
HAL Id: hal-01378667
https://hal.science/hal-01378667v1

Submitted on 11 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments with Self-stabilizing Distributed Data
Fusion

B Ducourthial, Véronique Cherfaoui

To cite this version:
B Ducourthial, Véronique Cherfaoui. Experiments with Self-stabilizing Distributed Data Fusion.
IEEE 35th Symposium on Reliable Distributed Systems (SRDS 2016), Sep 2016, Budapest, Hungary.
pp.289-296. �hal-01378667�

https://hal.science/hal-01378667v1
https://hal.archives-ouvertes.fr

Experiments with Self-stabilizing
Distributed Data Fusion

B. Ducourthial and V. Cherfaoui
Sorbonne universités, Université de Technologie de Compiègne,

UMR CNRS UTC Heudiasyc 7253, CS 60 319, 60 203 Compiègne Cedex, France

Abstract—The Theory of Belief Functions is a formal frame-
work for reasoning with uncertainty that is well suited for rep-
resenting unreliable information and weak states of knowledge.
In a previous work, a distributed algorithm for computing data
fusion on-the-fly has been introduced, avoiding gathering the data
on a single node before computation. In this paper, we present
an experimental study of its properties. This algorithm is self-
stabilizing and runs on unreliable message passing networks. It
converges in finite time whatever is the initialization of the system
and for any unknown topology. First we explain the algorithm
implementation on an unreliable message passing environment
and we implement a simple use-case. Then, by experimenting
with this distributed application on a realistic network emulator,
we show its interest for enforcing local confidence using close
nodes, saving bandwidth and warning dangers. Moreover, we
focus on the interesting connections between the data fusion
operator and the self-stabilizing properties and we highlight the
importance of the discounting.

I. INTRODUCTION

Algorithms for gathering data spread out over a network
of communicating processing units are well known [22], [27],
[6]. However, in the real world, information is almost always
tainted with various kinds of imperfections, such as impre-
cision, uncertainty, ambiguity, etc. Following [9], a variable
X taking its values in Ω (domain or frame of discernment),
could be represented as a pair (value, confidence). The value
component corresponds to a subset of Ω while the confidence
component is an indication on the reliability of the item of
information. Imprecision is related to the value , uncertainty is
related to the confidence . For instance, when using the output
of any device (sensor, algorithm, model, expert...), it would
be preferable to distinguish between the following pieces of
information: “the value is between 15 and 25”, “the value
is probably 20”, “the value is probably between 15 and 25”.
The first one is imprecise but certain, the second is precise but
uncertain while the last one is both imprecise and uncertain.

Exchanging data in real world applications requires manag-
ing the confidence in both the messages and the nodes of the
network. Different methods were developed to this end. Some
of them manage the trust model with reputation mechanisms
[30], [17] or as a result of interactions between different
network nodes [28], [29]. Others aggregate the data to take
advantage of the redundancy of information without taking
into account the nature of the source [16], [21]. However
when the node is highly mobile (as in vehicular networks for
instance), the same information can be received several times

by the same node. In this case, data fusion is an interesting
approach for managing uncertainties.

Data fusion is a set of methods for combining data from
different sources to make a decision and reduce uncertainty on
the final result. It allows modelling and taking into account the
uncertainties in both the data and the sources of information. In
particular, the Theory of Belief Function (or Dempster-Shafer
Theory) is well suited for representing unreliable information
and weak states of knowledge [23], [4]. It offers a diversity
of combination operators.

Data fusion can be centralized or decentralized (distributed)
[18]. In [15], a protocol for distributed data aggregation is
proposed. It relies on the belief functions framework but
requires a spanning tree for dealing with the loops in the
networks. In [31], the belief functions framework is used to
build a distributed confidence over a dynamic network without
spanning tree. However in all these applications, the network
is supposed to be reliable. In [2], a self-stabilizing algorithm is
studied for computing the average of sensors values. However
it does not rely on the belief function framework and does not
take uncertainties into account. We proposed in [12] a self-
stabilizing distributed algorithm reasoning with uncertainties
in the belief functions framework. In [20], we report a com-
plete application of our algorithm for detecting icy roads.

Our distributed data fusion algorithm allows each node
processing received information locally using discounting [24]
and cautious rule [5] operators. It computes the distributed
confidence on each node, taking into account local and remote
information, giving more importance to closer sources of
information. This algorithm is designed for unreliable message
passing environments. As it is self-stabilizing [7], [8], it
recovers a correct behavior after finite time starting from an
arbitrary global state caused by a transient fault, such as a fake
message. In this paper, we present an experimental study of
the intrinsic properties of this algorithm.

We begin by explaining the implementation of the algo-
rithm on an unreliable message passing environment. For
experimentation purpose, we implement a simple use-case
using the Airplug Software Distribution [11]. This use-case
(borrowed from the meteorology) is generic enough to inspire
new applications; it is simple enough to facilitate our study.
Next, by using the realistic network emulator of the Airplug
suite, we show the interest of the algorithm to enforce the
local confidence using the close nodes, to warn an approaching
danger and to save the bandwidth. Finally, we show the

importance of the discounting. A weak discounting enlarges
the nodes influence while a large discounting ensures rapid
convergence. In any case, discounting is required for self-
stabilization.

The rest of the paper is organized as follows. In Section II,
we describe the distributed system and our distributed data
fusion algorithm. In Section III, we explain its implementation
in unreliable messages passing environment and we introduce
the simple use-case application. The experimental study is
detailed in Section IV. Section V ends the paper with some
concluding remarks.

II. SELF-STABILIZING DISTRIBUTED DATA FUSION
ALGORITHM

A. Distributed System

We consider a distributed system S composed of communi-
cating computing nodes. Each node includes a local memory
and a sequential computing unit so that it is able to run
a local algorithm. Nodes are not synchronized. The local
memory of node v is composed by its private memory PRIVv ,
an input memory INv and an output memory OUTv . The
private memory of v contains its direct confidence, regularly
updated with an external local device (e.g., a sensor). The input
memory is used to store all received messages. The output
memory will store the result of the local computation on v,
namely its distributed confidence.

Communications are done through a simple atomic action
called push: when a sender node u executes push(m),
the value m stored in its output memory is copied into the
input memories of some receiver nodes v1, v2, . . . , vk. Nodes
can move, disturbing the communications. The receivers of a
push action on v are not known from the sender v and do
not know v. They are determined by the current topology of
S and could be different from those of a previous push by
the same node v.

This communication scheme can be implemented on a
wireless network with a link capacity of a single message: a
push is implemented using a local broadcast followed by an
idle period longer than the maximal communication duration
(which is bounded in wireless protocols such as IEEE 802.11).
Nodes movements and collisions add/delete links according
to the communication range. The framework used for our
experiments implements such a local broadcast.

We assume transient faults sometimes occur to memories
or messages. They are circumvented by the self-stabilizing
property of our algorithm.

B. Distributed data fusion algorithm

On each node v, the private memory PRIVv is regularly up-
dated using a local external device (sensor, other algorithm...).
However, such piece of information is uncertain and imprecise
and it is then represented as a basic belief assignment, called
the direct confidence of v. Thanks to Algorithm 1, it will be
combined on-the-fly with direct confidences of other nodes
to produce the distributed confidence of v. The aim is to

circumvent uncertainty and imprecision of the local external
device by using information provided by other nodes.

a) Data set: The state of belief of a node is expressed
on a frame of discernment Ω using a basic belief assignment
(BBA for short). Such a BBA can be represented by several
means, the most common one being with a mass function. A
mass function mΩ is a mapping from the set of subsets of
Ω, denoted P(Ω), to the set of masses [0, 1] ⊂ R such that∑

X⊂Ωm
Ω(X) = 1.

A set X ⊂ Ω such that m(X) > 0 is called a focal set. If
every focal set X satisfies |X| = 1, m is said to be Bayesian
and it corresponds to a probability mass function. However,
the main interest of the theory of belief functions is to consider
every subset X of Ω.

The more confident in X a node is, the higher mΩ(X) is. If
the empty set ∅ is not a focal set, the mass is normal. A mass
on ∅ is used to model conflict between pieces of evidence on
which m is based. If Ω is not a focal set, the mass is dogmatic.
A mass on Ω is used to model lack of knowledge. The higher
mΩ(Ω) is, the less informative the mass function mΩ is. If
mΩ(Ω) = 1, the mass function is vacuous. Finally, a mass
function is simple if it admits at most two focal sets including
Ω.

Besides classical mass functions, a basic belief assignment
can be represented by other functions, such as commonality
and weights functions, though their definition is less intuitive.
Our algorithm works with weights, which are obtained from
masses using commonalities [25] [5], as summarized in Fig-
ure 1.

As we consider non dogmatic and separable mass functions
([23] Chapter 4), the weights belong to (0, 1], which is
discretized [12] from ε (the smallest weight) to 1. Our data
set (denoted by K in the following) is then the set of vectors
of discretized weights, one component per subset of Ω except
Ω.

b) Cautious operator: To combine vectors of weights,
we use the cautious operator denoted by ? [5]. This idem-
potent operator solves the data incest problem which appears
when the information from a given source is taken into account
several times. More generally, idempotency is required for
ensuring convergence in a network with circuits [10].

The cautious operator is based on the Least Commitment
Principle, which states that: ”when several belief functions
are compatible with a set of constraints, the least informative
one should be selected”. It is easily computed on two vectors
of weights by taking the minimum of each component. We
denote by w⊥ (resp. w>) the element of K composed only
with the smallest weight ε (resp. the largest weight 1), which
are respectively the absorbing element and the neutral element
of the cautious operator ?.

c) Discounting: When a node u sends its distributed
confidence using push, the vector of weights will be copied
into the input memories of some receivers. On such a receiver
v, it will be discounted using a mapping r : K → K before
the computation with ?.

As the operator ? is associative, commutative and idem-

mass function commonality function weight function
m : P(Ω) → [0, 1]

A 7→ m(A)
q : P(Ω) → [0, 1]

A 7→ q(A)
µ : P(Ω) \ Ω → R+

A 7→ w(A)∑
A⊂Ωm(A) = 1 q(A) =

∑
B⊂Ω,A⊆B m(B) µ(A) = ΠB⊂Ω,A⊆Bq(B)(−1)|B|−|A|+1

Fig. 1. Definition of the weight functions obtained from masses using commonalities

potent, it defines an order relation denoted ≺? on K. If
r(w) ≺? w, the algorithm always converges to w⊥ except
on acyclic networks; if r(w) = w the algorithm stabilizes
on any network but does not support transient fault [14].
When w ≺? r(w), the discounting ensures the self-stabilizing
property of Algorithm 1 [12].

In the latter case, the function r is called a discounting
because it is used to decrease the information in a given
basic belief function. It allows taking information from remote
nodes into account while giving a larger importance to close
nodes. As a consequence, the distributed confidence computed
on a node reflects the local situation of the node. On the
contrary, without discounting (r(w) = w), a single result
is obtained per connected component in the network. When
the information admits a local meaning (such as the weather
forecast in our use-case application), the result on a node u
should differ from the result of a far away node v except if all
the nodes agree on their direct confidence. Hence, while it is
useful to take into account remote information, all the nodes
should not always converge to the same belief function.

d) Algorithm: Now that we have defined the data set
and the operator used to combine the data, the algorithm is
described as follows. The direct confidence of each node is
regularly updated by an external mean, as explained previ-
ously, and stored in the private memory PRIVv . It is coded
(as all other variables) by a vector of weights belonging to
K. The input memory INv on node v stores all data pushed
by some ancestors1 since the last timer expiration. The output
memory OUTv contains the distributed confidence computed
by v.

Nodes are not synchronized. Timers are given by local
clocks and may have an unbounded drift. Upon timer ex-
piration, each node computes its distributed confidence by
combining its own direct confidence with those it has received
since the last timer expiration, using the operator ? and after
discounting of the received vectors using r. It also pushes its
result.

Algorithm 1: Distributed Confidence, node v

1 Upon timer expiration:
2 PRIVv ← current direct confidence

. Initializing the iterative computation
3 OUTv ← PRIVv

4 for each entry u in INv do
. Iterative computation of the output

5 OUTv ← OUTv ? r(INv[u])

1Neighbors in the directed graph.

6 end for
. Sending the distributed confidence to neighbors

7 push(OUTv)
8 Reset INv

9 Restart the timer

Assuming the topology is stable and the direct confidences
stabilized, Algorithm 1 converges in finite time to the legiti-
mate configuration, whatever are the values in memories IN
and OUT and the messages in transit [12]. In the legitimate
configuration, the output memory of each node v is equal to
the combination of all the private memories of its ancestors u
(belonging to Γv), discounted as many times as the number
of hops from u to v:

OUTv = ?u∈Γv
rdist(u,v)(PRIVu)

Let k be the smallest integer satisfying rk(w⊥) = w>.
Supposing a synchronous system, the stabilization time is
O(k) because a node builds its result with only nodes at less
than k hops and any incorrect value disappears after k hops.

III. IMPLEMENTATION AND APPLICATION

In this section, we present a generic implementation of
our algorithm that we use for designing a simple use-case:
a basic distributed meteorological application. Besides the
illustration purpose, this application will be used to experiment
with Algorithm 1 in the next section. We begin by the basic
meteorological application.

A. A basic distributed meteorological application

We consider a distributed system where each node is able to
measure the local atmospheric pressure (using a sensor or any
other device), allowing us to deduce a weather forecast. Such
a device could be damaged or disturbed; α is the proportion
of time the sensor is not working correctly.

Instead of working with measurements (intervals of R), a
simple frame of discernment Ω = {rainy,cloudy,sunny}
is used, where rainy corresponds to low athmospheric pressure
and sunny to high pressure. Each node computes its direct
confidence as a mass function on Ω using sigmoid functions
(Figure 2) so that their sum is equal to 1 − α, leaving α for
the Ω component representing the uncertainty2.

The mass function is then converted to a vector of weights
(Figure 3). It is used to compute the distributed confidence
(Algorithm 1). Periodically, the last computed distributed
confidence is sent to the neighbors.

When a message is received by a node, it is saved, erasing
the last message stored for this sender. Figure 4 shows the

2For the sake of simplicity, here we use sigmoids only on singletons.

Fig. 2. Using sigmoids to determine the BBA from local pressure (here
1006 hPa).

Fig. 3. Direct confidence computed from the local measurement (here
1006 hPa) using sigmoids (Fig. 2), given as mass and weight vectors, with
components belonging to P(Ω).

distributed confidences sent by Nodes 1, 5 and 7 and received
by Node 3 (nodes may also send their direct confidence for
computing the neighborhood confidence; this is not described
here, see [12]).

Fig. 4. Node 3 stores the last messages received from its neighbors (here
Nodes 1, 5 and 7); they contain the distributed confidence computed by the
sender.

Periodically, each incoming distributed confidence is dis-
counted and then combined with the local direct confidence
using the cautious operator. Figure 5 shows the vectors of
weights extracted from the last received messages (Fig. 4)
and the distributed confidence computed using a term-to-
term minimum, after applying the discounting function (here
x 7→ min(1, x + 0.1)) to all received vectors. The direct
confidence of the local node (here 3) is not discounted. This
computed distributed confidence is periodically sent to the
neighbors (Figure 7).

Fig. 5. Computing the distributed confidence on node 3. Vectors of weights
received from nodes 1, 5 and 7 are first discounted (increased by 0.1 here).
Then a term-to-term minimum is computed, giving the result, as shown by
red arrows.

By considering focal sets of cardinality larger than one (e.g.,

{rainy, cloudy}), the theory of belief functions generalizes the
Bayesian probability theory and is well adapted for represent-
ing weak states of knowledge. Nevertheless, when a decision
has to be taken, one needs to go back to focal sets of cardinal-
ity one. For this purpose the computed distributed confidence
(expressed as a vector of weights) is converted in a mass
function m which is then mapped to a pignistic probability
function [26], defined by: BetP(A) =

∑
∅6=B⊂Ωm(B) |A∩B||B| .

Figure 6 shows the pignistic probabilities computed from
the direct and distributed confidence (neighborhood confidence
is not described here, see [12]).

Fig. 6. Pignistic probability computed from the distributed confidence.

B. Implementation

We implemented Algorithm 1 using the Airplug Software
Distribution [1], [11], dedicated to the design, study and
experiment of applications in dynamic networks. The Airplug
framework allows implementation of distributed applications
in message passing environment with simple conventions. Any
language can be used providing that the application is able
to asynchronously read from its standard input for receiving
messages and to write to its standard output for sending
messages.

Algorithm 1 has been implemented as a generic Airplug
application (called MET) written in Tcl/Tk, accepting any
frame of discernment, sigmoid model for BBAs, discounting
and parameters. It has been used to program the simple
meteorological application (Figures 2 to 7). Libraries for sets,
masses, weights, conversions and operators represent about
750 lines. The MET application including the GUI represents
2020 lines. It can receive measurements from another local
Airplug application connected to a sensor [19] or can generate
itself values for testing purposes, using a given function and
an initial value. We use this functionality in the next section.

Airplug applications can be used in several modes without
having to modify them. Airplug-term allows rapid prototyping
using a Linux-based computer; communications are managed
using the shell facilities. Airplug-live allows rapid deployment
in embedded computers; communications are done using wire-
less broadcast [13]. Airplug-emu emulates the network in order
to prepare or replay real tests and to easily study the properties
of an application by varying some parameters [3]. We use this
mode for studying MET in the next section.

When using Airplug-emu, the scenario is described in
an XML file; it includes the number of nodes, their initial
positions and movements, their applications and options...
Nodes movements can be given as GPS traces obtained during
real experiments (among other means). Airplug-emu creates

or deletes the communication links depending on the relative
positions of the nodes, the given wireless communication
range and the link reliability. When a MET instance sends
a message, all MET instances running in the neighborhood
(defined by the range and the reliability) will receive it.
Additionally, as shown in Figure 7, it is possible to send forged
distributed confidence to neighbors for studying the robustness
of the application against erroneous messages.

Fig. 7. A node can push either its last computed distributed confidence or
a forged vector of weights for testing purpose, entered as masses or weights
(see Figure 10).

IV. EXPERIMENTS AND RESULTS

Obviously the basic meteorological application described in
the previous section relies on a too simple model to be useful
for weather prediction. However this simplicity is interesting to
understand and study the properties of distributed data fusion,
knowing that Algorithm 1 and its Airplug implementation can
be applied to any measurement and more complex frames of
discernment Ω. We first illustrate the behavior of the MET
application in a network, explaining how to interpret the
results. Then we explain the interest of distributed data fusion.
Finally, we show the interesting self-stabilizing properties of
Alg. 1 to tolerate message failures.

A. Result interpretation

Figure 8 presents two screenshots of Airplug-emu on a
fixed network (with full-duplex links). Seven instances of the
MET application compute their direct and distributed confi-
dences by exchanging messages, as explained in Section III
(neighborhood confidence is also computed though it is not
described in this paper). On each node, the bars represent the
direct, neighborhood and distributed confidence, expressed as
pignistic probabilities (grey for rainy, white for cloudy
and yellow for sunny).

In the Figure 8-top, there is no discounting. Hence, on this
connected network, all nodes converge to the same distributed
confidence, equal to the minimum vector of weights (computed
term-to-term). As Node 4 measures a high pressure and
announces sunny weather, Node 3 cloudy weather and Node
5 rainy weather, the resulting distributed confidence gives the
same importance to each, leading to three right-most bars of
equal height on each node.

In the Figure 8-bottom, there is a discounting. The local
measurements are the same in both networks, leading to the
same direct confidences (three left-most bars on each node).
Local measurements differ in the network from node to node
but the influence of a node decreases with the distance, thanks
to the discounting. For example, the rainy weather announced

Fig. 8. Simple distributed meteorological application (MET), without
discounting (top) and with discounting (bottom). The bars represents the
pignistic probabilities (grey for rainy, white for cloudy and yellow for
sunny) of the direct confidence (left-most three bars), the neighborhood
confidence (middle bars, not described here) and the distributed confidence
(right-most three bars).

by Node 5 influences the distributed confidence of Nodes 3,
1 and 4 but less and less (the right-most grey bar is smaller
and smaller on these nodes).

Consider Node 6. Its direct confidence gives the same
importance to rainy and cloudy weather, meaning that it cannot
decide between them. It is the same for its neighbor, Node
2. However the direct confidence of their neighbor, Node 7,
clearly indicates the weather is rainy. Then the distributed
confidence of Nodes 2 and 6 announces rainy weather (their
right-most grey bar are larger than their right-most white bar).
Hence, the discounting enforces the collaboration between
close nodes, which helps to decide.

B. Interest of distributed data fusion

As shown in Figure 8, when using a discounting each
node stabilizes on a distributed confidence related to its own
local measurement as well as those of other nodes, discounted
according to the distance. The more the discounting function r
increases the component of the incoming vector of weights, the
smaller the area of influence of a node is. With the discounting
r(x) = min(1, x+ 0.1), a node has no influence at more than
10 hops. This makes sense in a network of sensors where the
measurement has a local meaning.

Fig. 9. Using distributed data fusion for prevision. Vehicles 1 to 5 are under
rainy weather; other vehicles are warned when approaching (see the three
right-most bars).

This approach can also be used to foresee a danger. For
instance, Figure 9 displays a screenshot of Airplug-emu with
a convoy of vehicles, where vehicles 1 to 5 are experiencing
rainy weather, to the contrary of vehicles 6 to 10. This can be
shown with the three left-most bars on each vehicle. However,
the distributed confidence computed by the vehicles on the
left warns about the rain, with an intensity increasing with the
distance to the rainy area (see three right-most bars).

Besides these qualitative properties, Algorithm 1 allows
saving bandwidth compared to the classical approach relying
on a centralization of the data. Indeed, it avoids collecting data
using a distributed collect algorithm [22], [6]. The message
size is given by the weights discretization and the cardinal of
the frame of discernment Ω. These are parameters of MET,
set to ten thousandth for the former and 3 for the latter
in our studies, leading to about 32 bytes for encoding the
distributed confidence. This is much less than in the self-
stabilizing collect algorithm for dynamic networks presented
in [6] where each node up to distance k would include its
identity and its distributed confidence in the message.

The convergence time is equal to k timers, where k is the
smallest integer satisfying rk(w⊥) = w> (10 in our case).
Computations and sending are done periodically with a timer
set to 1 s here (see Figures 5 and 7).

C. Discounting versus self-stabilization

The self-stabilizing property of Algorithm 1 is related to the
operator used for local computation [12], [10]. The algorithm
stabilizes despite transient faults on memories or messages if
and only if the discounting r is strictly increasing according
to the order relation defined by the cautious operator on the
vectors of weights. Moreover, the convergence time is related
to the smallest integer k satisfying rk(w⊥) = w>.

In Figure 10-top, the distributed system converged to the
legitimate configuration, defined by the local measurements
of each node (here all equal to 1030 hPa). On the bottom, an
illegitimate configuration has been reached because Node 10

Fig. 10. The illegitimate configuration (bottom) has been obtained from
the legitimate configuration (top) after Node 10 sent an erroneous distributed
confidence to all its neighbors, as shown in Figure 7. Distributed confidence
is represented by the pignistic probabilities with the three right-most bars in
each node.

broadcasts an erroneous distributed confidence instead of the
one it computes, as shown in Figure 7. Then its neighbors com-
putes an erroneous distributed confidence which propagates
through the network and also back to Node 10 itself, which
then includes the erroneous confidence in its own computation,
after a discounting.

After the transient failure ceases, the system converges
from the illegitimate configuration of Figure 10-bottom to
the legitimate configuration of Figure 10-top when using
the discounting r(x) = min(1, x + 0.1). On the contrary,
when using r(x) = x, the system remains in the illegitimate
configuration of Figure 10-bottom.

Figure 11 shows the evolutions of the distributed confidence,
represented by the pignistic probabilities on some of the nodes
of the network displayed in Figure 10. While the system has
stabilized to the legitimate configuration of Figure 10-top,
Node 10 begins to broadcast at date 8 an erroneous distributed
confidence, indicating a strongly rainy weather (see Fig. 7).
The other nodes then update their distributed confidence
and the system stabilizes to the illegitimate configuration of
Figure 10-bottom. The farther from Node 10 the node is, the
less influenced it is, thanks to the discounting which applies

Fig. 11. Self-stabilization with the discounting r(x) = min(1, x + 0.1).
Node 10 broadcasts the erroneous message of Fig. 7 from date 8 to 18.

at each hop. At date 18, Node 10 ceases to broadcast the
forged distributed confidence; this is the end of the transient
failure. Then Figure 11 shows that nodes converge back to
their legitimate distributed confidence3.

With a discounting leading to a smaller k, such as r(x) =
min(1, x + 0.25), the convergence is faster. However the
influence of a node is limited to nodes at distance less than
4. This could be a drawback in some applications as the one
shown in Figure 9.

Finally, the algorithm is able to stabilize after a topology
modification, created in Airplug-emu either by changing the
range of the nodes or by using GPS traces for the nodes.

V. CONCLUSION

In this paper, we presented the self-stabilizing distributed
data fusion algorithm first introduced in [12]. Then we ex-
plained how it can be implemented as a useful application
accepting many parameters to adapt to several contexts. The
MET application is an Airplug application accepting any frame
of discernment, sigmoids and discounting. It computes the
direct confidence thanks to external or internal measures; it
exchanges messages to compute the distributed confidence
using the discounting and the cautious operator.

We used MET to program a basic distributed meteorological
application. Though our model is too simple to be useful
for weather prediction, it permitted to illustrate the interest

3The stable floor around date 17 in graphic of Node 1 is explained by the
fact that data is saved periodically, as for the distributed confidence update.
The two timers certainly occur simultaneously and were not scheduled as
expected.

of our approach. Distributed data fusion allows dealing with
imprecise data given by cheap sensors. It enforces the local
confidence with those of close nodes. Moreover it can be used
to foresee a danger. It is well adapted to sensors or vehicular
networks, where the measurements have a local meaning.
It saves bandwidth compared to centralized approaches with
shorter messages.

We highlighted the importance of the discounting. We
showed by experimentation that it is required for ensuring
the convergence of the algorithm despite transient failures.
Moreover, the discounting impacts the influence area of a
node on the network as well as the convergence time of the
algorithm. This parameter has then to be carefully chosen.

Future work will focus on the use of other data fusion
operators in this distributed context.

ACKNOWLEDGMENT

This work was carried out in the framework of the Labex
MS2T, which was funded by the French Government, through
the program “Investments for the future” managed by the
National Agency for Research (ANR-11-IDEX-0004-02).

REFERENCES

[1] Airplug web site. https://www.hds.utc.fr/airplug.
[2] J. Bahi, M. Haddad, M. Hakem, and H. Kheddouci. A new reliable and

self-stabilizing data fusion scheme in unsafe wireless sensor networks.
In Proceedings of the 2010 International Conference on Parallel and
Distributed Computing, Applications and Technologies, PDCAT ’10,
pages 87–93, Washington, DC, USA, 2010. IEEE Computer Society.

[3] A. Buisset, B. Ducourthial, F. El Ali, and S. Khalfallah. Vehicular
networks emulation. In 19th International Conference on Computer
Communication Networks (ICCCN), August 2010.

[4] A. P. Dempster. Upper and lower probabilities induced by a multivalued
mapping. Annals of Mathematical Statistics, 38:325–339, 1967.

[5] T. Denoeux. Conjunctive and disjunctive combination of belief functions
induced by nondistinct bodies of evidence. Artificial Intelligence,
172:234–264, 2008.

[6] Y. Dieudonné, B. Ducourthial, and S.-M. Senouci. Col: A data collection
protocol for vanet. In IEEE Intelligent Vehicles Symposium (IV), Alcalá
de Henares, Spain, June 2012.

[7] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17(11):643–644, 1974.

[8] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
[9] D. Dubois and H. Prade. Representation and combination of uncertainty

with belief functions and possibility measures. Computer intelligence,
4:244–264, 1988.

[10] B. Ducourthial. r-semi-groups: A generic approach for designing
stabilizing silent tasks. In 9th Stabilization, Safety, and Security of
Distributed Systems (SSS’2007), pages 281–295, November 2007.

[11] Bertrand Ducourthial. Designing applications in dynamic networks: The
Airplug Software Distribution. In Matthieu Roy, editor, SAFECOMP
2013 - Workshop ASCoMS (Architecting Safety in Collaborative Mobile
Systems) of the 32nd International Conference on Computer Safety,
Reliability and Security, Toulouse, France, September 2013.

[12] Bertrand Ducourthial, Véronique Cherfaoui, and Thierry Denoeux. Self-
stabilizing distributed data fusion. In Stabilization, Safety, and Security
of Distributed Systems, volume 7596 of Lecture Notes in Computer
Science, pages 148–162. Springer Berlin Heidelberg, 2012.

[13] Bertrand Ducourthial and Sofiane Khalfallah. A platform for road
experiments. In VTC Spring, 2009.

[14] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-
operators. Distributed Computing, 14(3):147–162, 2001.

[15] Andrea Gasparri, Flavio Fiorini, Maurizio Di Rocco, and Stefano
Panzieri. A networked transferable belief model approach for distributed
data aggregation. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, PP(99), 2011.

[16] P. Golle, D. Greene, and J. Staddon. Detecting and correcting malicious
data in vanets. In 1st ACM Workshop on Vehicular Ad hoc Networks
(VANET), pages 29–37, New York, NY, USA, 2004.

[17] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad
hoc networks. In 2nd International Conference on Trust Management,
pages 48–62, Oxford, UK, 2004.

[18] H.B. Mitchell. Multisensor Data Fusion: An introduction. Springer,
2007.

[19] J. Radak, B. Ducourthial, and S. Bonnet. Design and implementation of
a vehicular network testbed using wireless sensors. In 8th International
Workshop on Wireless Sensor, Actuator and Robot Networks (WiSARN
2014), Benidorm, Spain, June 2014.

[20] Jovan Radak, Bertrand Ducourthial, Véronique Cherfaoui, and Stéphane
Bonnet. Detecting road events using distributed data fusion: Exper-
imental evaluation for the icy roads case. IEEE Trans. Intelligent
Transportation Systems, 17(1):184–194, 2016.

[21] M. Raya, P. Papadimitratos, V. D. Gligor, and J-P. Hubaux. On data-
centric trust establishment in ephemeral ad hoc networks. In the 28th
IEEE conference on Computer Communications (INFOCOM), pages
1238–1246, Phoenix, AZ., USA, April 2008.

[22] A. Segall. Distributed network protocols. IEEE Transactions on
Information Theory, 29(1):23–34, 1983.

[23] G. Shafer. A mathematical theory of evidence. Princeton, N.J, 1976.
[24] P. Smets. Data fusion in the transferable belief model. In 3rd

International Conference on Information Fusion, 2000.
[25] Ph. Smets. The canonical decomposition of a weighted belief. In Int.

Joint Conf. on Artificial Intelligence, pages 1896–1901, San Mateo, Ca,
1995. Morgan Kaufman.

[26] Ph. Smets. Decision making in the TBM: the necessity of the pignistic
transformation. Int. Journal of Approximate Reasoning, 38:133–147,
2005.

[27] G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 1994.

[28] G. Theodorakopoulos and J. S. Baras. Trust evaluation in ad-hoc net-
works. In ACM Workshop Wireless Security, pages 1–10, Philadelphia,
PA, USA, 2004.

[29] J. Wang and H-J. Sun. A new evidential trust model for open
communities. Computer Standards & Interfaces, 31:994–1001, 2009.

[30] G. Zacharia and P. Maes. Trust management through reputation
mechanisms. Applied Artificial Intelligence, 14:881–907, 2000.

[31] Nicole El Zoghby, Véronique Cherfaoui, Bertrand Ducourthial, and
Thierry Denoeux. Distributed data fusion for detecting sybil attacks
in VANETs. In Springer-Verlag, editor, Proceedings of the 2nd Inter-
national Conference on Belief Functions, Advances in Intelligent and
Software Computing, 2012.

