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Abstract – This paper proposes an evolutionary Particle Filter with a memory guided proposal step size update and an improved, fully-

connected Quantum-behaved Particle Swarm Optimization (QPSO) resampling scheme for visual tracking applications. The proposal 

update step uses importance weights proportional to velocities encountered in recent memory to limit the swarm movement within 

probable regions of interest. The QPSO resampling scheme uses a fitness weighted mean best update to bias the swarm towards the fittest 

section of particles while also employing a simulated annealing operator to avoid subpar fine tune during latter course of iterations. By 

moving particles closer to high likelihood landscapes of the posterior distribution using such constructs, the sample impoverishment 

problem that plagues the Particle Filter is mitigated to a great extent. Experimental results using benchmark sequences imply that the 

proposed method outperforms competitive candidate trackers such as the Particle Filter and the traditional Particle Swarm Optimization 

based Particle Filter on a suite of tracker performance indices. 
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1.  Introduction 

Visual Object Tracking is an active research area within the Computer Vision community and has been rigorously studied due to 

its relevance in achieving key practical functionalities in today’s increasingly complex cyber-physical world. Some of the more 

well-known applications include real-time video surveillance and security systems, smart traffic monitoring and autonomous 

vehicle navigation. While object trackers aim to identify distinguishing features of targets across multiple frames of interest in 

sequential images, several challenging issues arise that pose as potential failure modes. Varying environmental and behavioral 

conditions such as complex object motion, partial or complete occlusion of the region of interest, changes in illumination and scale, 

injection of noise etc. lead to inefficient and at many times failed tracking. Constrained optimization approaches in mitigating 

tracking failures have demonstrated notable success. The existing methods use either deterministic [1-3] or stochastic approaches 

[4-11]. Deterministic approaches typically employ gradient descent search in order to minimize a cost function and obtain 

parametric estimates. One such example that has been extensively used is the Snakes model introduced by Kass et al [1]. Hager and 

Belhumer defined the cost function as the sum of squared deviations of candidate solutions from the ground truth [2] whereas 

Comaniciu minimized the cost difference between two color histograms by using the Mean Shift Algorithm [3]. Deterministic 

approaches are computationally less expensive, however they are susceptible to getting trapped in local optima. Stochastic 

approaches involve probabilistic operators and better estimate parameters by intelligently querying the multidimensional search 

space for the global optima, with the tradeoff being computational load. Several approaches have been proposed in [4-11] which 

effect better performance compared to their deterministic counterparts but the curse of dimensionality remains for high dimensional 

problems. Due to the dynamic nature of the environment, a unified object tracking scheme is very difficult to accomplish. Particle 

Filters are recursive implementations of Monte Carlo methods and are ideal for analyzing highly non-linear, non-Gaussian state 

estimation problems where classical Kalman Filter based approaches fail [12]. The generic Particle Filter suffers from the 

degeneracy and Sampling Importance Resampling (SIR) induced particle impoverishment problem, leading to proposed 

enhancements in the sampling stage as in [13-14].  

This paper incorporates a memory guided motion model and a hybrid QPSO resampling scheme using annealing and weighted 

mean best operators (Annealed Weighted QPSO-AWQPSO) to effectively recast particles to the higher likelihood regions in the 

posterior probability landscape. The methodology is tested out on two benchmark problems containing a set of environmental test 

conditions. Performance metrics like Root Mean Square Error (RMSE), Number of Frames Successfully Tracked, Tracking 

Precision versus Centre Error Threshold, Recall versus Overlap Threshold and Frames per Second (FPS) are analyzed over batches 

of computations. Such statistical analyses suggest performance improvements using the proposed method in comparison to the PSO 

Resampling inspired Particle Filter (PSO-PF) as well as the standard Particle Filter (PF).  



The rest of the paper is summarized as follows: Section 2 reviews related work at the intersection of Evolutionary Computation and 

particle resampling in Particle Filters, Section 3 outlines the resampling techniques used and Section 4 details the proposed 

approach. Section 5 lists the tracking quality indices used in the model followed by Section 6 which elaborates on the experimental 

conditions and results on benchmark problems. Section 7 provides an analysis of the results obtained and Section 8 concludes the 

paper with possible directions for future work.  

2. Sample impoverishment in particle filters and related work 

A Bayesian inference approach to the object tracking problem involves dynamic state transition through time using a System Model 

and state measurement through an Observation Model. A Markovian system model in this regard can be formulated as: 

𝑋𝑘 = 𝑓(𝑋𝑘−1, 𝜈𝑘) ↔ 𝑝(𝑋𝑘 |𝑋𝑘−1)                                        (1) 

The observation model can be expressed as: 

𝑂𝑘 = ℎ(𝑋𝑘, 𝜂𝑘) ↔ 𝑝(𝑂𝑘 | 𝑋𝑘)                                                     (2) 

The sequences {Xk , k ∈ I+}  along with {Ok , k ∈ N}  denote the target states and the measurement set of the state sequence in frame 

k. νk and ηk are mutually independent system noise and measurement noise. The central goal of a particle filter is to find an 

approximation of the posterior probability distribution p(Ok |Xk) using a set of weighted samples drawn from a proposal distribution 

with an associated particle rank defined by a one to one correspondence between high posterior likelihood and large weight. The 

weights 𝜅 are generally computed using the following proportionality relation:            

 𝜅𝑘
𝑖 ∝   𝜅𝑘−1

𝑖 𝑝(𝑂𝑘  |𝑋𝑘
𝑖

)𝑝(𝑋𝑘
𝑖  |𝑋𝑘−1

𝑖
)

𝑝(𝑋𝑘 |𝑋𝑘−1
𝑖  , 𝑂𝑘)

                                                         (3) 

The posterior distribution is then updated as:         

𝑝(𝑋𝑘| 𝑂𝑘) = ∑  𝜅𝑘
𝑖𝑁

𝑖=1  𝛿(𝑋𝑘 − 𝑋𝑘
𝑖 )                                                  (4) 

where p(Ok|Xk) is the likelihood and δ(.) is the Dirac-delta function. It is fundamentally important to generate a proposal distribution 

such that the sampled particles belong to the region of significant likelihood of the posterior. Given that particle filters run into 

sample degeneracy issues [15] because a large fraction of particles have negligibly small weights after only a few iterations, 

Sampling Importance Resampling (SIR) based probabilistic selection of particles have been widely adopted as a solution [16]. In 

the resampling step, particles having small weights have low chances of being propagated to the next iteration. A key disability of 

PF-SIR in effectively addressing the Sample Degeneracy Problem lies in loss of particle diversity over the course of iterations. This 

leads to the Sample Impoverishment Problem [17] as the resampled particle set does not accurately reflect the underlying statistical 

properties of the original particle set. As the number of effective particles decreases, the collective information carried by them also 

declines resulting in suboptimal object representations. The number of effective particles Neff can be expressed as: 

𝑁𝑒𝑓𝑓 =
1

∑ (𝜅𝑘
𝑖 )2𝑁

𝑖=1

                   (5) 

The Sample Impoverishment Problem has attracted several mitigation strategies that make use of prior knowledge processing or 

multi-layered sampling. Partitioned Sampling [17], Annealed Importance Sampling [19] and Kernel Particle Filters [13] are some 

of the commonly used techniques in this regard.  The Auxiliary Particle Filter by Pitt and Shephard, 1999 [20] samples particles 

corresponding to points mapped to an importance density with high conditional likelihood. Some researchers have proposed moving 

particles of lower importance towards regions of higher posterior likelihood. For example, the Kernel Particle Filter accomplishes 

this particular objective, however it uses a deterministic search and requires a continuous probability distribution, among other 

things.  

In recent years, the use of Particle Swarm Optimization [21] in non-differentiable and ill-structured multidimensional problems has 

gained popularity due to co-operative exchange of social and cognitive information among swarm members and the relatively low 

cost of individual particle fitness computation. While it yields promising results for non-differentiable cost functions, it is also 

limited in its ability to converge to the global best (Van den Bergh, 2001) [23] as per the convergence criteria put forward by Solis 

and Wet [24]. Numerous updates to the canonical PSO put forward by Clerc and Kennedy [25] have been made possible by factoring 

in different initialization conditions, position and velocity updates and hybridization [22] [25-27] [31]. Of these, Quantum-behaved 

Particle Swarm Optimization (QPSO) [26-30] is a particularly attractive choice as its convergence to optima is theoretically 



guaranteed [31]. Promising results using QPSO-inspired Particle Filters in several tracking datasets have been reported by Sun et 

al (2015) [7] and by Hu, Fang and Ding (2016) [8].  

Fig. 1. Particle redistribution towards regions of high likelihood.

 

3. Outline of metaheuristics used 

3.1. Particle swarm optimization (PSO) 

PSO [21-22] is one of many nature-inspired metaheuristics in the broad category of Swarm Intelligence and draws motivation from 

social co-operation among bird flocks or fish schools. Each particle in PSO is a candidate solution representing a point in a d-

dimensional search space. The particles mimic the behavior exhibited by a swarm of birds flocking in a multidimensional search 

space by updating their position coordinates and velocity using information of personal best position so far (cognitive operator - 

pbest) and global best (social operator - gbest). An iterative process of movement dependent on social co-operation guides the 

swarm towards the global optima. The position and velocity equations in basic PSO are as follows: 

 

𝑣𝑖

𝑡+1 = 𝜔 𝑣𝑖
𝑡 + 𝐶1 𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖

𝑡) +  𝐶2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑋𝑖
𝑡)                                           (6)              

             

𝑋𝑖

𝑡+1 =  𝑋𝑖
𝑡 + 𝑣𝑖

𝑡+1                                                                          (7) 

 

𝐶1 and 𝐶2 are cognition and social acceleration constants and 𝑟1 and 𝑟2 are random numbers between 0 and 1 drawn from a uniform 

distribution. 𝑋𝑖

𝑡+1 ,  𝑣𝑖

𝑡+1 represent the position and velocity of the 𝑖th d-dimensional particle respectively at the end of the t-th 

iteration whereas 𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡 are the personal and global best positions. Term 1 in the R.H.S of eq. (6) represents inertia of 

the swarm and can be adjusted by tuning 𝜔  while the next two terms perturb noise in the direction of the individual and population 

best. The fitness f is updated in the following manner for a cost minimization objective: 

 

𝑓(𝑥𝑖

𝑡 ) < 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖)) ⇒ 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑥𝑖

𝑡                      (8) 

 

𝑓(𝑥𝑖

𝑡 ) ≥ 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖)) ⇒  𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑝𝐵𝑒𝑠𝑡𝑖                                        (9) 

 

 

 

 

 

 



Algorithm 1. Particle Swarm Optimization 

  1: for each particle xi  

  2:      initialize position and velocity   

  3: end for 

  4: do 

  5:   for each particle xi 

  6:        Calculate particle fitness fi 

  7:        if fi is better than individual best (pBest)  

  8:           Set fi as the new pBest 

  9:        end if 

10:   end for 

11:  Set best among pBest as the global best (gBest) 

12:  for each particle  

13:         Calc. particle velocity acc. to eq. (6) 

14:        Update particle position acc. to eq. (7) 

15:  end  

16: while max. iter or convergence criterion  not met 

 

 
Fig. 2. Particle movement mechanics using PSO. 

 

 

3.2. Quantum-behaved particle swarm optimization (QPSO) 

 

Trajectory analysis in [33] proved that the convergence of PSO necessitates the convergence of each particle to its local attractor 

 𝑝𝑖

𝑡 = (𝑝𝑖1

𝑡  , 𝑝𝑖2

𝑡 , 𝑝𝑖3

𝑡 , … 𝑝𝑖𝑑
𝑡 ) and in the process the current position (𝑋𝑖

𝑡 ) , the personal best (pBest) and the global best (gBest) approach 

the same value. In Quantum-behaved Particle Swarm Optimization, the state of a particle is formally characterized by a wave 

function 𝜓 with |𝜓|2 representing the probability density function of its position. Using Monte Carlo recursion, the QPSO coordinate 

update equation reduces to: 

𝑋𝑖𝑗

𝑡+1 =  𝑝𝑖𝑗
𝑡  ± (

𝐿𝑖𝑗
𝑡

2
) 𝑙𝑛 (

1

𝑢𝑖𝑗
𝑡 )                                                    (10)    



𝑢𝑖𝑗
𝑡 ~𝑈(0,1) is a uniformly distributed random number and the local attractor 𝑝𝑖𝑗

𝑡  can be formulated as: 

 

𝑝𝑖𝑗

𝑡 =
𝐶1𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡 𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑡 +𝐶2𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡 𝑔𝐵𝑒𝑠𝑡𝑖𝑗
𝑡

𝐶1𝑟𝑎𝑛𝑑()𝑖𝑗
𝑡 +𝐶2𝑟𝑎𝑛𝑑()𝑖𝑗

𝑡                                                              (11) 

rand(0,1) generates different random numbers for pairing with cognitive and social operators. Further simplification results in the 

following widely used form: 

 

𝑝𝑖𝑗

𝑡 =  Φ𝑖𝑗
𝑡 𝑝𝐵𝑒𝑠𝑡𝑖𝑗

𝑡 + (1 − Φ𝑖𝑗
𝑡 )𝑔𝐵𝑒𝑠𝑡𝑖𝑗

𝑡                                        (12) 

 

where Φ𝑖𝑗
𝑡 ~𝑈(0,1) is a generated random number distributed uniformly. 

 

The parameter 𝐿𝑖𝑗
𝑡 is the characteristic length of the underlying wave function and is evaluated as: 

𝐿𝑖𝑗

𝑡 =  2𝛽 |𝑝𝑖

𝑡 − 𝑋𝑖𝑗

𝑡 |                                                                       (13) 

The contraction-expansion co-efficient 𝛽 is tuned to maintain the balance between exploration and exploitation. The complete 
position update equation is thus given by: 

𝑋𝑖𝑗

𝑡+1 =   𝑝𝑖𝑗
𝑡 ±  𝛽 |𝑝𝑖

𝑡 − 𝑋𝑖𝑗

𝑡 | 𝑙𝑛 (
1

𝑢𝑖𝑗
𝑡 )                                            (14) 

𝐿𝑖𝑗

𝑡  controls the accuracy and convergence speed of QPSO. The “Mainstream Thought” or Mean Best, introduced in [26] is the mean 

of all 𝑝𝐵𝑒𝑠𝑡 positions of the particles.  

𝑚𝑏𝑒𝑠𝑡𝑡 = (𝑚𝑏𝑒𝑠𝑡1

𝑡  ,  𝑚𝑏𝑒𝑠𝑡2

𝑡  , … , 𝑚𝑏𝑒𝑠𝑡𝑑

𝑡  )                                (15)  

              = [
1

𝑀
∑ 𝑝𝑖1

𝑡𝑀
𝑖=1 ,

1

𝑀
 ∑ 𝑝𝑖2

𝑡𝑀
𝑖=1 , … ,

1

𝑀
∑ 𝑝𝑖𝑑

𝑡𝑀
𝑖=1 ]   

An alternate way of writing the position update equation is adopted by re-expressing 𝐿𝑖𝑗

𝑡  : 

𝐿𝑖𝑗

𝑡 =  2𝛽 |𝑚𝑏𝑒𝑠𝑡𝑗

𝑡 − 𝑋𝑖𝑗

𝑡 |                                                              (16)  

This yields the final form of the popular mainstream thought based position update equation of the QPSO algorithm. 

𝑋𝑖𝑗

𝑡+1 =  𝑝𝑖𝑗
𝑡  ± 𝛽 |𝑚𝑏𝑒𝑠𝑡𝑗

𝑡 − 𝑋𝑖𝑗

𝑡 | 𝑙𝑛 (
1

𝑢𝑖𝑗
𝑡 )                                     (17)  

The second term in the RHS of (17) is additive when a generated random number is less than 0.5 and vice-versa. 

 

Algorithm 2. Quantum-behaved PSO 

  1:  for each particle xi  

  2:       initialize position  

  3:  end for 

  4:  do 

  5:    Compute mean best position using eq. (15) 

  6:       for each particle xi 

  7:           for each dimension j 

  8:                 Calculate local attractor using eq. (12) 

  9:                 if rand(0,1)<0.5 

10:                    Update pos. using eq. (15) with ‘+’ 

11:                 else Update pos. using eq. (15) with ‘-’ 

12:                 end if 

13:                end for 

14:           Evaluate fitness function 

15:           Update pBest according to eq. (8) and (9) 

16:       end for 

17:    Set best among pBest as the global best (gBest) 

18:  while max. iter or convergence criterion  not met 



4. Annealed-weighted QPSO for visual tracking 

 

4.1. Particle propagation using AWQPSO 

The uniform weighting scheme in the Mean Best calculation in eq. (15) is not an optimum choice as particles of varying fitness 

values contribute equally to it. Thus, in alignment with predator-prey population models where the fitter of the two survives to pass 

on their genes, the mean best update is recomputed by assigning a set of variable weights with the particles. Each particle is 

associated with a weight in proportion to its fitness value thereby making it favorable for the fittest particle to contribute most to 

the mean best update [31]. The mbest calculation thus changes to: 

𝑚𝑏𝑒𝑠𝑡𝑡 = (𝑚𝑏𝑒𝑠𝑡1

𝑡  ,  𝑚𝑏𝑒𝑠𝑡2

𝑡  ,… , 𝑚𝑏𝑒𝑠𝑡𝑑

𝑡  )                (18)      

              = [
1

𝑀
∑ 𝜏𝑖1

𝑡 𝑝𝑖1
𝑡𝑀

𝑖=1 ,
1

𝑀
 ∑ 𝜏𝑖2

𝑡 𝑝𝑖2
𝑡𝑀

𝑖=1 , … ,
1

𝑀
∑ 𝜏𝑖𝑑

𝑡 𝑝𝑖𝑑
𝑡𝑀

𝑖=1 ] 

 

where 𝜏𝑖𝑗
𝑡  is the j-th dimensional weight of the i-th particle in iteration t. The standard QPSO suffers from unsatisfactory fine tune 

during the latter part of the search process [33] and the fitness update scheme rejects particles whose likelihood values are worse 

than the personal best. However, these particles may evolve over iterations to guide the swarm towards the globally optimum mode 

and disregarding them from the start of the search process may effectively reduce the diversity of the swarm. Thus, the fitness 

update scheme is replaced by an exponential acceptance score where the probability of accepting a particular particle is given by 

the Metropolis criterion [34]: 

𝜃 = {
1, 𝑖𝑓 𝛥𝑓 < 0

𝑒𝑥𝑝 (−
 𝛥𝑓

𝑇𝑡
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                    (19) 

 𝛥𝑓 is the difference in fitness from previous iteration, 𝜃 is probability that the current particle is accepted and Tt is the annealing 

temperature in iteration t. A suitable cooling schedule is adopted with an initial high value of T0: 

 
𝑇𝑡 = 𝑇0(𝑒−𝑡)                                                                                  (20) 

The value of the contraction-expansion factor 𝛽 is decreased linearly from 0.9 to 0.5 over the iteration count to facilitate exploitation 
in the latter part of the search: 

𝛽 = (0.9 − 0.5) [
(𝑡𝑚𝑎𝑥 −𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑡𝑚𝑎𝑥
] + 0.5                                      (21) 

 

  Algorithm 3. Annealed Weighted QPSO  

  1:   for each particle xi  

  2:        initialize position  

  3:   end 

  4:   do 

  5:     Compute mean best position using eq. (18) 

  6:     for each particle xi 

  7:           for each dimension j 

  8:                 Calculate local attractor using eq. (12) 

  9:                 if rand(0,1)<0.5 

10:                    Update pos. using eq. (17) with ‘+’  

11:                 else Update pos. using eq.(17) with ‘-’  

12:                end if 

13:          end for 

14:     Accept new solution according to eq. (19) 

15:     Update pBest according to. eq. (8) and (9) 

16:     end for 

17:     Set best among pBest as the global best (gBest) 

18:    while max. iter or convergence criterion  not met 

 

 



4.2. Motion model and target observation  

The dynamic state update stage of the filter makes use of a weight normalized velocity looking back three steps in memory. A 

Gaussian distribution Xk+1 ~ N(Xk ,ΣM)  is used to spread particles around the current state which results in the following motion 

model with the importance weight vector λ sorted in ascending order of values. ΣM is the covariance matrix of the distribution, 𝑣𝑓 

is the adaptive step size update, Ω is a uniform random number in [-1,1] and 𝑣𝑔 is the velocity of the g-th frame. 

𝑋𝑘+1 =  𝑋𝑘 + 𝛺𝑣𝑓                                                                    (22) 

𝜆 = 𝑠𝑜𝑟𝑡 ({ 
𝑣𝑔

∑ 𝑣𝑒
𝑘
𝑒=𝑘−2

 }
𝑘−2

𝑘

, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)                                                    (23) 

𝑣𝑓 = 2 ∑ 𝜆{𝑎 + 1}. {𝑣𝑘−𝑎}2
𝑎=0                                                                                                (24)      

Now, it is known to all that a good observation model is critical to implementing an efficient tracker. However, in practice varying 

conditions necessitate the use of specific feature descriptors for different tracking scenarios. In this work, the appearance of the 

targeted object is modeled using a Gaussian fitness function as: 

𝑓(𝐶, Σ) = (
1

2𝜋𝑛/2|Σ|1/2) exp (−
Δ2

2
)                                     (25)       

Δ = √(𝐶 − 𝐶𝐺𝑇)𝑇Σ−1(𝐶 − 𝐶𝐺𝑇) is the Mahalanobis distance of the observable C with respect to the goal state CGT given covariance 

Σ. Here, color cue is used as the feature descriptor to construct likelihood scores because of its simplicity in implementation while 

providing invariance to translational and rotational change, as well as scale change and partial occlusion. The Euclidean distance 

between i-th of N particles and the manually annotated ground truth for the k-th frame is used in subsequent center error estimation 

and is given by the following equation: 

𝑑𝑖

𝑘 =  √(𝑋𝐺𝑇 −  𝑋𝑖
𝑘)2     ∀𝑖 𝑖𝑛 𝐼+ ∈ [1, 𝑁]                                 (26) 

 

 

          Fig. 3. Flowchart of the AWQPSO tracking model. 



5. Tracking performance indices 

A quantitative characterization of tracker performance has been made using precision and recall evaluated over the test sequences. 

Precision, in the context of visual tracking can be defined as the ratio of the number of frames over the total having a center to 

swarm deviation less than a preset threshold. Recall, on the other hand is the ratio of number of frames over the total that pass a 

tracker to ground truth bounding box overlap score greater than a preset threshold. In more formal terms, these are expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑟𝑎𝑚𝑒𝑠𝑅𝑀𝑆𝐸 <𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠
 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (27) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑟𝑎𝑚𝑒𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆𝑐𝑜𝑟𝑒>𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠
  =

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (28) 

 

The Overlap Score is computed as  (
𝐵𝐵𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ⋂  𝐵𝐵𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

𝐵𝐵𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ⋃  𝐵𝐵𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
) . TP, FP and FN are true positives, false positives and false negatives, 

respectively and BB denotes the Bounding Box. 

𝑅𝑀𝑆𝐸 =

∑ [
√∑ {(𝑋𝑧,𝑥−𝑋𝐺𝑇,𝑥)

𝑘

2
+(𝑋𝑧,𝑦−𝑋𝐺𝑇,𝑦)𝑘

2}𝑁
𝑧=1

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
]𝐹𝑟𝑎𝑚𝑒𝑠

𝑘=1

𝐹𝑟𝑎𝑚𝑒𝑠
                                    (29) 

𝐹𝑃𝑆 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐼𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠
                                      (30) 

 

 

6. Experiments and results 

6.1. Experimental setup 

 

To evaluate the performance of the AWQPSO tracker, three competitive tracking algorithms viz. PF (described in Section 2), PSO 

– PF (described in Section 3) and AWQPSO-PF (described in Section 4) have been considered. A comparative analysis of 

computational load and error margins are calculated using the same observation model for all. Two different video sequences 

acquired at 25 fps are taken. The first one is the dataset OneStopNoEnter2cor.mpg from the EC Funded CAVIAR project/IST 2001 

37540 [35]. The Corridor Views of the Lisbon Sequence from the CAVIAR Project are considered. These sequences are shot in a 

shopping mall using a surveillance camera and variations include scale change, different lighting conditions, nearby moving object 

(particle hijacking problem) and partial occlusion. The second sequence is aerobatics_1.avi from the Aircraft Tracking Database-

Open Remote Sensing [36] which introduces scale change, camera movement, abrupt motion and specular reflection into the 

observation.  

 

The values of the cognitive and social learning constants C1 and C2 in Table 2 are both set to 2.05 as these are empirically found 

to be the optimal pair. The inertial constant ω in PSO is set to 0.5 after testing a linear time varying inertia weight (TVIW) as well 

as in increments of 0.1 between 0.1 and 0.9 for PSO which results in a fine balance between exploration and exploitation. The 

contraction-expansion factor β in AWQPSO is reduced linearly with the number of iterations to explore the search space more in 

initial iterations and hone in on potential solution regions towards the latter iterations. The population size in all test cases are taken 

to be 300 to allow for reasonably on-target behavior across all frames for each algorithm, exceeding which the time complexity 

increases with negligible change in the number of off-target frames. A sufficiently large fitness score computed with respect to the 

goal state or a maximum iteration count of 50 are kept as the termination criterion for all in-frame optimization using the algorithms.  

 
The methodologies discussed so far are implemented on MATLAB R2016a using an Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 
with 8GB RAM and the performances over 30 trials are analyzed. No use of Graphics Processing Units (GPUs) have been made 
during the experiments. 

 

 

 

 

 



Table 1. 

List of Implementation Terms and Parameters for the Metaheuristic Algorithms.  

Term Discussion 

Some General Terms 

Population (X) The collection or ‘swarm’ of agents employed in the search space 

Fitness Function (f) A measure of convergence efficiency  

Current Iteration The ongoing iteration among a batch of dependent/independent runs  

Maximum Iteration Count The maximum number of times runs are to be performed 

Particle Filter 

Population (X)  Collection of agents approximating states of target under consideration 

Proposal  Initial guess of possible target states given some/no apriori knowledge 

Observation  Sensed states of the target after the prediction stage is complete 

Importance Weights (κ) A high posterior likelihood implies a large weight 

Effective Sample Size (ESS) Low value of Effective Sample Size implies necessity of resampling  

Particle Swarm Optimization 

Position (X) Position values of individual swarm members employed in a multidimensional 

search space 

Velocity (v) Velocity values of individual swarm members 

Cognitive Accl. Coefficient (C1) Empirically found scale factor of pBest attractor  

Social Accl. Co-efficient (C2) Empirically found scale factor of gBest attractor 

Personal Best (pBest) Position corresponding to historically best fitness for a swarm member 

Global Best (gBest) Position corresponding to best fitness over history for swarm members  

Inertia Weight Co-efficient (ω) Facilitates and modulates exploration in the search space 

Cognitive Random Perturbation (r1) Random noise injector in the Personal Best attractor 

Social Random Perturbation (r2) Random noise injector in the Global Best attractor 

Quantum-behaved Particle Swarm Optimization 

Local Attractor  Set of local attractors in all dimensions 

Characteristic Length Measure of scales on which significant variations occur  

Contraction-Expansion Param. (β) Scale factor influencing the convergence speed of QPSO 

Mean Best Mean of all personal bests across all particles, akin to leader election in the 

biological world 

Annealed Weighted Quantum-behaved 

Particle Swarm Optimization 

Weighted Mean Best Fitness weighted mean of all personal bests across all particles 

Metropolis Criterion Criterion facilitating inclusion of worse performing particles in the solution pool 

to preserve diversity of the swarm 

Annealing Temperature Temperature of the system in a particular iteration in the simulated annealing 

process [33] 

Initial Annealing Temperature Initial temperature of the system in the simulated annealing process 

Contraction Expansion Parameter (β) Linearly decreasing factor influencing convergence speed of  QPSO 

 
 

Table 2 

Parameter selection for the tracking algorithms. 

 
Parameter Population C1 C2 ω β tmax Tt 

Value 300 2.05 2.05 0.5 (0.9-0.5)[(tmax-tcurrent)/tmax]+0.5 50 100 

 

 

 



6.2. Results for Benchmark Problem 1: OneStopNoEnter2cor 

 

 
Frame  PF PSO-PF AWQPSO-PF 

805 

   

897 

   

966 

   

1035 

   

1081 

   

 

Fig. 4. Tracking results for OneStopNoEnter2cor. 

 

 

 
Fig. 5. Evolution of RMSE for OneStopNoEnter2cor (301 frames). 

 



 

Table 3 

Performance comparison of the three trackers for OneStopNoEnter2cor.  

 

Dataset Algorithm FPS Lost Targets 

CET=20 CET=30 

OneStopNoEnter2cor 

 

 

PF 17.23±0.3058 40/301 28/301 

PSO-PF 6.71±0.7285 4/301 0/301 

AWQPSO-PF 8.69±0.7044 0/301 0/301 
 

 
Fig. 6. Precision versus Center Error Threshold for dataset OneStopNoEnter2cor. 

 

 
Fig. 7. Recall versus Overlap Threshold for dataset OneStopNoEnter2cor. 

 

 

 

 

 



 
 

Fig. 8. Performance of AWQPSO under varying population sizes for dataset OneStopNoEnter2cor. 

 

 

6.3. Results for Benchmark Problem 2: aerobatics_1 

 

 
Frame  PF PSO-PF AWQPSO-PF 

324 

   

432 

   

513 

   

540 

   

597 

   

 

Fig. 9. Tracking results for aerobatics_1. 



 
Fig. 10. Evolution of RMSE for aerobatics_1 (301 frames). 

 

 

 

Table 4 

Performance comparison of the three trackers for aerobatics_1. 

 

Dataset Algorithm FPS 
Lost Targets 

CET=20 CET=30 

aerobatics_1 

PF 14.34±0.2016 32/301 9/301 

PSO-PF 5.40±0.4783 18/301 3/301 

AWQPSO-PF 5.79±0.3158 5/301 0/301 

 
 

 
 

Fig. 11. Precision versus Center Error Threshold for dataset aerobatics_1. 



 
Fig. 12. Recall versus Overlap Threshold for dataset aerobatics_1. 

 

 

 

 
 

Fig. 13. Performance of AWQPSO under varying population sizes for dataset aerobatics_1. 

 

7. Analysis of experimental results 
 

There is an increase in FPS by 29.51% and 7.22% in case of OneStopNoEnter2cor and aerobatics_1 using AWQPSO over PSO in 

the Particle Filtering framework. The precision plot for OneStopNoEnter2cor suggests at least 80% of frames pass the RMSE 

threshold of 15 for both AWQPSO and PSO while that for aerobatics_1 suggests the same percentage of frames pass the RMSE 

thresholds of 18 and 23 for AWQPSO and PSO. There are 13% and 5% increases in number of frames with a 50% overlap between 

ground truth and tracker bounding boxes when using AWQPSO as compared to PSO for OneStopNoEnter2cor and aerobatics_1 

respectively. In Frames 1075 through 1091 of OneStopNoEnter2cor, the PF tracker is distracted by mistaking local objects as the 

target, whereas PSO-PF and AWQPSO-PF maintain tracking the target viz. a human subject walking down the corridor clad in red 

clothing successfully with RMSE<10. Additionally, in aerobatics_1 for Frames 566 to 575 and 594 to 600, PF loses track of the 

target aircraft due to abrupt motion coupled with scale change, however PSO and AWQPSO trackers perform efficiently. In both 

the periods though, the proposed AWQPSO-PF tracker has a lower RMSE than the PSO-PF tracker.  



 

Table 3 lists the results of performance parameters for the OneStopNoEnter2cor sequence using the different techniques. Although 

experimental results suggest that the AWQPSO-PF approach tracks the target with the least net error as compared to PF and PSO-

PF, it takes at least twice as much time to process the same number of frames as the Particle Filter does. The number of lost targets 

for Centre Error Threshold of 20 and 30 are least in AWQPSO-PF and its RMSE is less than 20 in each of the 301 frames of the 

subsequence, whereas PF and PSO-PF fail to confine the RMSE to under 20 in all frames. The number of correctly tracked frames 

(no lost targets) given a RMSE threshold of 20 rose by 1.328% and 13.289% using the proposed approach over PSO and PF 

respectively. While the AWQPSO-PF and PSO-PF approaches reported same number of correctly tracked frames for RMSE 

threshold of 30, there was an increase of 9.302% noticed with regard to the PF performance for AWQPSO-PF. 

 

Results from Table 4 indicate AWQPSO-PF has a much tighter bounding box around the target in each frame when compared to 

the other methods. For instance, the number of frames in the subsequence where the swarm RMSE is less than or equal to 20 is 296 

and 283 in case of AWQPSO-PF and PSO-PF respectively – an improvement of 4.318%. Similarly, the concerned number of frames 

are 298 and 301 for swarm RMSE less than or equal to 30 meaning an improvement of 0.996% using AWQPSO-PF over PSO-PF.  

The proposed approach reported 8.970% and 2.990% increase in said number of frames for RMSE bounds of 20 and 30 against the 

standard PF for the AWQPSO-PF tracker. 

 

8. Conclusion and future work 

The present study has presented and tested an evolutionary Particle Filter which makes use of an Annealed - Quantum-behaved 

Particle Swarm Optimization with a weighted Mean Best operator. The better global search ability of the fitness weighted QPSO 

along with the probabilistic rejection of inferior solutions using Metropolis Criterion makes the proposed metaheuristic well suited 

for avoiding local minima in the tracking search space. This preserves the diversity of the posterior population and alleviates the 

sample impoverishment issue to an extent better than the competing Particle Swarm Optimization based Particle Filter and the 

standard Particle Filter. This is evidenced by the experimental results obtained in Tables 3 and 4 as well as by the metrics in Figures 

6, 7, 11 and 12. In addition to this, a motion model that looks back three steps in memory is adopted to smooth out sudden changes 

in velocity of the target. The proposed algorithm is tested using two sequences and is seen to outperform its competitors in both, 

yielding better RMSE across majority of frames as well as greater area under the curve for both the Precision versus Centre Error 

Threshold and Recall versus Overlap Threshold metrics. It is observed that the computational load for the AWQPSO-PF method is 

lower than the PSO-PF, albeit both being significantly slower than the standard PF tracker. This is because of the lesser number of 

within-frame iterations required by AWQPSO to reach the convergence threshold. However, given the large number of particles 

used in all the methods and the large within-frame cutoff iteration of 50, the setup is not suitable for real time operation without a 

reduction in population size and number of in-frame iterations or a parallelized implementation.   

 

The observation model may be modified to accommodate a multi cue likelihood function requiring a multi-objective optimization 

approach thus effecting a better representation of the target. Additionally, the current AWQPSO-PF tracker model can be extended 

to track multiple targets with a focus on occlusion handling and evasion of stagnation in local minima over a large number of 

datasets. Importantly enough, the speedup through parallel computation of particle trajectories in the dynamic state transition section 

and the subsequent metaheuristic optimization module may lead to a significant increase in FPS. As with existing swarm 

optimization inspired tracking models such as the Cuckoo Search inspired PF tracker in [9], the QPSO-PF tracker in [7], the Cellular 

QPSO-PF tracker in [8] and other recent ones [10-11], the current metaheuristic too is susceptible to performance degradation due 

to incorrect parametric tuning, necessitating a thorough characterization of the operating ranges of its system variables to guarantee 

convergent behavior.   
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