
Learning to track on-the-fly using a particle filter with annealed-

weighted QPSO modeled after a singular Dirac delta potential

Saptarshi Sengupta

S. Sengupta is with the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN 37212,

USA. (Corresponding author, Email: saptarshi.sengupta@vanderbilt.edu; sengupta.eecs@yahoo.com; Tel: +1 (615)-678-3419)

Richard Alan Peters II

R.A. Peters II is with the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN 37212,

USA. (Email: Alan.Peters@Vanderbilt.Edu.

Abstract – This paper proposes an evolutionary Particle Filter with a memory guided proposal step size update and an improved, fully-

connected Quantum-behaved Particle Swarm Optimization (QPSO) resampling scheme for visual tracking applications. The proposal

update step uses importance weights proportional to velocities encountered in recent memory to limit the swarm movement within

probable regions of interest. The QPSO resampling scheme uses a fitness weighted mean best update to bias the swarm towards the fittest

section of particles while also employing a simulated annealing operator to avoid subpar fine tune during latter course of iterations. By

moving particles closer to high likelihood landscapes of the posterior distribution using such constructs, the sample impoverishment

problem that plagues the Particle Filter is mitigated to a great extent. Experimental results using benchmark sequences imply that the

proposed method outperforms competitive candidate trackers such as the Particle Filter and the traditional Particle Swarm Optimization

based Particle Filter on a suite of tracker performance indices.

Keywords— QPSO; Swarm Intelligence; Particle Filter; Visual Tracking; Machine Vision

1. Introduction

Visual Object Tracking is an active research area within the Computer Vision community and has been rigorously studied due to

its relevance in achieving key practical functionalities in today’s increasingly complex cyber-physical world. Some of the more

well-known applications include real-time video surveillance and security systems, smart traffic monitoring and autonomous

vehicle navigation. While object trackers aim to identify distinguishing features of targets across multiple frames of interest in

sequential images, several challenging issues arise that pose as potential failure modes. Varying environmental and behavioral

conditions such as complex object motion, partial or complete occlusion of the region of interest, changes in illumination and scale,

injection of noise etc. lead to inefficient and at many times failed tracking. Constrained optimization approaches in mitigating

tracking failures have demonstrated notable success. The existing methods use either deterministic [1-3] or stochastic approaches

[4-11]. Deterministic approaches typically employ gradient descent search in order to minimize a cost function and obtain

parametric estimates. One such example that has been extensively used is the Snakes model introduced by Kass et al [1]. Hager and

Belhumer defined the cost function as the sum of squared deviations of candidate solutions from the ground truth [2] whereas

Comaniciu minimized the cost difference between two color histograms by using the Mean Shift Algorithm [3]. Deterministic

approaches are computationally less expensive, however they are susceptible to getting trapped in local optima. Stochastic

approaches involve probabilistic operators and better estimate parameters by intelligently querying the multidimensional search

space for the global optima, with the tradeoff being computational load. Several approaches have been proposed in [4-11] which

effect better performance compared to their deterministic counterparts but the curse of dimensionality remains for high dimensional

problems. Due to the dynamic nature of the environment, a unified object tracking scheme is very difficult to accomplish. Particle

Filters are recursive implementations of Monte Carlo methods and are ideal for analyzing highly non-linear, non-Gaussian state

estimation problems where classical Kalman Filter based approaches fail [12]. The generic Particle Filter suffers from the

degeneracy and Sampling Importance Resampling (SIR) induced particle impoverishment problem, leading to proposed

enhancements in the sampling stage as in [13-14].

This paper incorporates a memory guided motion model and a hybrid QPSO resampling scheme using annealing and weighted

mean best operators (Annealed Weighted QPSO-AWQPSO) to effectively recast particles to the higher likelihood regions in the

posterior probability landscape. The methodology is tested out on two benchmark problems containing a set of environmental test

conditions. Performance metrics like Root Mean Square Error (RMSE), Number of Frames Successfully Tracked, Tracking

Precision versus Centre Error Threshold, Recall versus Overlap Threshold and Frames per Second (FPS) are analyzed over batches

of computations. Such statistical analyses suggest performance improvements using the proposed method in comparison to the PSO

Resampling inspired Particle Filter (PSO-PF) as well as the standard Particle Filter (PF).

The rest of the paper is summarized as follows: Section 2 reviews related work at the intersection of Evolutionary Computation and

particle resampling in Particle Filters, Section 3 outlines the resampling techniques used and Section 4 details the proposed

approach. Section 5 lists the tracking quality indices used in the model followed by Section 6 which elaborates on the experimental

conditions and results on benchmark problems. Section 7 provides an analysis of the results obtained and Section 8 concludes the

paper with possible directions for future work.

2. Sample impoverishment in particle filters and related work

A Bayesian inference approach to the object tracking problem involves dynamic state transition through time using a System Model

and state measurement through an Observation Model. A Markovian system model in this regard can be formulated as:

𝑋𝑘 = 𝑓(𝑋𝑘−1, 𝜈𝑘) ↔ 𝑝(𝑋𝑘 |𝑋𝑘−1) (1)

The observation model can be expressed as:

𝑂𝑘 = ℎ(𝑋𝑘, 𝜂𝑘) ↔ 𝑝(𝑂𝑘 | 𝑋𝑘) (2)

The sequences {Xk , k ∈ I+} along with {Ok , k ∈ N} denote the target states and the measurement set of the state sequence in frame

k. νk and ηk are mutually independent system noise and measurement noise. The central goal of a particle filter is to find an

approximation of the posterior probability distribution p(Ok |Xk) using a set of weighted samples drawn from a proposal distribution

with an associated particle rank defined by a one to one correspondence between high posterior likelihood and large weight. The

weights 𝜅 are generally computed using the following proportionality relation:

 𝜅𝑘
𝑖 ∝ 𝜅𝑘−1

𝑖 𝑝(𝑂𝑘 |𝑋𝑘
𝑖

)𝑝(𝑋𝑘
𝑖 |𝑋𝑘−1

𝑖
)

𝑝(𝑋𝑘 |𝑋𝑘−1
𝑖 , 𝑂𝑘)

 (3)

The posterior distribution is then updated as:

𝑝(𝑋𝑘| 𝑂𝑘) = ∑ 𝜅𝑘
𝑖𝑁

𝑖=1 𝛿(𝑋𝑘 − 𝑋𝑘
𝑖) (4)

where p(Ok|Xk) is the likelihood and δ(.) is the Dirac-delta function. It is fundamentally important to generate a proposal distribution

such that the sampled particles belong to the region of significant likelihood of the posterior. Given that particle filters run into

sample degeneracy issues [15] because a large fraction of particles have negligibly small weights after only a few iterations,

Sampling Importance Resampling (SIR) based probabilistic selection of particles have been widely adopted as a solution [16]. In

the resampling step, particles having small weights have low chances of being propagated to the next iteration. A key disability of

PF-SIR in effectively addressing the Sample Degeneracy Problem lies in loss of particle diversity over the course of iterations. This

leads to the Sample Impoverishment Problem [17] as the resampled particle set does not accurately reflect the underlying statistical

properties of the original particle set. As the number of effective particles decreases, the collective information carried by them also

declines resulting in suboptimal object representations. The number of effective particles Neff can be expressed as:

𝑁𝑒𝑓𝑓 =
1

∑ (𝜅𝑘
𝑖)2𝑁

𝑖=1

 (5)

The Sample Impoverishment Problem has attracted several mitigation strategies that make use of prior knowledge processing or

multi-layered sampling. Partitioned Sampling [17], Annealed Importance Sampling [19] and Kernel Particle Filters [13] are some

of the commonly used techniques in this regard. The Auxiliary Particle Filter by Pitt and Shephard, 1999 [20] samples particles

corresponding to points mapped to an importance density with high conditional likelihood. Some researchers have proposed moving

particles of lower importance towards regions of higher posterior likelihood. For example, the Kernel Particle Filter accomplishes

this particular objective, however it uses a deterministic search and requires a continuous probability distribution, among other

things.

In recent years, the use of Particle Swarm Optimization [21] in non-differentiable and ill-structured multidimensional problems has

gained popularity due to co-operative exchange of social and cognitive information among swarm members and the relatively low

cost of individual particle fitness computation. While it yields promising results for non-differentiable cost functions, it is also

limited in its ability to converge to the global best (Van den Bergh, 2001) [23] as per the convergence criteria put forward by Solis

and Wet [24]. Numerous updates to the canonical PSO put forward by Clerc and Kennedy [25] have been made possible by factoring

in different initialization conditions, position and velocity updates and hybridization [22] [25-27] [31]. Of these, Quantum-behaved

Particle Swarm Optimization (QPSO) [26-30] is a particularly attractive choice as its convergence to optima is theoretically

guaranteed [31]. Promising results using QPSO-inspired Particle Filters in several tracking datasets have been reported by Sun et

al (2015) [7] and by Hu, Fang and Ding (2016) [8].

Fig. 1. Particle redistribution towards regions of high likelihood.

3. Outline of metaheuristics used

3.1. Particle swarm optimization (PSO)

PSO [21-22] is one of many nature-inspired metaheuristics in the broad category of Swarm Intelligence and draws motivation from

social co-operation among bird flocks or fish schools. Each particle in PSO is a candidate solution representing a point in a d-

dimensional search space. The particles mimic the behavior exhibited by a swarm of birds flocking in a multidimensional search

space by updating their position coordinates and velocity using information of personal best position so far (cognitive operator -

pbest) and global best (social operator - gbest). An iterative process of movement dependent on social co-operation guides the

swarm towards the global optima. The position and velocity equations in basic PSO are as follows:

𝑣𝑖

𝑡+1 = 𝜔 𝑣𝑖
𝑡 + 𝐶1 𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖

𝑡) + 𝐶2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑋𝑖
𝑡) (6)

𝑋𝑖

𝑡+1 = 𝑋𝑖
𝑡 + 𝑣𝑖

𝑡+1 (7)

𝐶1 and 𝐶2 are cognition and social acceleration constants and 𝑟1 and 𝑟2 are random numbers between 0 and 1 drawn from a uniform

distribution. 𝑋𝑖

𝑡+1 , 𝑣𝑖

𝑡+1 represent the position and velocity of the 𝑖th d-dimensional particle respectively at the end of the t-th

iteration whereas 𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡 are the personal and global best positions. Term 1 in the R.H.S of eq. (6) represents inertia of

the swarm and can be adjusted by tuning 𝜔 while the next two terms perturb noise in the direction of the individual and population

best. The fitness f is updated in the following manner for a cost minimization objective:

𝑓(𝑥𝑖

𝑡) < 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖)) ⇒ 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑥𝑖

𝑡 (8)

𝑓(𝑥𝑖

𝑡) ≥ 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖)) ⇒ 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑝𝐵𝑒𝑠𝑡𝑖 (9)

Algorithm 1. Particle Swarm Optimization

 1: for each particle xi

 2: initialize position and velocity

 3: end for

 4: do

 5: for each particle xi

 6: Calculate particle fitness fi

 7: if fi is better than individual best (pBest)

 8: Set fi as the new pBest

 9: end if

10: end for

11: Set best among pBest as the global best (gBest)

12: for each particle

13: Calc. particle velocity acc. to eq. (6)

14: Update particle position acc. to eq. (7)

15: end

16: while max. iter or convergence criterion not met

Fig. 2. Particle movement mechanics using PSO.

3.2. Quantum-behaved particle swarm optimization (QPSO)

Trajectory analysis in [33] proved that the convergence of PSO necessitates the convergence of each particle to its local attractor

 𝑝𝑖

𝑡 = (𝑝𝑖1

𝑡 , 𝑝𝑖2

𝑡 , 𝑝𝑖3

𝑡 , … 𝑝𝑖𝑑
𝑡) and in the process the current position (𝑋𝑖

𝑡) , the personal best (pBest) and the global best (gBest) approach

the same value. In Quantum-behaved Particle Swarm Optimization, the state of a particle is formally characterized by a wave

function 𝜓 with |𝜓|2 representing the probability density function of its position. Using Monte Carlo recursion, the QPSO coordinate

update equation reduces to:

𝑋𝑖𝑗

𝑡+1 = 𝑝𝑖𝑗
𝑡 ± (

𝐿𝑖𝑗
𝑡

2
) 𝑙𝑛 (

1

𝑢𝑖𝑗
𝑡) (10)

𝑢𝑖𝑗
𝑡 ~𝑈(0,1) is a uniformly distributed random number and the local attractor 𝑝𝑖𝑗

𝑡 can be formulated as:

𝑝𝑖𝑗

𝑡 =
𝐶1𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡 𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑡 +𝐶2𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡 𝑔𝐵𝑒𝑠𝑡𝑖𝑗
𝑡

𝐶1𝑟𝑎𝑛𝑑()𝑖𝑗
𝑡 +𝐶2𝑟𝑎𝑛𝑑()𝑖𝑗

𝑡 (11)

rand(0,1) generates different random numbers for pairing with cognitive and social operators. Further simplification results in the

following widely used form:

𝑝𝑖𝑗

𝑡 = Φ𝑖𝑗
𝑡 𝑝𝐵𝑒𝑠𝑡𝑖𝑗

𝑡 + (1 − Φ𝑖𝑗
𝑡)𝑔𝐵𝑒𝑠𝑡𝑖𝑗

𝑡 (12)

where Φ𝑖𝑗
𝑡 ~𝑈(0,1) is a generated random number distributed uniformly.

The parameter 𝐿𝑖𝑗
𝑡 is the characteristic length of the underlying wave function and is evaluated as:

𝐿𝑖𝑗

𝑡 = 2𝛽 |𝑝𝑖

𝑡 − 𝑋𝑖𝑗

𝑡 | (13)

The contraction-expansion co-efficient 𝛽 is tuned to maintain the balance between exploration and exploitation. The complete
position update equation is thus given by:

𝑋𝑖𝑗

𝑡+1 = 𝑝𝑖𝑗
𝑡 ± 𝛽 |𝑝𝑖

𝑡 − 𝑋𝑖𝑗

𝑡 | 𝑙𝑛 (
1

𝑢𝑖𝑗
𝑡) (14)

𝐿𝑖𝑗

𝑡 controls the accuracy and convergence speed of QPSO. The “Mainstream Thought” or Mean Best, introduced in [26] is the mean

of all 𝑝𝐵𝑒𝑠𝑡 positions of the particles.

𝑚𝑏𝑒𝑠𝑡𝑡 = (𝑚𝑏𝑒𝑠𝑡1

𝑡 , 𝑚𝑏𝑒𝑠𝑡2

𝑡 , … , 𝑚𝑏𝑒𝑠𝑡𝑑

𝑡) (15)

 = [
1

𝑀
∑ 𝑝𝑖1

𝑡𝑀
𝑖=1 ,

1

𝑀
 ∑ 𝑝𝑖2

𝑡𝑀
𝑖=1 , … ,

1

𝑀
∑ 𝑝𝑖𝑑

𝑡𝑀
𝑖=1]

An alternate way of writing the position update equation is adopted by re-expressing 𝐿𝑖𝑗

𝑡 :

𝐿𝑖𝑗

𝑡 = 2𝛽 |𝑚𝑏𝑒𝑠𝑡𝑗

𝑡 − 𝑋𝑖𝑗

𝑡 | (16)

This yields the final form of the popular mainstream thought based position update equation of the QPSO algorithm.

𝑋𝑖𝑗

𝑡+1 = 𝑝𝑖𝑗
𝑡 ± 𝛽 |𝑚𝑏𝑒𝑠𝑡𝑗

𝑡 − 𝑋𝑖𝑗

𝑡 | 𝑙𝑛 (
1

𝑢𝑖𝑗
𝑡) (17)

The second term in the RHS of (17) is additive when a generated random number is less than 0.5 and vice-versa.

Algorithm 2. Quantum-behaved PSO

 1: for each particle xi

 2: initialize position

 3: end for

 4: do

 5: Compute mean best position using eq. (15)

 6: for each particle xi

 7: for each dimension j

 8: Calculate local attractor using eq. (12)

 9: if rand(0,1)<0.5

10: Update pos. using eq. (15) with ‘+’

11: else Update pos. using eq. (15) with ‘-’

12: end if

13: end for

14: Evaluate fitness function

15: Update pBest according to eq. (8) and (9)

16: end for

17: Set best among pBest as the global best (gBest)

18: while max. iter or convergence criterion not met

4. Annealed-weighted QPSO for visual tracking

4.1. Particle propagation using AWQPSO

The uniform weighting scheme in the Mean Best calculation in eq. (15) is not an optimum choice as particles of varying fitness

values contribute equally to it. Thus, in alignment with predator-prey population models where the fitter of the two survives to pass

on their genes, the mean best update is recomputed by assigning a set of variable weights with the particles. Each particle is

associated with a weight in proportion to its fitness value thereby making it favorable for the fittest particle to contribute most to

the mean best update [31]. The mbest calculation thus changes to:

𝑚𝑏𝑒𝑠𝑡𝑡 = (𝑚𝑏𝑒𝑠𝑡1

𝑡 , 𝑚𝑏𝑒𝑠𝑡2

𝑡 ,… , 𝑚𝑏𝑒𝑠𝑡𝑑

𝑡) (18)

 = [
1

𝑀
∑ 𝜏𝑖1

𝑡 𝑝𝑖1
𝑡𝑀

𝑖=1 ,
1

𝑀
 ∑ 𝜏𝑖2

𝑡 𝑝𝑖2
𝑡𝑀

𝑖=1 , … ,
1

𝑀
∑ 𝜏𝑖𝑑

𝑡 𝑝𝑖𝑑
𝑡𝑀

𝑖=1]

where 𝜏𝑖𝑗
𝑡 is the j-th dimensional weight of the i-th particle in iteration t. The standard QPSO suffers from unsatisfactory fine tune

during the latter part of the search process [33] and the fitness update scheme rejects particles whose likelihood values are worse

than the personal best. However, these particles may evolve over iterations to guide the swarm towards the globally optimum mode

and disregarding them from the start of the search process may effectively reduce the diversity of the swarm. Thus, the fitness

update scheme is replaced by an exponential acceptance score where the probability of accepting a particular particle is given by

the Metropolis criterion [34]:

𝜃 = {
1, 𝑖𝑓 𝛥𝑓 < 0

𝑒𝑥𝑝 (−
 𝛥𝑓

𝑇𝑡
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19)

 𝛥𝑓 is the difference in fitness from previous iteration, 𝜃 is probability that the current particle is accepted and Tt is the annealing

temperature in iteration t. A suitable cooling schedule is adopted with an initial high value of T0:

𝑇𝑡 = 𝑇0(𝑒−𝑡) (20)

The value of the contraction-expansion factor 𝛽 is decreased linearly from 0.9 to 0.5 over the iteration count to facilitate exploitation
in the latter part of the search:

𝛽 = (0.9 − 0.5) [
(𝑡𝑚𝑎𝑥 −𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑡𝑚𝑎𝑥
] + 0.5 (21)

 Algorithm 3. Annealed Weighted QPSO

 1: for each particle xi

 2: initialize position

 3: end

 4: do

 5: Compute mean best position using eq. (18)

 6: for each particle xi

 7: for each dimension j

 8: Calculate local attractor using eq. (12)

 9: if rand(0,1)<0.5

10: Update pos. using eq. (17) with ‘+’

11: else Update pos. using eq.(17) with ‘-’

12: end if

13: end for

14: Accept new solution according to eq. (19)

15: Update pBest according to. eq. (8) and (9)

16: end for

17: Set best among pBest as the global best (gBest)

18: while max. iter or convergence criterion not met

4.2. Motion model and target observation

The dynamic state update stage of the filter makes use of a weight normalized velocity looking back three steps in memory. A

Gaussian distribution Xk+1 ~ N(Xk ,ΣM) is used to spread particles around the current state which results in the following motion

model with the importance weight vector λ sorted in ascending order of values. ΣM is the covariance matrix of the distribution, 𝑣𝑓

is the adaptive step size update, Ω is a uniform random number in [-1,1] and 𝑣𝑔 is the velocity of the g-th frame.

𝑋𝑘+1 = 𝑋𝑘 + 𝛺𝑣𝑓 (22)

𝜆 = 𝑠𝑜𝑟𝑡 ({
𝑣𝑔

∑ 𝑣𝑒
𝑘
𝑒=𝑘−2

 }
𝑘−2

𝑘

, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔) (23)

𝑣𝑓 = 2 ∑ 𝜆{𝑎 + 1}. {𝑣𝑘−𝑎}2
𝑎=0 (24)

Now, it is known to all that a good observation model is critical to implementing an efficient tracker. However, in practice varying

conditions necessitate the use of specific feature descriptors for different tracking scenarios. In this work, the appearance of the

targeted object is modeled using a Gaussian fitness function as:

𝑓(𝐶, Σ) = (
1

2𝜋𝑛/2|Σ|1/2) exp (−
Δ2

2
) (25)

Δ = √(𝐶 − 𝐶𝐺𝑇)𝑇Σ−1(𝐶 − 𝐶𝐺𝑇) is the Mahalanobis distance of the observable C with respect to the goal state CGT given covariance

Σ. Here, color cue is used as the feature descriptor to construct likelihood scores because of its simplicity in implementation while

providing invariance to translational and rotational change, as well as scale change and partial occlusion. The Euclidean distance

between i-th of N particles and the manually annotated ground truth for the k-th frame is used in subsequent center error estimation

and is given by the following equation:

𝑑𝑖

𝑘 = √(𝑋𝐺𝑇 − 𝑋𝑖
𝑘)2 ∀𝑖 𝑖𝑛 𝐼+ ∈ [1, 𝑁] (26)

 Fig. 3. Flowchart of the AWQPSO tracking model.

5. Tracking performance indices

A quantitative characterization of tracker performance has been made using precision and recall evaluated over the test sequences.

Precision, in the context of visual tracking can be defined as the ratio of the number of frames over the total having a center to

swarm deviation less than a preset threshold. Recall, on the other hand is the ratio of number of frames over the total that pass a

tracker to ground truth bounding box overlap score greater than a preset threshold. In more formal terms, these are expressed as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑟𝑎𝑚𝑒𝑠𝑅𝑀𝑆𝐸 <𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠
 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (27)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑟𝑎𝑚𝑒𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆𝑐𝑜𝑟𝑒>𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠
 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (28)

The Overlap Score is computed as (
𝐵𝐵𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ⋂ 𝐵𝐵𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

𝐵𝐵𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ⋃ 𝐵𝐵𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
) . TP, FP and FN are true positives, false positives and false negatives,

respectively and BB denotes the Bounding Box.

𝑅𝑀𝑆𝐸 =

∑ [
√∑ {(𝑋𝑧,𝑥−𝑋𝐺𝑇,𝑥)

𝑘

2
+(𝑋𝑧,𝑦−𝑋𝐺𝑇,𝑦)𝑘

2}𝑁
𝑧=1

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
]𝐹𝑟𝑎𝑚𝑒𝑠

𝑘=1

𝐹𝑟𝑎𝑚𝑒𝑠
 (29)

𝐹𝑃𝑆 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐼𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠
 (30)

6. Experiments and results

6.1. Experimental setup

To evaluate the performance of the AWQPSO tracker, three competitive tracking algorithms viz. PF (described in Section 2), PSO

– PF (described in Section 3) and AWQPSO-PF (described in Section 4) have been considered. A comparative analysis of

computational load and error margins are calculated using the same observation model for all. Two different video sequences

acquired at 25 fps are taken. The first one is the dataset OneStopNoEnter2cor.mpg from the EC Funded CAVIAR project/IST 2001

37540 [35]. The Corridor Views of the Lisbon Sequence from the CAVIAR Project are considered. These sequences are shot in a

shopping mall using a surveillance camera and variations include scale change, different lighting conditions, nearby moving object

(particle hijacking problem) and partial occlusion. The second sequence is aerobatics_1.avi from the Aircraft Tracking Database-

Open Remote Sensing [36] which introduces scale change, camera movement, abrupt motion and specular reflection into the

observation.

The values of the cognitive and social learning constants C1 and C2 in Table 2 are both set to 2.05 as these are empirically found

to be the optimal pair. The inertial constant ω in PSO is set to 0.5 after testing a linear time varying inertia weight (TVIW) as well

as in increments of 0.1 between 0.1 and 0.9 for PSO which results in a fine balance between exploration and exploitation. The

contraction-expansion factor β in AWQPSO is reduced linearly with the number of iterations to explore the search space more in

initial iterations and hone in on potential solution regions towards the latter iterations. The population size in all test cases are taken

to be 300 to allow for reasonably on-target behavior across all frames for each algorithm, exceeding which the time complexity

increases with negligible change in the number of off-target frames. A sufficiently large fitness score computed with respect to the

goal state or a maximum iteration count of 50 are kept as the termination criterion for all in-frame optimization using the algorithms.

The methodologies discussed so far are implemented on MATLAB R2016a using an Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz
with 8GB RAM and the performances over 30 trials are analyzed. No use of Graphics Processing Units (GPUs) have been made
during the experiments.

Table 1.

List of Implementation Terms and Parameters for the Metaheuristic Algorithms.

Term Discussion

Some General Terms

Population (X) The collection or ‘swarm’ of agents employed in the search space

Fitness Function (f) A measure of convergence efficiency

Current Iteration The ongoing iteration among a batch of dependent/independent runs

Maximum Iteration Count The maximum number of times runs are to be performed

Particle Filter

Population (X) Collection of agents approximating states of target under consideration

Proposal Initial guess of possible target states given some/no apriori knowledge

Observation Sensed states of the target after the prediction stage is complete

Importance Weights (κ) A high posterior likelihood implies a large weight

Effective Sample Size (ESS) Low value of Effective Sample Size implies necessity of resampling

Particle Swarm Optimization

Position (X) Position values of individual swarm members employed in a multidimensional

search space

Velocity (v) Velocity values of individual swarm members

Cognitive Accl. Coefficient (C1) Empirically found scale factor of pBest attractor

Social Accl. Co-efficient (C2) Empirically found scale factor of gBest attractor

Personal Best (pBest) Position corresponding to historically best fitness for a swarm member

Global Best (gBest) Position corresponding to best fitness over history for swarm members

Inertia Weight Co-efficient (ω) Facilitates and modulates exploration in the search space

Cognitive Random Perturbation (r1) Random noise injector in the Personal Best attractor

Social Random Perturbation (r2) Random noise injector in the Global Best attractor

Quantum-behaved Particle Swarm Optimization

Local Attractor Set of local attractors in all dimensions

Characteristic Length Measure of scales on which significant variations occur

Contraction-Expansion Param. (β) Scale factor influencing the convergence speed of QPSO

Mean Best Mean of all personal bests across all particles, akin to leader election in the

biological world

Annealed Weighted Quantum-behaved

Particle Swarm Optimization

Weighted Mean Best Fitness weighted mean of all personal bests across all particles

Metropolis Criterion Criterion facilitating inclusion of worse performing particles in the solution pool

to preserve diversity of the swarm

Annealing Temperature Temperature of the system in a particular iteration in the simulated annealing

process [33]

Initial Annealing Temperature Initial temperature of the system in the simulated annealing process

Contraction Expansion Parameter (β) Linearly decreasing factor influencing convergence speed of QPSO

Table 2

Parameter selection for the tracking algorithms.

Parameter Population C1 C2 ω β tmax Tt

Value 300 2.05 2.05 0.5 (0.9-0.5)[(tmax-tcurrent)/tmax]+0.5 50 100

6.2. Results for Benchmark Problem 1: OneStopNoEnter2cor

Frame PF PSO-PF AWQPSO-PF

805

897

966

1035

1081

Fig. 4. Tracking results for OneStopNoEnter2cor.

Fig. 5. Evolution of RMSE for OneStopNoEnter2cor (301 frames).

Table 3

Performance comparison of the three trackers for OneStopNoEnter2cor.

Dataset Algorithm FPS Lost Targets

CET=20 CET=30

OneStopNoEnter2cor

PF 17.23±0.3058 40/301 28/301

PSO-PF 6.71±0.7285 4/301 0/301

AWQPSO-PF 8.69±0.7044 0/301 0/301

Fig. 6. Precision versus Center Error Threshold for dataset OneStopNoEnter2cor.

Fig. 7. Recall versus Overlap Threshold for dataset OneStopNoEnter2cor.

Fig. 8. Performance of AWQPSO under varying population sizes for dataset OneStopNoEnter2cor.

6.3. Results for Benchmark Problem 2: aerobatics_1

Frame PF PSO-PF AWQPSO-PF

324

432

513

540

597

Fig. 9. Tracking results for aerobatics_1.

Fig. 10. Evolution of RMSE for aerobatics_1 (301 frames).

Table 4

Performance comparison of the three trackers for aerobatics_1.

Dataset Algorithm FPS
Lost Targets

CET=20 CET=30

aerobatics_1

PF 14.34±0.2016 32/301 9/301

PSO-PF 5.40±0.4783 18/301 3/301

AWQPSO-PF 5.79±0.3158 5/301 0/301

Fig. 11. Precision versus Center Error Threshold for dataset aerobatics_1.

Fig. 12. Recall versus Overlap Threshold for dataset aerobatics_1.

Fig. 13. Performance of AWQPSO under varying population sizes for dataset aerobatics_1.

7. Analysis of experimental results

There is an increase in FPS by 29.51% and 7.22% in case of OneStopNoEnter2cor and aerobatics_1 using AWQPSO over PSO in

the Particle Filtering framework. The precision plot for OneStopNoEnter2cor suggests at least 80% of frames pass the RMSE

threshold of 15 for both AWQPSO and PSO while that for aerobatics_1 suggests the same percentage of frames pass the RMSE

thresholds of 18 and 23 for AWQPSO and PSO. There are 13% and 5% increases in number of frames with a 50% overlap between

ground truth and tracker bounding boxes when using AWQPSO as compared to PSO for OneStopNoEnter2cor and aerobatics_1

respectively. In Frames 1075 through 1091 of OneStopNoEnter2cor, the PF tracker is distracted by mistaking local objects as the

target, whereas PSO-PF and AWQPSO-PF maintain tracking the target viz. a human subject walking down the corridor clad in red

clothing successfully with RMSE<10. Additionally, in aerobatics_1 for Frames 566 to 575 and 594 to 600, PF loses track of the

target aircraft due to abrupt motion coupled with scale change, however PSO and AWQPSO trackers perform efficiently. In both

the periods though, the proposed AWQPSO-PF tracker has a lower RMSE than the PSO-PF tracker.

Table 3 lists the results of performance parameters for the OneStopNoEnter2cor sequence using the different techniques. Although

experimental results suggest that the AWQPSO-PF approach tracks the target with the least net error as compared to PF and PSO-

PF, it takes at least twice as much time to process the same number of frames as the Particle Filter does. The number of lost targets

for Centre Error Threshold of 20 and 30 are least in AWQPSO-PF and its RMSE is less than 20 in each of the 301 frames of the

subsequence, whereas PF and PSO-PF fail to confine the RMSE to under 20 in all frames. The number of correctly tracked frames

(no lost targets) given a RMSE threshold of 20 rose by 1.328% and 13.289% using the proposed approach over PSO and PF

respectively. While the AWQPSO-PF and PSO-PF approaches reported same number of correctly tracked frames for RMSE

threshold of 30, there was an increase of 9.302% noticed with regard to the PF performance for AWQPSO-PF.

Results from Table 4 indicate AWQPSO-PF has a much tighter bounding box around the target in each frame when compared to

the other methods. For instance, the number of frames in the subsequence where the swarm RMSE is less than or equal to 20 is 296

and 283 in case of AWQPSO-PF and PSO-PF respectively – an improvement of 4.318%. Similarly, the concerned number of frames

are 298 and 301 for swarm RMSE less than or equal to 30 meaning an improvement of 0.996% using AWQPSO-PF over PSO-PF.

The proposed approach reported 8.970% and 2.990% increase in said number of frames for RMSE bounds of 20 and 30 against the

standard PF for the AWQPSO-PF tracker.

8. Conclusion and future work

The present study has presented and tested an evolutionary Particle Filter which makes use of an Annealed - Quantum-behaved

Particle Swarm Optimization with a weighted Mean Best operator. The better global search ability of the fitness weighted QPSO

along with the probabilistic rejection of inferior solutions using Metropolis Criterion makes the proposed metaheuristic well suited

for avoiding local minima in the tracking search space. This preserves the diversity of the posterior population and alleviates the

sample impoverishment issue to an extent better than the competing Particle Swarm Optimization based Particle Filter and the

standard Particle Filter. This is evidenced by the experimental results obtained in Tables 3 and 4 as well as by the metrics in Figures

6, 7, 11 and 12. In addition to this, a motion model that looks back three steps in memory is adopted to smooth out sudden changes

in velocity of the target. The proposed algorithm is tested using two sequences and is seen to outperform its competitors in both,

yielding better RMSE across majority of frames as well as greater area under the curve for both the Precision versus Centre Error

Threshold and Recall versus Overlap Threshold metrics. It is observed that the computational load for the AWQPSO-PF method is

lower than the PSO-PF, albeit both being significantly slower than the standard PF tracker. This is because of the lesser number of

within-frame iterations required by AWQPSO to reach the convergence threshold. However, given the large number of particles

used in all the methods and the large within-frame cutoff iteration of 50, the setup is not suitable for real time operation without a

reduction in population size and number of in-frame iterations or a parallelized implementation.

The observation model may be modified to accommodate a multi cue likelihood function requiring a multi-objective optimization

approach thus effecting a better representation of the target. Additionally, the current AWQPSO-PF tracker model can be extended

to track multiple targets with a focus on occlusion handling and evasion of stagnation in local minima over a large number of

datasets. Importantly enough, the speedup through parallel computation of particle trajectories in the dynamic state transition section

and the subsequent metaheuristic optimization module may lead to a significant increase in FPS. As with existing swarm

optimization inspired tracking models such as the Cuckoo Search inspired PF tracker in [9], the QPSO-PF tracker in [7], the Cellular

QPSO-PF tracker in [8] and other recent ones [10-11], the current metaheuristic too is susceptible to performance degradation due

to incorrect parametric tuning, necessitating a thorough characterization of the operating ranges of its system variables to guarantee

convergent behavior.

Acknowledgements

This work was made possible by the financial and computing support by the Vanderbilt University Department of EECS.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

[1] Kass, M., Witkin, A. and Terzopoulos, D., “Snakes: Active Contour Models”, Int. J. Comput. Vis., vol. 1, no. 4, pp. 321-331, 1988.

[2] Hager, G.D., Belhumer, P.N., “Efficient Region Tracking with Parametric Models of Geometry and Illumination”, IEEE Trans. Pattern Anal.

Mach. Intell., vol. 20, no. 10, Oct. 1998.

[3] Comaniciu, D., Ramesh, V. and Meer, P., “Kernel-based object tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–

577, Apr. 2003.

[4] Bray, M., Meier, E., Schraudolph, N., Van Gool, L., “Fast stochastic optimization for articulated structure tracking”, Image and Vision

Computing vol. 25 no. 3 pp. 352– 364, 2007.

[5] Leung, A.P., Gong, S.P., “Optimizing Distribution-based Matching by Random Subsampling”, Proc. CVPR’07, pp. 1-8, 2007.

[6] Yang, C., Duraiswami, R., Davis, L., “Fast Multiple Object Tracking via a Hierarchical Particle Filter”, Proc. ICCV ’05, pp 212-219, 2005.
[7] Sun, B., Wang, B., Shi, Y., Gao, H., "Visual Tracking Using Quantum-Behaved Particle Swarm Optimization", Proc. of the 34th Chinese

Control Conf, pp. 3844-3851, 2015.

[8] Hu, J., Fang, W., Ding. W, "Visual Tracking by Sequential Cellular Quantum-Behaved Particle Swarm Optimization", Bio-Inspired
Computing - Theories and Applications (BIC-TA 2016), pp 86-94, 2016.

[9] Walia, G.S., Kapoor, R., “Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search”, Expert

Systems with Applications, vol. 41, issue 14, pp. 6315-6326, 2014.

[10] Gao, Ming-Liang., Shen, Jin., Yin, Li-Ju., Liu, Wei., Zou, Guo-Feng., Li, Hai-Tao., Fu, Gui-Xia., “A novel visual tracking method using bat

algorithm”, Neurocomputing, Volume 177, pp. 612-619, 2016.

[11] Gao, Ming-Liang ., Li, Li-Li., Sun, Xian-Ming., Yin, Li-Ju., Li, Hai-Tao., Luo, Dai-Sheng., “Firefly algorithm (FA) based particle filter

method for visual tracking”, Optik - International Journal for Light and Electron Optics, Volume 126, Issue 18, pp. 1705-1711, 2015.

[12] Gordon, N.J., Salmond, D.J., Smith, A.F.M., “Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation”, IEE Proc., F, Radar

Signal Process. 140 (2), pp 107-113, 1993.

[13] Chang, C. and Ansari, R., “Kernel particle filter for visual tracking”, IEEE Signal Processing Letters, vol. 12, no. 3, pp. 242-245, 2005.

[14] Musso, C., Oudjane, N. and Gland, F., “Improving Regularised Particle Filters”, Sequential Monte Carlo Methods in Practice, pp. 247-271,

2001.

[15] Green, P., “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination”, Biometrika, vol. 82, no. 4, pp.

 711, 1995.

[16] Liu, J., Chen, R. and Wong, W., “Rejection Control and Sequential Importance Sampling”, Journal of the American Statistical Association,

 vol. 93, no. 443, pp. 1022-1031, 1998.

[17] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,

 IEEE Trans. Signal Process. 50(2) pp. 174-188, 2002.

[18] MacCormick, J., and Blake, A., “A probabilistic exclusion principle for tracking multiple objects”, in Proc. Int. Conf. Comput. Vision,

 1999, pp. 572–578.

[19] Radford, M.N., “Annealed importance sampling”, Statistics and Computing, 11(2), pp. 125–139, 2001.

[20] Pitt, M.K., Shephard, N., “Filtering via simulation: Auxiliary particle filter”, Journal of American Statistical Association, 94, pp. 590–599,

 1999.
[21] Kennedy, J., Eberhart, R., “Particle swarm optimization.”, Proc. IEEE Int. Conf. Neural Network, 1995.

[22] Sengupta, S. et al., “Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives.”
ArXiv Preprint ArXiv:1804.05319, 2018.

[23] Van den Bergh, F., “An analysis of particle swarm optimizers.”7, Ph.D. Thesis, University of Pretoria, November 2001.

[24] Solis, F.J., Wets, R. J-B., “Minimization by random search techniques.”, Mathematics of Operations Research 6 pp. 19–30, 1981.

[25] Eberhart, R., “A discrete binary version of the particle swarm algorithm”. In: Proceedings of 1997 conference systems man cybernetics, NJ:

 Piscataway; pp. 4104–8,1997.

[26] Sun, J., Xu,W.B., Feng, B., “A global search strategy of quantum-behaved particle swarm optimization.”, Cybernetics and Intelligent

 Systems Proceedings of the 2004 IEEE Conference, pp. 111–116, 2004.

[27] Sun, J., Feng, B., Xu, W.B., “Particle swarm optimization with particles having quantum behavior.”, IEEE Proceedings of Congress on

 Evolutionary Computation, pp. 325–331, 2004.

[28] Dhabal, S. and Sengupta, S., "Efficient design of high pass FIR filter using quantum-behaved particle swarm optimization with weighted

 mean best position," Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information

 Technology (C3IT), Hooghly, 2015, pp. 1-6.

[29] Sengupta, S. and Basak, S., "Computationally efficient low-pass FIR filter design using Cuckoo Search with adaptive Levy step size," 2016

 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon,

 2016, pp. 324-329.

[30] S. Sengupta, S. Basak and R. A. Peters, "Data Clustering using a Hybrid of Fuzzy C-Means and Quantum-behaved Particle Swarm
Optimization," 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, 2018, pp.

 137-142.

[31] Xi, M., Sun, J., Xu, W.B., “An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position”,

 Applied Mathematics and Computation, pp. 751-759, Nov 2008.

[32] Clerc, M., Kennedy, J., “The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space”, IEEE
Transactions on Evolutionary Computation 6(1), pp. 58–73, 2002.

[33] Liu. J., Sun. J., Xu. W., “Improving Quantum-Behaved Particle Swarm Optimization by Simulated Annealing”, Computational Intelligence
and Bioinformatics, LNBI 4115, pp. 130 – 136, Springer-Verlag Berlin Heidelberg 2006.

[34] Metropolis, N. et al, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–
1092, 1953.

[35] Fisher, R., “Caviar case scenarios”, http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.

[36] Mian, A., "Realtime Visual Tracking of Aircrafts'', Digital Image Computing: Techniques and Applications (DICTA), pp. 351-356, 2008.

