are likely to be invalid, a high value of λinternet sourced(f) is an
indication that the file f is not compliant. A histogram of λinternet sourced is shown
in Figure 5(a).

Conversely, we can define

λdangerous(g) =
Linternet sourced(g)

Ldangerous(g)

for each file g in the dangerous set. The intuition in this case is that a high
value of λdangerous(g) is an indication that g is compliant, since it is likely to be a
misclassification. The histogram of values of λdangerous(g) is shown in Figure 5(b).

Since there is some variability (or noise) present within the data, we should not
use the value of λ = 1 as the cutoff for detecting misclassifications. Although the
intersections between the histogram curves and the red lines λ = 1 in both frames
of Figure 5 are close to the true fraction of misclassifications in both datasets (80%
for internet sourced and 48% for dangerous), they are not exactly correct. This
suggests using a different threshold T instead, so that all files whose statistic λ is
greater than T will be deemed to be misclassified.

Let us now use the ground truth, which specifies whether a given file is “valid”
or “rejected”, to determine the performance of the Bernoulli misclassification test

10 MICHAEL ROBINSON

(a) internet_sourced (b) dangerous

λ = 1

Figure 5. Histogram of Bernoulli misclassification test statistic
for (a) internet sourced and (b) dangerous. The horizontal line
marks a value of λ = 1.

(a) internet_sourced (b) dangerous

area under curve = 0.80

λ = 1

Figure 6. Receiver operating curves for Bernoulli likelihood ratio
misclassification statistic for (a) internet sourced and (b)
dangerous.

statistic. A misclassified file in internet sourced is one that is “rejected”, while
a misclassified file in dangerous is one that is “valid”.

In the case of either dataset, for a given threshold T , the probability of detection
is the probability that a truly misclassified file f will have a statistic λ(f) > T .
On the other hand, the probability of false alarm is the probability that a correctly
classified file f will have a statistic λ(f) > T . Ideally, the probability of detection
will be close to 1, while simultaneously the probability of false alarm will be close
to 0.

The plot of probability of detection versus false alarm for all thresholds is shown
in Figure 6. Better misclassification detectors have plots further to the upper
left, away from the diagonal. Since the curve plotted is far above the diagonal
for internet sourced in Figure 6(a), we conclude that the Bernoulli likelihood
ratio misclassification statistic is a very accurate detector of misclassified files in
internet sourced. Additionally, since the plot in Figure 6(b) is above the diago-
nal, this indicates that the Bernoulli likelihood ratio misclassification statistic also

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 11

performs well on the dangerous dataset set. The sharp plateau in Figure 6(b) is
due to a number of instances in which Linternet sourced took the value 0 on some
files in dangerous. These happen to be truly non-compliant files! These qualita-
tive assessments are confirmed by the areas under the curves in Figure 6. A perfect
misclassification detector will have an area of 1 under the curve, while a detector
that randomly decides misclassifications would have area 0.5 under the curve. We
obtained 0.95 for λinternet sourced and 0.80 for λdangerous for areas under the curve,
which we deem to be surprisingly good given the fact that the file contents were
not directly inspected by our method.

6. Parser redundancy analysis

The Bernoulli misclassification statistic relies upon the diversity of responses to
each file in order to make reliable decisions. It is impractical to use quite so many
parsers as we used, so it is useful to assess whether we could get good performance
with fewer parsers. The easiest way to do this is to measure the correlation between
the typical error message distributions produced by different parsers across all files.
In the following analysis, we combined both internet sourced and dangerous into
a single dataset, whose relation matrix consists of the horizontal concatenation of
both matrices shown in Figure 1. That is, the rows are the same as before, but the
columns consist of the union of the columns from both matrices. Error messages
(rows) that never occur were removed from the analysis, since they contribute no
information.

The data can also be visualized using principal components analysis, much as
was done in Section 4, but instead we use the error counts across files as coordi-
nates for each parser. Since specific error messages cannot be enabled or disabled
individually, it makes sense to aggregate the error messages into parsers by taking
the total number of error messages for a each parser on a given file. Principal
components analysis places the parsers according to the plot shown in Figure 7.
There is one large cluster (in the lower left of Figure 7) of parsers which have sim-
ilar behaviors. There are quite a few outliers, most notably caradoc extract and
poppler pdfinfo. The reader is cautioned that the apparent density of the large
cluster is a bit misleading, because the ranges of the axes are quite different. In
any event, the wide spread of parsers across the plot indicates that having a large
number of parsers is quite valuable.

Although principal components analysis is useful, we can obtain a ranking of
parsers by their redundancy, so that we can prioritize more informative parsers.
We computed Pearson’s correlation coefficient between all pairs of error messages
(rows), to form a fairly large correlation matrix (not shown). Different error mes-
sages that occur on exactly the same set of files have a correlation coefficient of 1.
In that case, one of those error messages is redundant. Errors were then grouped
by parser, and for each pair of parsers we stored the median correlation from each
of their pairwise message correlations. The result of this aggregation is the matrix
shown in Figure 8. Whiter colors indicate higher correlation – more redundancy
– while darker colors indicate lower correlation. Most of the matrix is fairly dark,
which indicates low redundancy overall. The bright off-diagonal entries indicate
trade-offs: one needs only run one of the two parsers indicated. The bright bands
for pdftools pdfid occurred because that parser did not correlate with any of the
others at all.

12 MICHAEL ROBINSON

Figure 7. Parsers placed in three dimensions according to prin-
cipal components analysis of the union of internet sourced and
dangerous.

The clusters visible in the Figure 7 can be confirmed by sorting the parsers based
on their median correlation. The rows and columns shown in Figure 8 are sorted in
this way. This indicates which parsers are individually most informative, because
they form an approximate spanning set for the data. The obvious block in the
lower right suggests that parsers should be grouped into two categories based on
their informativeness: high and low. The rows and columns of the block in Figure 8
suggest that the boundary between the high and low categories appears to be fairly
sharp, with all parsers to the left of origami pdfcop being highly informative.

Based on the approximate spanning property of the highly informative category,
which covers most of the variability visible in Figure 7, one should always run the
parsers in the high category, with the other parsers in the low informative category
parser treated as increasingly optional as one moves to the lower right of Figure 8.
Notice that the parsers near the lower right of Figure 8 all come from the cluster

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 13

Figure 8. Correlation matrix between parser behaviors. Rows
and columns are sorted according to median message correlation.

in the lower left of Figure 7. Although it is difficult to see from the projection
shown in Figure 7, least informative parsers are on the inside of the cluster, while
the parsers in the same cluster that are on the outer edges of the cluster are more
informative.

7. Conclusion and recommendations

This article has demonstrated that a given file’s compliance with a format speci-
fication can be determined from the following three samples: (1) a diverse collection
of parsers for the file format, (2) a sample of compliant files, and (3) a sample of
non-compliant files. Our methodology is format agnostic, and so could work if a
file format is not formally specified. Furthermore, our Bernoulli test for compli-
ance is statistical, so it is both robust to errors in the three samples, yet benefits
from richer samples should they be available. We note that the use of the three
samples means that this approach is a supervised approach. Under appropriate

14 MICHAEL ROBINSON

circumstances, it might be possible to use an unsupervised bootstrapping approach
to extract the two samples of files from a single aggregated sample. This requires
further investigation.

Principal components analysis is helpful in understanding the variability within
a sample of files or parsers, but it holds somewhat less value as an automated
analytic tool. Clusters visible within the principal components plots appear to
reflect specific tool chains used in the creation of files, with valid files forming
several dense clusters.

The Bernoulli likelihood ratio statistic detects non-compliant files by comparing
error message prevalence aggregated across all parsers and both samples of files. It
relies inherently upon both the coverage and depth of these samples, but we have
shown that it can be very effective at its job when these samples are adequate.

Overall, we found that there is not much redundancy present in the behaviors of
parsers for the PDF specification. That is to say that the relation matrix contains
by far the most information if all parsers are considered, so one ought to use all
parsers if possible. Our analysis determined which parsers are individually the most
informative, based on pairwise comparisons. While it is entirely reasonable to study
different subsets of parsers, we did not perform that analysis here. We refer the
interested reader to [4] where such an analysis was performed.

If resources are tight, we found that it is probably not necessary to rerun a given
parser with different options. For instance, running only one of xpdf tops and
xpdf pdfinfo probably will not change the results too much. Roughly speaking,
it appears that the best strategy is “more programmers contributing different code
instead of one programmer’s code run in many different ways.”

Our two statistical techniques for analyzing file format compliance are admit-
tedly simple but standard statistical tools, though are apparently not in wide use.
They are easy to deploy, easy to interpret, and require little maintenance other
than the selection of a single detection threshold. We therefore encourage deeper
exploration into and experimentation with statistical methods in the study of file
format compliance.

Acknowledgments

The author would like to thank the SafeDocs test and evaluation team, including
NASA (National Aeronautics and Space Administration) Jet Propulsion Labora-
tory, California Institute of Technology and the PDF Association, Inc., for pro-
viding the test data. The author would like to thank Kris Ambrose for his heroic
processing of all of the relevant files through all of the parsers, and for subsequently
packaging the results in a very convenient format. The author would also like to
thank Peter Wyatt for his detailed and insightful investigation into the files that
were deemed outliers and for closely reading an earlier draft of this article.

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) SafeDocs program under contract HR001119C0072.
Any opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author and do not necessarily reflect the views of DARPA.

References

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles, tech-
niques. Addison wesley, 7(8):9, 1986.

FINDING NON-COMPLIANT DOCUMENTS USING ERROR MESSAGES 15

[2] Bander Ali Saleh Al-rimy, Mohd Aizaini Maarof, and Syed Zainudeen Mohd
Shaid. Ransomware threat success factors, taxonomy, and countermeasures:
A survey and research directions. Computers & Security, 74:144–166, 2018.

[3] Mamoun Alazab. Profiling and classifying the behavior of malicious codes.
Journal of Systems and Software, 100:91 – 102, 2015. ISSN 0164-1212. doi:
https://doi.org/10.1016/j.jss.2014.10.031. URL http://www.sciencedirect.

com/science/article/pii/S0164121214002283.
[4] Kristopher Ambrose, Steve Huntsman, Michael Robinson, and Matvey Yutin.

Topological differential testing. arXiv preprint arXiv:2003.00976, 2020.
[5] Barry C Arnold and David Strauss. Pseudolikelihood estimation: some ex-

amples. Sankhyā: The Indian Journal of Statistics, Series B, pages 233–243,
1991.

[6] Mohamed Belaoued and Smaine Mazouzi. A real-time PE-malware detec-
tion system based on chi-square test and PE-file features. In IFIP Interna-
tional Conference on Computer Science and its Applications, pages 416–425.
Springer, 2015.

[7] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waks-
man, Simha Sethumadhavan, and Salvatore Stolfo. On the feasibility of online
malware detection with performance counters. ACM SIGARCH Computer
Architecture News, 41(3):559–570, 2013.

[8] Roman Graf and Sergiu Gordea. A risk analysis of file formats for preservation
planning. In Proceedings of the 10th International Conference on Preservation
of Digital Objects (iPres2013), pages 177–186, 2013.

[9] Gregory W Lawrence, William R Kehoe, Oya Y Rieger, William H Walters,
and Anne R Kenney. Risk Management of Digital Information: A File Format
Investigation. ERIC, 2000.

[10] D. Pearson and C.Webb. Defining file format obsolescence: A risky journey.
The International Journal of Digital Curation, 3(1):89–106, July 2008.

[11] Maksym Schipka. Detection of exploits in files, January 8 2009. US Patent
App. 11/822,533.

[12] S. D. S.L and J. CD. Windows malware detector using convolutional neural
network based on visualization images. IEEE Transactions on Emerging Topics
in Computing, pages 1–1, 2019. doi: 10.1109/TETC.2019.2910086.

[13] An Gie Yong, Sean Pearce, et al. A beginner’s guide to factor analysis: Fo-
cusing on exploratory factor analysis. Tutorials in quantitative methods for
psychology, 9(2):79–94, 2013.

Mathematics and Statistics, American University, Washington, DC, USA

Email address: michaelr@american.edu

http://www.sciencedirect.com/science/article/pii/S0164121214002283
http://www.sciencedirect.com/science/article/pii/S0164121214002283

	1. Introduction
	2. Historical context
	3. Data description
	4. Principal components analysis
	5. Bernoulli likelihood ratio misclassification test statistic
	6. Parser redundancy analysis
	7. Conclusion and recommendations
	Acknowledgments
	References

