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Abstract— We present a quadrotor system capable of au-
tonomously landing on a moving platform using only onboard
sensing and computing. We rely on state-of-the-art computer
vision algorithms, multi-sensor fusion for localization of the
robot, detection and motion estimation of the moving platform,
and path planning for fully autonomous navigation. Our system
does not require any external infrastructure, such as motion-
capture systems. No prior information about the location of
the moving landing target is needed. We validate our system in
both synthetic and real-world experiments using low-cost and
lightweight consumer hardware. To the best of our knowledge,
this is the first demonstration of a fully autonomous quadrotor
system capable of landing on a moving target, using only on-
board sensing and computing, without relying on any external
infrastructure.
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I. INTRODUCTION

Quadrotors are highly agile and versatile flying robots.
Recent work has demonstrated their capabilities in many
different applications including but not limited to: search-
and-rescue, object transportation, inspection, surveillance
and mapping [1], [2], [3]. The drawback of multirotors
in general is a lower efficiency of the propulsion system
when compared to other aerial vehicles, such as fixed-wing
aircrafts. This limits the autonomy and utility of quadrotors
as the time during which the vehicle can remain airborne is
relatively short. One possible solution is to have a quadrotor
autonomously land on a ground-station where its battery is
charged or replaced.

Search and rescue robotics is a domain that could greatly
benefit from aerial robots capable of landing autonomously
on moving platforms. One day, flying robots will assist
rescuers during their missions by providing an optimal plat-
form for aerial inspection and mapping of the surroundings.
Allowing these vehicles to autonomously land on predefined
targets for battery charging/swapping or delivery of supplies
would drastically enhance their usefulness while requiring
limited or no human intervention. This would represent
a major step forward in the use of autonomous robots
in search-and-rescue missions, whose duration is usually
significantly longer then the typical flight time of a drone.

This work focuses on the case where the ground-station
moves inside a large mission area of known size (cf. Fig.[I).
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Fig. 1: Our quadrotor during the landing on a moving
platform.

Our system relies on state-of-the-art algorithms for state
estimation, trajectory planning, quadrotor control and detec-
tion of the moving target, all using only onboard sensing
and computing. To the best of our knowledge, this is the
first demonstration of a fully autonomous quadrotor system
capable of landing on a moving target, using only onboard
sensing and computing, without relying on any external
infrastructure.

A. Related Work

Unmanned Aerial Vehicle (UAV) landing on a desired
target has been an active research field during the last
decades. A large body of the literature focuses on landing
a UAV on a static target, such as a predefined tag or a
runway. The state of the flying vehicle is estimated using
motion-capture systems [4], GPS [5], [6] or computer vision
[7]. Computer vision is the most common approach when
it comes to detecting the landing target [6], [S], [7], [8].
Nevertheless, solutions for detecting the target based on
motion-capture systems [4], or other sensors (e.g., GPS [9])
are available in the literature. Although interesting results
have been achieved, they are not necessarily applicable to
dynamically moving targets in an open outdoor environment.
In regard to moving targets, a number of works focused on
collaboration between a flying and a ground-based vehicle
to coordinate the landing maneuver [10], [11], [12]. In this
work, we do not assume that the two platforms are able to
communicate or coordinate a landing.

In order to detect the landing platform, most state-of-the-
art works exploit computer vision from onboard cameras.
Visual servoing is a valid option to some extent [13], [14];
nevertheless, it requires the landing platform to be visible
throughout the entire duration of the task, the reason being
that the UAV is pulled towards the goal using solely visual
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information from its camera. To deal with missing visual
information, model-based approaches have been proposed to
predict the motion of the landing target [15], [16]. Alternative
solutions are realized with the use of additional sensors
attached to the moving target. Among many, these sensors
include Inertial Measurement Units (IMU), GPS receivers
[11], [17] or infrared markers [18].

For the UAV to be truly autonomous, all of the com-
putation necessary to achieve the goal must be performed
onboard. This is by no means standard in the literature, since
all the approaches mentioned before rely on external compu-
tation for state estimation, trajectory planning or control [13],
[15], [16]. Additionally, GPS [9], [19], [11], [16] or motion-
capture systems [13], [12] are often used for state estimation,
either only while patrolling or throughout the entire task.
Conversely, we rely only on onboard visual-inertial odometry
for state estimation.

B. Contribution

In this paper, we present a quadrotor system capable
of autonomously landing on a moving target using only
onboard sensing and computing. No prior knowledge about
the location of the moving landing target is needed. We
exploit state-of-the-art visual-inertial odometry to estimate
the state of the quadrotor itself, complemented by nonlinear
control algorithms to drive the vehicle. Our system detects
the landing target using an onboard camera and deals with
temporarily missing visual information by exploiting the the
target’s dynamical model. Therefore, no external infrastruc-
ture such as a motion-capture system is needed. We compute
trajectories that take into account the dynamical model of
the quadrotor and are optimal with respect to a cost function
based on the energy necessary to execute it. We validate our
approach in simulation as well as in real-world experiments,
using low-cost, lightweight consumer hardware.

The remainder of this paper is structured as follows:
Sec. [I] provides an overview on the proposed framework
and details the algorithms used to estimate the state of
the quadrotor, detect and track the moving platform, plan
trajectories for the aerial vehicle, and control it along these
trajectories. Sec. [lII| describes the experimental platform and
the simulation tools used to validate our approach, and
provides the experimental results. In Sec. we discuss the
proposed method and provide insights on the experiments.
Finally, we draw conclusions in Sec. [V]

II. SYSTEM OVERVIEW

Our system makes use of the following modules:

« quadrotor state estimation (Sec. [[I-A);

« moving target detection (Sec. [[I-B);

 moving target state estimation (Sec. [[I-C);

« trajectory planning (Sec. [[I-D);

 quadrotor control (Sec. [lI-E));

« state machine (Sec. [[I-F).

Fig. 2] provides a visual overview of these components.
The modular structure of our framework allows us to easily
modify or replace the algorithms inside each module without

requiring changes to the others. Therefore, the one proposed
in this work is a general purpose approach for landing a UAV
on a moving target. It requires relatively few changes to be
adapted to different platforms (e.g., fixed wings), algorithms,
or scenarios.

A. Quadrotor State Estimation

We use monocular visual-inertial odometry to estimate the
state of the quadrotor. More specifically, we rely on our
previous work [20] for pose estimation. Pose estimates are
computed at 40 Hz and fused with measurements coming
from an Inertial Measurement Unit (IMU) using an Extended
Kalman Filter [21] at 200 Hz. Our state estimation pipeline
provides an accurate estimate of the vehicle position, linear
velocity and orientation with respect to the world frame
{W}. The complete pipeline runs entirely on the onboard
computer.

B. Vision-based Platform Detection

We employ onboard vision to estimate the position of
the moving platform in a world frame {IWW}. To simplify
the detection task, our moving platform is equipped with
a visually distinctive tag. In this work, we leverage a tag
like the one depicted in Fig. 3] The tag consists of a black
cross surrounded by a black circle with a white backdrop.
Nevertheless, our framework can easily generalize to a vari-
ety of tags, as for example April Tags [22], and to different
detection algorithms. Our algorithm attempts to detect the
landing platform in each camera image and estimate its
position in the quadrotor body frame {B}. We first convert
the image from the onboard camera into a binary black-
and-white image by thresholding. Next we search for the
white quadrangle with the largest area. In the case where no
white quadrangle is visible, the landing platform cannot be
found and the detection algorithm is concluded. Conversely,
if a white quadrangle is found, we search for the pattern
inside the quadrangle that composes our tag and extract its
corners. More specifically, we first search for the circle and
approximate it with a polygon, whose corners are used to
estimate the position of the platform. If the circle is not
entirely visible, we search for the four inner corners of
the cross. If neither cross nor circle are visible, we use
the four corners of the white quadrangle. To render our
algorithm robust to outliers, we use RANSAC for geometric
verification. Assuming the metric size of the tag to be known
allows us to use the detected corners to solve a Perspective-n-
Points (PnP) problem. In doing so, we obtain an estimate of
the landing platform’s position with respect to the quadrotor.
Finally, we exploit the knowledge of the quadrotor’s pose in
world frame {W} to transform the position of the ground
platform from frame {B} to {W}. The algorithm used to
detect the platform is summarized in Alg. [T} and runs at
20 Hz on the onboard computer.

C. Platform State Estimation

The algorithm presented in Sec. provides an estimate
of the position of the ground vehicle in the world frame W.
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Fig. 2: A schematic representing our framework. Blue boxes represent software modules, green boxes are hardware
components. The quadrotor platform is represented in red. Communication between modules happens through ROS.

Fig. 3: The tag we used to detect the landing platform. Our
framework does not strictly depend on specifics of the tag,
and thanks to its modularity can easily generalize to other
patterns.

However, the landing platform is not guaranteed to be visible
at all times. To deal with missing visual detections, as well as
to estimate the full state of the platform (namely the position,
velocity and orientation), we use an Extended Kalman Filter
[23]. We exploit a dynamic model of a ground vehicle based
on non-holonomic movement constraints for the prediction
phase [24], and consider tag detections from the onboard
camera as measurements for the correction phase. For brevity
reasons, we report only the main equations of the filter and
refer the reader to [23] and [25] for further details.

1) Time Update: In the prediction step, the filter provides
a prediction of the state of the moving platform based on the
following non-linear equation:

(D

where x(t), u(t) and w(t) are the state of the system,
the input and the process noise, respectively. We model
the process noise as white Gaussian noise, namely w(t) ~
N(0, 02). The function f(x,u) represents the dynamical

Algorithm 1 Moving landing platform detection

1: Input: Onboard camera image
2: Outputs: Landing platform position in {W}

3: binary_image < black_and_white(camera_image)
4: polygons <« detect_polygons(binary_image)

5: landing_tag < largest_quadrangle(polygons)

6: if landing_tag found then

7 if circle < detect_circle_in(landing_tag) then
8 return circle.position()

9 else

if cross « detect_cross_in(landing_tag) then
11 return cross.position()
12: else
13: return landing_tag.position()
14: else
15: return 0

model of the moving platform:

Py = vz cos(h) (2a)
Dy = vy sin(6) (2b)
p>=0 (20)

0 = u 2d)
Uy = Us (2e)

In @), pz, py, p- are the 3D coordinates of the position of
the platform in the world frame {W?}, 6 is the angle between
the x-axis of the vehicle’s body frame (i.e., its forward
direction) and the world z-axis, v; is the tangential velocity
of the vehicle (see Fig@), and u, and uy represent the control
input to the system. In our case, we assume the velocity of
the platform to be constant and therefore, that the inputs
u; and wug are zero all the time. If any prior information
about the motion of the vehicle is available (e.g., the path
along which it moves), this can be easily incorporated into
the dynamical model.

2) Measurement Update: The correction phase is per-
formed each time a measurement z; (the 3D position of



Fig. 4: A schematics representing the dynamical model of
the moving platform. The world frame is indicated as {W},
while the platform body frame as {P}.

the moving platform) is provided by the detection algorithm,
according to the following equations:

@(t) = f(&(1),w(t)) + K(O)(2(t) - h(2(t), ()
where the matrix K (¢) represents the Kalman gain.

D. Trajectory Planning

We use the approach proposed in [26] to plan optimal,
feasible trajectories that prevent the vehicle from colliding
with obstacles. The authors of that work propose a fast
polynomial trajectory generation method that minimizes the
third derivative of the position (namely, the jerk). Such an
approach solves the minimization problem in closed form,
therefore it is able to provide an optimal trajectory within
a few micro-seconds running entirely onboard. Furthermore,
the same method provides tools to verify whether the planned
trajectory is feasible or not. More specifically, it allows the
system to quickly check that each candidate: (i) does not
exceed the physical actuation constraints of the platform,
and (ii) does not collide with known obstacles (e.g., with
the ground).

Additionally, during the platform following stage, we
exploit the speed of the trajectory planning method [26]
to provide the quadrotor with a set of feasible candidate
trajectories, and we select the one with the lowest cost. Such
a cost is the integral of the jerk along the trajectory, which
the authors of [26] show to be an upper bound on the product
of the inputs to the vehicle, namely the collective thrust and
the angular velocities around the three body axes. Also, this
allows us to quickly replan the desired trajectory during the
platform following phase (see Sec. [[I-'F). At each control
cycle, we select n prediction times t; by uniformly sampling
a fixed-duration prediction horizon. For each time t;, we
predict the future state &(¢;) that the landing platform will
reach, starting from its last estimate available &(t.) at the
current time ¢.. The prediction is based on the dynamical
model proposed in Sec. The future predicted state is
used as the final state for each candidate trajectory. Out of all
candidate trajectories, the one requiring a minimum amount
of energy for execution is selected. We indicate the duration
of the selected candidate as ¢.
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Fig. 5: An example of our planning strategy. The quadrotor
plans n trajectories to reach the moving platform. Each
one starts from its current position and has the ground
vehicle’s predicted position and velocity as final state. The
future state of the moving target is predicted using its
dynamical model, starting from the last estimate available
from the Kalman Filter. Trajectories requiring inputs outside
the allowed bounds or colliding with obstacles (e.g., with
the ground), are rejected (dashed red lines in this image).
We select the minimum-energy trajectory (green solid line,
duration %) out of the set of all the feasible candidate
trajectories (blue dashed lines).

E. Quadrotor Control

We use state-of-the-art, nonlinear control to drive our
quadrotor along the desired trajectory. Broadly speaking, our
controller is composed of a high-level controller for posi-
tion and attitude corrections, and a low-level controller for
reaching the required body rates. The high-level controller
takes the difference between desired and estimated position,
velocity, acceleration and jerk as input and returns the desired
collective thrust and body rates. These body rates are passed
as input to the low-level controller, which computes the
necessary torques to be applied to the rigid body. The desired
torques and the collective thrust are then converted to single
motor thrusts. We refer the reader to our previous works [27]
and [28] for further details on the dynamical model and the
control algorithm used in this work.

F. State Machine

The state machine module governs the behavior of the
quadrotor during the entire mission. It has four states,
namely: takeoff, exploration, platform tracking, landing.
Fig. [6] depicts the state machine with its states and the
respective transitions triggered by events. In the following
few sections we describe each of states in more detail.

1) Takeoff: Our quadrotor launches from the ground and
is commanded to reach a hover point within a given amount
of time. During the takeoff maneuver, we rely solely on the
onboard IMU and a distance sensor. Once the vehicle is
hovering, we initialize our visual odometry pipeline (Sec.
[A) to acquire and maintain a full state estimate. At this point,
we switch the state machine to the exploration mode.

2) Exploration: The quadrotor explores an bounded area
with known dimensions, flying at a given height. The vehicle
autonomously computes waypoints to inspect the area and
generates trajectories according to the strategy in Sec. [I[]
D] This mode ends when the quadrotor detects the landing
platform for the first time.
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Fig. 6: The flowchart of our state machine.

3) Platform Tracking: In this phase, the quadrotor follows
the moving platform and attempts to reach it and fly above
it. We initialize the Kalman Filter (Sec. after the first
detection and use its output to provide the trajectory planner
with waypoints. At each control cycle, the quadrotor plans
a set of candidate trajectories as described in Sec. [I-D}
Once the best candidate is selected, it is compared with the
previous candidate and is executed only if the final position
of the two trajectories differ significantly. We consider the
tracking phase concluded when the quadrotor is above the
ground platform and is moving at the same velocity.

4) Landing: When the vehicle is close enough to the
landing platform and has matched its velocity, the state
machine switches to the landing mode. In this phase, we
command the vehicle to start a descent at a given vertical
speed, while continuing to match the speed of the landing
platform along the x and y axes. We use an onboard distance
sensor to estimate the relative vertical distance between the
quadrotor and the ground platform. The vehicle stops the
motors when the distance to the platform is below a given
threshold, concluding the landing maneuver.

III. EXPERIMENTS
A. Simulation Environment

We used RotorS [29] and Gazebo to validate our frame-
work in simulation. We replaced the default controller pro-
vided in the simulator with our own described in Sec. [I-El
State estimation is provided by a simulated odometry sensor
and, to bring the simulation closer to real experiments, we
added white Gaussian noise to the estimated state of the
vehicle. Furthermore, we used an onboard simulated camera
to detect the landing platform. We used a Clearpath Husky
UGV simulated model as ground vehicle, on top of which
we mounted the tag to be detected.

B. Simulation Results

We tested our framework using this simulation environ-
ment in a number of different scenarios. More specifically,
we run simulation experiments with the landing platform
moving along paths with different properties (i.e., straight
line, circle, figure-8). The landing platform’s speed is varied
between 1 m/s and 4.2m/s. In our experiments, the quadro-
tor takes off from the ground and explores a pre-defined area.

When the landing platform is detected, the quadrotor starts
following. Once it is close enough, the quadrotor initiates
the landing maneuver. The results of one of our simulated
experiments are visualized in Fig.

C. Experimental Platform

For validating our framework in the real world, we used a
custom-made quadrotor platform. The vehicle (cf. Fig. [g) is
constructed from both, off-the-shelf and custom 3d-printed
components. We used a DJI F450 frame, equipped with
RCTimer MT2830 and soft 8-inch propellers from Parrot for
safety reasons. The motors are driven by Afro Slim Electronic
Speed Controllers (ESC). The ESCs are commanded by the
PX4 autopilot, which also sports an Inertial Measurement
Unit. Our quadrotor is equipped with two MatrixVision
mvBlueFOX-MLC200w cameras providing an image resolu-
tion of 752 x 480-pixel. One camera is looking forward and
is tilted down by 45°, while the second is facing towards
the ground. We motivate this camera setup in Sec. [[V-B
Furthermore, we mounted a TeraRanger One distance sensor
to estimate the scale of the vision-based pose estimation, as
well as to help the quadrotor during the takeoff and landing
maneuvers. The software modules of our framework (i.e.,
trajectory planning, quadrotor control, visual odometry and
visual-inertial fusion, platform detection and tracking) run in
real time in ROS on one of the two onboard Odroid XU4
computers. The two computers are interconnected through
their Ethernet ports, providing a low latency connection. The
overall weight of the platform is 1 kg, with a thrust-to-weight
ratio of 1.85.

D. Landing Platform

In our real-world experiments we use a Clearpath Jackal
as ground vehicle carrying the landing platform and control
it manually. In nominal conditions the platform can reach
a maximum speed of 2m/s. We installed a 150 x 150 cm
wooden landing pad equipped with the tag on the top of
the vehicle, reducing its maximum speed to approximately
1.5m/s due to the additional weight.

E. Real Experiments Results

We demonstrated our framework in a number of real ex-
periments using the previously describe quadrotor platform.
Similarly to our simulations, we tested the effectiveness of
the proposed approach in different scenarios. More specif-
ically, we had the landing platform moving along different
paths, at different speeds. Fig. [0 reports the results for one
of the experiments we conducted, with the landing platform
moving on a straight line at 1.2m/s. The choice of such a
speed is not due to limitations of our quadrotor system, but
rather to the maneuverability of the ground robot used as
moving target. The quadrotor starts the exploration at ¢ = 0.
The first platform detection happens at ¢ = t4, when the
quadrotor starts the following phase. At t = ¢;, the state
machine detects that the vehicle is above the platform and

Uhttps://www.clearpathrobotics.com/jackal-small-unmanned-ground-
vehicle/
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Fig. 7: The results of one of our simulations. We report data for position (left and right columns) and velocity (center
column). The quadrotor starts the exploration at ¢ = 0 and detects the moving platform for the first time at ¢ = ¢4. At
this point, the tracking starts and the vehicle starts the landing phase at ¢ = ¢;. The maneuver is completed at £ = t;. The
platform moves at a constant speed of 4.2m/s along a figure-8 path.

Fig. 8: The quadrotor used in our experiments. (1) The on-
board computer running our algorithms. (2) The downward-
looking camera used to detect the platform. (3) The PX4
autopilot. (4) The TeraRanger distance sensor. (5) The 45°
angled-down camera used for visual odometry.

moves at approximately its speed, entering the landing stage.
Finally, the quadrotor reaches the platform at t = ¢y and
the maneuver is completed. For brevity reasons, we do not
report any comparison between the estimated state of the
quadrotor and ground-truth. We refer the reader to [20] for
an extensive evaluation of the performance of our visual
odometry pipeline.

IV. DISCUSSIONS
A. Generality of the Framework

With the modular architecture of our framework as pre-
sented in Sec.[[it is straight-forward to adapt it for different

scenarios: Depending on the severity, changes in the hard-
ware setup might require adjustments of the state estimation
(Sec. [lI-A] and quadrotor control (Sec. [[I-E) modules. In
most cases, however, a re-tuning of the low- and high-level
controller’s parameters should suffice. Should it be required
to equip the landing platform with a different kind of tag
or markers or even active beacons, all necessary changes
are confined to the target detection module (Sec. [[I-B).
Likewise, the module for estimating the moving target’s
state (Sec. can be modified in cases where the landing
platform exhibits drastically different dynamics than our
model described in Eq (2). By modifying the state machine
(Sec. @, the nature of the task can be altered. An example
of such are autonomous reconnaissance missions where the
quadrotor takes off and lands on a larger mobile robot.
Another use case might be to have the quadrotor, or any kind
of UAV for that matter, track a ground vehicle and provide
a bird’s view of it.

B. Motivation of the Vision Hardware Setup

Our experimental platform is equipped with two cameras,
one forward-facing and is tilted down by 45° for visual
odometry, one downward-looking to detect the platform. We
chose this setup in order to have robust state estimation and
to better detect the platform. Indeed, when the quadrotor
is close to the ground vehicle, the image from the camera
looking downwards contains mainly, if not only, the moving
platform. Thus our visual odometry pipeline would estimate
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Fig. 9: The results of one of real experiments. We report data for position (left and right columns) and velocity (center
column). The quadrotor starts the exploration at ¢ = 0 and detects the moving platform for the first time at ¢t = ¢4, starting
the tracking stage begins. During the landing stage, starting at ¢ = ¢;, the platform exits the field of view of the camera and
the prediction of its motion is based solely on the dynamical model. The maneuver is completed at ¢ = ¢y. The platform

moves at a constant speed of 1.2m/s along a straight line.

only the relative motion with respect to the platform instead
of a static world frame. A forward-looking camera solves
this problem.

C. Computational Load

As mentioned in Sec. [[lI-C] our quadrotor is equipped
with two onboard computers even though all algorithms
composing our framework can be run off a single computer.
The second computer is used solely for data recording and
rapid prototyping. Our control and visual odometry pipelines
have been demonstrated to run onboard the quadrotor in
our previous work [1] and we refer the reader to that for
further details. The trajectory planning algorithm we use
in this work typically needs approximately 0.02ms per
trajectory. Since we replan our desired trajectory at 50 Hz,
we can potentially compute up to 1000 candidate trajectories
per replanning-cycle. Nevertheless, we fix the number of
candidate trajectories to be computed at 20, which is usually
sufficient to find a feasible trajectory during the platform
following phase.

The statistics of the time required by our vision-based
platform detection algorithm are reported in Table [l On
average, it takes approximately 12ms to detect the landing
platform in each image, leading to a potential maximum rate
of approximately 80 Hz. However, we found that a rate of
20 Hz is sufficient to obtain reliable and accurate results in
tracking the landing platform.

TABLE I: Computation time statistics for our onboard,
vision-based platform detection algorithm.

Mean  Standard Deviation
Image Thresholding 0.87 0.51 [ms]
Quadrangle Detection 4.35 1.89 [ms]
Circle Detection 0.06 0.03 [ms]
Cross Extraction 1.81 1.01 [ms]
Perspective-n-Points 4.95 2.31 [ms]
Total 12.04 5.75 [ms]

D. Trajectory Planning

In this work, we use trajectories that minimize the jerk to
provide our controller with reference states that drive the ve-
hicle towards the accomplishment of the mission (cf. Sec.
D). Previous work has shown that trajectories that minimize
the snap, namely the fourth derivative of the position, lead
to a smoother behavior for a quadrotor [30]. However, com-
puting minimum snap trajectories typically requires longer
then the closed form solution for minimum jerk trajectories
we exploit. Also, to the best of our knowledge, no efficient
feasibility verification method is available for minimum snap
trajectories. In our experiments, we observed a better overall
behavior of the entire pipeline when using minimum jerk
trajectories. The reasons behind this are twofold: (i) the very
efficient computation of minimum jerk trajectories make it



possible to re-plan the desired trajectory at high frequency to
deal with changes in the motion of the moving target; (ii) the
feasibility verification method lets us plan trajectories which
satisfy the physical limits of the platform, i.e. avoid motors
saturation.

E. Dealing with Missing Platform Detection

We deal with temporarily missing detections of the moving
platform during the following and landing phases by using
the Extended Kalman Filter described in Sec. Despite
the lack of prior information about the motion of the platform
and the constant velocity assumption, the dynamical model
used for the prediction phase provides reliable results in
both simulation and real world experiments. Therefore, our
framework is capable of landing a quadrotor on a moving
target even in the case when the platform is not temporarily
visible.

V. CONCLUSIONS

In this work, we presented a quadrotor system capable
of autonomously landing on a moving platform using only
onboard sensing and computing. We relied on state-of-
the-art computer vision algorithms, multi-sensor fusion for
localization of the UAV, detection and motion estimation
of the moving platform, and path planning for fully au-
tonomous navigation. No external infrastructure, such as
motion-capture systems or GPS, is needed. No prior infor-
mation about the location of the moving landing target is
required to execute the mission. We validated our frame-
work in simulation as well as with real-world experiments
using low-cost and lightweight consumer hardware. To the
best of our knowledge, this is the first demonstration of a
fully autonomous quadrotor system capable of landing on a
moving target, using only onboard sensing and computing,
without relying on any external infrastructure.
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