
ar
X

iv
:2

31
1.

16
57

1v
1 

 [
cs

.S
C

] 
 2

8 
N

ov
 2

02
3

Hybrid Intervals and Symbolic Block Matrices

Mike Ghesquiere†

Computer Science Department

University of Western Ontario, Canada

mike.ghes@gmail.com

Stephen M. Watt

Cheriton School of Computer Science

University of Waterloo, Canada

smwatt@uwaterloo.ca

Abstract—Structured matrices with symbolic sizes appear
frequently in the literature, especially in the description of algo-
rithms for linear algebra. Recent work has treated these symbolic
structured matrices themselves as computational objects, showing
how to add matrices with blocks of different symbolic sizes in a
general way while avoiding a combinatorial explosion of cases.
The present article introduces the concept of hybrid intervals, in
which points may have negative multiplicity. Various operations
on hybrid intervals have compact and elegant formulations that
do not require cases to handle different orders of the end points.
This makes them useful to represent symbolic block matrix
structures and to express arithmetic on symbolic block matrices
compactly. We use these ideas to formulate symbolic block matrix
addition and multiplication in a compact and uniform way.

I. Introduction

Block and other structured matrices appear throughout the

mathematical and computer science literature. They occur

when systems have direct sum decompositions, when higher

order systems are represented as Kronecker products, and

when recursive methods are used. They figure prominently in

efficient algorithms for linear algebra, such as Strassen’s nlog2 7

matrix multiplication and LU decomposition. Block matrices

have considerable practical applications as well. For example,

when multiplying large matrices, block algorithms can be used

to improve cache complexity [3]. Additionally, in some cases,

when a sub-matrices are known to have useful properties,

many optimizations can arise. For example to invert a block

diagonal matrix, one can invert each block individually.

In the literature, the parts of structured matrices are often

given with symbolic size, for example blocks of size n×m or

diagonal bands of width k. These matrices are usually taken

as inputs to algorithms that work with specific instances with

particular values for the size parameters. It is well-understood

how to work with such matrices as algebraic values when the

size parameters are fixed.

What is less well understood is how to do algebraic com-

putation on block matrices as whole symbolic objects, that is

when the size parameters are symbolic. This remains an active

area of research. As with expressions involving any piecewise

functions, one of the principal problems is dealing with the

multitude of cases that arise in performing algebraic operations

on matrices when the relationships among the symbolic size

parameters are not fixed. This is illustrated in Figure 1.
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Suppose we have an expression involving n binary oper-

ations on symbolic block matrices. Various approaches have

been taken to address the proliferation of cases:

The most obvious approach is to enumerate all cases, giving

a symbolic expression for the algebraic result in each case.

The problem with this approach is that it leads to a number

of cases exponential in n.

Another approach is to create a single expression covering

all cases, using multiplicative support functions to zero out the

parts that do not apply in specific cases. This is the approach

taken in [4] and [5], with σi j being support functions that take

on the values 0 or 1. While an algebra defined on the support

functions allows some simplification, in general the resulting

expressions can be of size exponential in n.

For operations with inverses, another approach is to presume

a specific ordering of the symbolic size parameters and use

generalized support functions to add or remove components

as required. This is essentially what is behind the convention

of orientation of integral and sum limits, so one can have

identities such as
∫ b

a
=

∫ c

a
+

∫ b

c
, regardless of the ordering

of a, b and c. This approach is taken in [6], with ξi jk being

generalized multiplicative support functions that take on the

values 0, 1 or −1. This leads to compact expressions, avoiding

exponential growth, but can be applied only for operations

having total inverses. Aside from being unable to handle non-

invertible operations, another problem with this method is that

it performs extra calculations to compute values and then use

inverses to cancel them out.

A more sophisticated approach is to realize that the use

of inverse operations is actually a proxy for reversing the

decision to include certain operands in expressions. It is

possible to instead make the choice of operand inclusion

or exclusion explicit. For functions that are associative and

commutative, one can instead have a symbolic approach to

gathering operands. This is the approach taken in [1] and

further studied in [2]. Generalized multisets allowing negative

multiplicities are used to collect arguments without concern

for the order of inclusion or exclusion. These generalized

multisets are known as “hybrid sets.” Previous work has

shown that they allow efficient general composition of piece-

wise symbolic functions, including matrices with symbolically

defined regions. In the present article we show how these ideas

take a particularly elegant form using the notion of “hybrid

intervals,” which are intervals generalized as hybrid sets.
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Fig. 1: The sum of two block matrices each with four blocks leads to 9
possible cases. When blocks are the same size, the sum will also be a 2 × 2
block matrix (a). Otherwise, a 2 × 3 (b) (two cases), 3 × 2 (c) (two cases) or
3×3 (d) (four cases) block matrix could arise. The starred blocks may sample
from different blocks depending on the relative size of operand blocks.

The main contributions of this article are:

• the concept of hybrid intervals, capturing the notion of

inclusion and exclusion,

• useful results about their properties,

• the use of hybrid intervals to reformulate symbolic block

matrix addition elegantly,

• the use of hybrid intervals to express symbolic block

matrix multiplication in a similar fashion.

The remainder of this article is organized as follows: Sec-

tion II provides the required background on hybrid sets and

hybrid functions. Section III introduces the notion of hybrid

intervals and gives some of their properties. Section IV gives

as an example using hybrid intervals of index sets for the addi-

tion of vectors whose structure is symbolically parameterized.

This is a familiar example from previous work, shown here to

illustrate the present approach. Section V generalizes the idea

of hybrid intervals to higher dimension. Section VI shows how

two-dimensional hybrid intervals of index sets may be used to

formulate the addition of matrices with symbolic structure.

Section VII applies these ideas to matrix multiplication. Some

conclusions are given in Section VIII.

II. Hybrid Sets and Hybrid Functions

We summarize here the main concepts from [1] used in

this article. To begin, we note that the usual notion of a

set A of elements from a universe U can be defined as a

characteristic function U → {0, 1} that gives 1 for elements of

A and 0 otherwise. A multiset may be viewed as a function

U → N0 that gives the multiplicity of an element. With this in

mind, we make the following definition that provides negative

multiplicities:

Definition A hybrid set over a universe set U is an integer-

valued function U → Z giving a multiplicity of each element.

In what follows, some types of objects are generalized with

hybrid sets. When necessary to make the distinction, we call

the usual objects “traditional”, e.g. traditional sets.

If H is a hybrid set, we write H(x) for the multiplicity of x in

H. We say x ∈ H if H(x) , 0 and define the support supp H to

be the traditional set {x|x ∈ H}. We use the notation
{∣∣∣ ai, b j, ...

∣∣∣
}

to denote a hybrid set containing a with multiplicity i, b with

multiplicity j, etc. The empty hybrid set, denoted ∅, is one for

which all elements have multiplicity zero. The set operations

∪, ∩ and \ may be defined on hybrid sets, but more useful are

the element-wise combinations of multiplicities:

Definition For any two hybrid sets A and B over a common

universe U, we define the operations ⊕,⊖,⊗ : ZU×ZU → Z
U

such that for all x ∈ U:

(A ⊕ B)(x) = A(x) + B(x) (A ⊖ B)(x) = A(x) − B(x)

(A ⊗ B)(x) = A(x) × B(x) ⊖A = ∅ ⊖ A

and for c ∈ Z, (cA)(x) = c × A(x).

We shall use the following definitions:

Definition We say A and B are disjoint when A ⊗ B = ∅.

Definition A generalized partition P of a hybrid set H(x)

is a family of hybrid sets P = {Pi}
n
i=1

such that:

H = P1 ⊕ P2 ⊕ . . . ⊕ Pn

We say that P is a strict partition of H if Pi and P j are

disjoint when i , j.

Clearly any traditional set may be considered a hybrid set. For

the other direction, we have

Definition Given a hybrid set H over universe U, if for all

x ∈ U, H(x) ∈ {0, 1}, then we say that H(x) is reducible. If

H is reducible then we denote the reduction of H by R(H)

as the (non-hybrid) set over U with the same membership.

In what follows, we require the notion hybrid functions and

some of their properties. We define these in terms of the graph

of the function as a hybrid set.

Definition For two traditional sets S and T , a hybrid set over

their Cartesian product S × T is called a hybrid (binary)

relation between S and T. A hybrid function from S to T

is a hybrid relation h between S and T such that (x, y) ∈ h

and (x, z) ∈ h implies y = z.

Given a hybrid set H over U and a function f : B → S with

B ⊆ U and S a set, we denote by f H the hybrid function from

B to S defined by:

f H :=
⊕

x∈B

H(x)
{∣∣∣ (x, f (x))1

∣∣∣
}

Definition If H is a reducible hybrid set, then f H is a

reducible hybrid function and we extend R by

R( f H )(x) = f |R(H) (x)

With these definitions, we have for functions f , g : U → S ,

f A⊕ f B
= f A⊕B. Also, for hybrid functions f A and gB, f A ⊕gB

is a hybrid function if and only if for all x ∈ supp(A⊗ B), we

have f (x) = g(x). In this case we say that f A and gB are

compatible.

One of the main points in what follows is that we will

have expressions where collections of arguments are formed

as hybrid sets before it is known whether the subexpressions

are defined over the required domains. Sub-expressions of

undefined value are completely acceptable if their multiplicity

is zero in the argument collection as a whole. For these

subexpressions to be well-formed, we employ a notion of

“pseudo-functions”.



Definition We define a pseudo-function f̃
A

as:

f̃
A
=

⊕

x∈B

A(x)
{∣∣∣ (x, f )1

∣∣∣
}

(1)

The difference between hybrid functions and pseudo-

functions is that (x, f (x)) is replaced with the “unevalu-

ated” (x, f ). This formally makes f̃
A

a hybrid relation over

U × (U → S ) as opposed to a hybrid function over U × S .

To evaluate f̃
A

we map back to f A. This mapping between

(x, f (x)) and (x, f ) is natural and we will perform it as

necessary, usually without comment.

III. Hybrid Intervals

Definition Given a totally ordered set (X,≤) (and with an

implied strict ordering <), for any a, b ∈ X, an interval

between a and b is the set of elements in X between a and

b, as follows:

[a, b]X = {x ∈ X | a ≤ x ≤ b} [a, b)X = {x ∈ X | a ≤ x < b}

(a, b]X = {x ∈ X | a < x ≤ b} (a, b)X = {x ∈ X | a < x < b}

When context makes X obvious or the choice of X is irrelevant,

the subscript may be omitted.

It should be noted that when b is less than a, [a, b] is the

empty set. In terms of idempotency, the bounds determine

whether or not an interval is empty. [a, a] which contains a

and all points equivalent to a while (a, a), (a, a], and [a, a) are

all empty sets. As intervals are simply sets, they can naturally

be interpreted as hybrid sets. If a ≤ b ≤ c, for intervals then

we have [a, b)⊕ [b, c) = [a, c). In this case, ⊕ seems to behave

like concatenation but this is not always true. Considering all

possible relative orders of a, b and c gives

[a, b) ⊕ [b, c) =



[a, c) a ≤ b ≤ c

[a, b) a ≤ c ≤ b ∨ c ≤ a ≤ b

[b, c) b ≤ a ≤ c ∨ b ≤ c ≤ a

∅ c ≤ b ≤ a.

One could alternatively write [a, b) ⊕ [b, c) =

[ min(a, b),max(b, c) ) but this simply sweeps the problem

under the rug. When working with intervals, a case-based

approach to consider relative ordering of endpoints easily

becomes quite cumbersome. Previously, the ξ function was

introduced in [4] to solve this problem. Although it solves

the problem of cases, it quickly leads to heavy notation.

Instead we introduce hybrid intervals which are considerably

more readable. It should be noted that the definitions are

equivalent; ξ(i, y, z) and [[y, z)) can be used interchangeably.

Definition We define hybrid intervals with a, b ∈ X, where X

is a totally ordered set, using hybrid set point-wise subtraction

as follows:

[[a, b)) = [a, b) ⊖ [b, a) ((a, b]] = (a, b] ⊖ (b, a]

[[a, b]] = [a, b] ⊖ (b, a) ((a, b)) = (a, b) ⊖ [b, a]

For any choice of distinct a and b, exactly one term will be

empty; there can be no “mixed” multiplicities from a single

hybrid interval. Unlike traditional intervals where [a, b) would

be empty if b < a, the hybrid interval [[a, b)) will have elements

with negative multiplicity. Several results follow immediately

from this definition.

Theorem 3.1: For all a, b, c,

[[a, b)) = ⊖ [[b, a)) ((a, b]] = ⊖ ((b, a]]

[[a, b]] = ⊖ ((a, b)) ((a, b)) = ⊖ [[a, b]]

Proof All the identities can all be shown in the same fashion:

[[a, b)) = [a, b) ⊖ [b, a) = ⊖
(
[b, a) ⊖ [a, b)

)
= ⊖[[b, a))

((a, b]] = (a, b] ⊖ (b, a] = ⊖
(
(b, a] ⊖ (a, b]

)
= ⊖((b, a]]

[[a, b]] = [a, b] ⊖ (b, a) = ⊖
(
(b, a) ⊖ [a, b]

)
= ⊖((b, a))

Since [[a, b]] = ⊖((b, a)) we also have ((a, b)) = ⊖[[b, a]]. �

We note here how hybrid intervals behave when a = b.

Like their traditional analogues, the hybrid intervals [[a, a))

and ((a, a]] are still both empty sets. The interval [[a, a]] still

contains points equivalent to a (with multiplicity 1). However,

unlike traditional intervals ((a, a)) is not empty but rather,

((a, a)) = ⊖[[a, a]] and so contains all points equivalent to a

but with a multiplicity of −1. The advantage of using hybrid

intervals is that now ⊕ does behave like concatenation.

Theorem 3.2: For all a, b, c (regardless of relative ordering),

[[a, b)) ⊕ [[b, c)) = [[a, c))

Proof Following from definitions we have:

[[a, b)) ⊕ [[b, c)) =

(
[a, b) ⊖ [b, a)

)
⊕

(
[b, c) ⊖ [c, b)

)

=

(
[a, b) ⊕ [b, c)

)
⊖

(
[c, b) ⊕ [b, a)

)

Case 1: a ≤ c. We have [c, a) = ∅ and so [[a, c)) = [a, c).

Case 1.a: a ≤ b ≤ c

then [c, b) = [b, a) = ∅ and [a, b) ⊕ [b, c) = [a, c)

Case 1.b: b ≤ a ≤ c

then [b, c) ⊖ [b, a) = [b, a) ⊕ [a, c) ⊖ [b, a) = [a, c)

Case 1.c: a ≤ c ≤ b

then [a, b) ⊖ [c, b) = ([a, c) ⊕ [c, b)) ⊖ [c, b) = [a, c)

Case 2: c < a. We have [a, c) = ∅ and so [[a, c)) = ⊖[c, a).

Case 2.a: c ≤ b ≤ a

then [a, b) = [b, c) = ∅ and ⊖[c, b) ⊖ [b, a) = ⊖[c, a)

Case 2.b: b ≤ c ≤ a

then ⊖[b, a)⊕[b, c) = ⊖([b, c)⊕[c, a))⊕[b, c) = ⊖[c, a)

Case 2.c: c ≤ a ≤ b

then ⊖[c, b)⊕[a, b) = ⊖([c, a)⊕[a, b))⊕[a, b) = ⊖[c, a)

�

This sort of reasoning is routine but a constant annoyance

when dealing with intervals and is exactly the reason we want

to be working with hybrid intervals. Now that the above work

is done, we can use hybrid intervals and not concern ourselves

with the relative ordering of points. Many similar formulations

such as [[a, b]] ⊕ ((b, c)) = [[a, c)) or ((a, b)) ⊕ [[b, c)) = ((a, c))

are also valid for any ordering of a, b, c by the same sort of

argument.



IV. Vector Addition

Addition for partitioned vectors and 2 × 2 matrices using

hybrid functions has already been considered in [1] and [4].

Here we show how the same may be accomplished using hy-

brid intervals. We take a familiar example from [4] and adapt

it to use this formulation. This shows hybrid intervals in use

and serves as preparation for the addition and multiplication

of symbolic block matrices using these concepts.

We consider the addition of the n-component vectors U and

V , each consisting of two parts with indices [1, k] and (k, n]

for U and [1, ℓ] and (ℓ, n] for V . Over each interval, taking

the value of different functions, as in:

U = [u1, u2, . . . , uk, u
′
1, u
′
2, . . . , un−k]

V = [v1, v2, . . . , vℓ, v
′
1, v
′
2, . . . , vn−ℓ].

Using intervals, these vectors can be represented by hybrid

functions over their indices, for example

U = (i 7→ ui)
[[1,k]] ⊕ (i 7→ u′i−k)((k,n]]

V = (i 7→ vi)
[[1,ℓ]] ⊕ (i 7→ v′i−ℓ)

((ℓ,n]].

For clarity and succinctness we use (ui) instead of (i 7→ ui):

U = (ui)
[[1,k]] ⊕ (u′i−k)((k,n]]

V = (vi)
[[1,ℓ]] ⊕ v′i−ℓ)

((ℓ,n]].

To add U and V , we have

U + V =
(
(ui)

[[1,k]] ⊕ (u′i−k)((k,n]]
)
+

(
(vi)

[[1,ℓ]] ⊕ (v′i−ℓ)
((ℓ,n]]
)

=

(
(ui)

[[1,k]] ⊕ (u′i−k)((k,ℓ]] ⊕ (u′i−k)((ℓ,n]]
)

+

(
(vi)

[[1,k]] ⊕ (vi)
((k,ℓ]] ⊕ (v′i−ℓ)

((ℓ,n]]
)

= R+
(
(ui + vi)

[[1,k]] ⊕ (u′i−k + vi)
((k,ℓ]] ⊕ (u′i−k + v′i−ℓ)

((ℓ,n]]
)
.

The choice to partition [[1, n]] as [[1, k]] ⊕ ((k, ℓ]] ⊕ ((ℓ, n]]

is only one possible refinement. We can just as easily use

[[1, ℓ]] ⊕ ((ℓ, k]] ⊕ ((k, n]] to get the equivalent expression:

U + V = R+
(
(ui + vi)

[[1,ℓ]] ⊕ (ui + v′i−ℓ)
((ℓ,k]] ⊕ (u′i−k + v′i−ℓ)

((k,n]]
)

We must be careful while evaluating these expressions to not

forget that (u′
i−k
+ vi) is actually shorthand for the function:

(u′i−k + vi) = (i 7→ u′i−k) + (i 7→ vi) = (i 7→ u′i−k + vi).

As a function, it may not be evaluable over the entire range

implied in a given term. Using pseudo-functions easily solves

this.

For example, consider the concrete example where n = 5,

k = 4 and ℓ = 1 so that U = [u1, u2, u3, u4, u
′
1
] and

V = [v1, v
′
1
, v′

2
, v′

3
, v′

4
]. We also only assume that the functions

ui, u
′
i
, vi and v′

i
are defined only on the intervals in which they

appear (e.g. u5 is undefined, as is v′
1
). Then we have

U + V = (ui + vi)
[[1,4]] ⊕ (u′i−4 + vi)

((4,1]] ⊕ (u′i−4 + v′i−1)((1,5]].

None of the individual sub-terms cannot be evaluated di-

rectly. In the first term, vi is not totally defined over the interval

[[1, 4]]. In the third term, on the interval ((1, 5]], u′
i−4

would even

a b[[a, b]]

c

d

[[c, d]] [[a, b]] × [[c, d]]

Fig. 2: The Cartesian product of two positive multiplicity 1-rectangles [[a, b]]
and [[c, d]] is a positive multiplicity 2-rectangle.

evaluated on negative indices. However, these un-evaluable

terms also appear in the middle term, however the interval

((4, 1]] has negative mutliplicity so the offending points end up

with mutliplicity zero so are properly ignored.

U + V = (ui + vi)
[[1,1]]⊕((1,4]] ⊕ (u′i−4 + vi)

⊖((1,4]] ⊕ (u′i−4 + v′i−1)((1,4]]⊕((4,5]]

= (ui + vi)
[[1,1]] ⊕

(
(ui + vi) − (u′i−4 + vi) + (u′i−4 + v′i−1)

)[[1,4]]

⊕ (u′i−4 + v′i−1)((4,5]]

= (ui + vi)
[[1,1]] ⊕ (ui + v′i−1)((1,4]] ⊕ (u′i−4 + v′i−1)((4,5]].

V. Higher Dimension Intervals

Hybrid intervals work perfectly well when dealing with

the indices of a vector. However, we are more interested

in the rectangular blocks of a matrix. We can move from

1-dimensional intervals to 2-dimensional blocks using the

Cartesian product

Definition Let X =
{∣∣∣ x

m1

1
, ..., x

mk

k

∣∣∣
}

and Y =
{∣∣∣ yn1

1
, ..., y

nℓ
ℓ

∣∣∣
}

be

hybrid sets over sets S and T We define the Cartesian product

of hybrid sets X and Y, to be a hybrid set over S × T and

denoted with × operator as

X × Y = {| (x, y)m·n : x ∈m X, y ∈n Y |} .

If [[a, b]] and [[c, d]] are both have positive mutliplicity in

R then their Cartesian product [[a, b]] × [[c, d]], as shown in

Figure 2, is clearly a two dimensional rectangle in R
2. If one

of [[a, b]] or [[c, d]] had negative mutliplicity then we would

have a hybrid rectangle with points of negative mutliplicity. If

both intervals had negative mutliplicity, then the signs would

combine to give points in the Cartesian product with positive

mutliplicity.

There is no reason to stop here. [[a, b]] × [[c, d]] is still a

hybrid set, we can take its Cartesian product with another

interval, say [[e, f ]] to get a rectangular cuboid in R
3. We

should note here that we do not distinguish between ((x, y), z)

and (x, (y, z)) but rather we treat both as different names for

the ordered triple (x, y, z). That is, the Cartesian product is

associative,
{∣∣∣ ((x, y), z)(m·n)·p|x ∈m X, y ∈n Y, z ∈p Z

∣∣∣
}
= X × Y × Z

=

{∣∣∣ (x, (y, z)m·(n·p)|x ∈m X, y ∈n Y, z ∈p Z
∣∣∣
}
.

Although we will not be using them in this article, the

objects resulting from iterated Cartesian product of intervals



turn out to be quite useful, and we will call them hybrid k-

rectangles. A non-degenerate hybrid interval is a hybrid 1-

rectangle, a cross product of two is a hybrid 2-rectangle, and

so on. In the following, we use the shorthand k-rectangle to

mean hybrid k-rectangle.

Theorem 5.1: The Cartesian product of a k-rectangle in R
m

(where, k ≤ m) and ℓ-rectangle in R
n (again, ℓ ≤ n) is a

(k + ℓ)-rectangle in R
m+n.

For completeness we also define a 0-rectangle as a hybrid

set containing a single point with multiplicity 1 or −1.

This allows us to embed k-rectangles in R
n. For example

[[a, b]]R × [[c, d]]R ×
{∣∣∣ e1
∣∣∣
}

is the product of two 1-rectangles

and a 0-rectangle and so it is a 2-rectangle. But it is still a

Cartesian product of 3 hybrid sets (each over R) and so is a 2-

rectangle in R
3. Specifically, it is the 2-rectangle [[a, b]]×[[c, d]]

on the plane z = e. This also illustrates the principle that

given a k-rectangle in R
n where n > k we can always find a k

dimensional subspace which also contains the rectangle.

Finally, one last note regarding k-rectangles before we return

to the topic of symbolic linear algebra. We will re-use the

interval notation and allow for hybrid intervals between two

vectors: [[a, b]]. But one should be careful when interpreting

this overloaded notation. When a and b are real numbers, we

continue to use the definition [[a, b]] = [a, b)⊖ [b, a). However,

when a and b are n-tuples (for example, coordinates in R
n

then this is not the hybrid line interval, [a, b) ⊖ [b, a) rather

we define it as follows:

Definition Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be

ordered n-tuples then we use the notation:

[[a, b]] = [[a1, b1]] × [[a2, b2]] × . . . × [[an, bn]].

The dimension of [[a, b]] is equal to the number of indices

where ai and bi are distinct. For any i where ai = bi, the

corresponding term: [[ai, bi]] will be a hybrid set containing a

single point, that is, a 0-rectangle. The multiplicity of [[a, b]] is

based on the number of negative multiplicity intervals [[ai, bi]].

Should there be an odd number of indices i such that ai > bi

then [[a, b]] will also have negative multiplicity. Otherwise, it

will have positive multiplicity.

For the remainder of this article, we will be interested only

in matrices of dimension in N0 ×N0. Here there is only room

for a single Cartesian product and so this notation will not be

immediately useful.

VI. Matrix Addition

We now consider the addition of 2×2 block matrices A and

B with overall dimensions n × m of the form

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
.

Since these are block matrices then Ai j and Bi j are not entries

but sub matrices themselves. We shall assume that A11 is a

(q× r) matrix and B11 is a (s× t) matrix. The sum of A and B

will also be a n × m matrix. Our universe, U is therefore the

the set of all indices in an n × m matrix:

U = [[0, n))N0
× [[0,m))N0

= {(i, j) | 0 ≤ i < n and 0 ≤ j < m and i, j ∈ N0}.

First we must convert A and B to hybrid function notation.

We useAi j an Bi j to respectively denote the regions for which

A11 and Bi j are defined. Explicitly, these are

A11 = [[0, q)) × [[0, r)) A12 = [[0, q)) × [[r,m))

A21 = [[q, n)) × [[0, r)) A22 = [[q, n)) × [[r,m))

B11 = [[0, s)) × [[0, t)) B12 = [[0, s)) × [[t,m))

B21 = [[s, n)) × [[0, t)) B22 = [[s, n)) × [[t,m)),

which allow us to rewrite A and B as

A = A
A11

11
⊕ A

A12

12
⊕ A

A21

21
⊕ A

A22

22

B = B
B11

11
⊕ B

B12

12
⊕ B

B21

21
⊕ B

B22

22
.

Depending on the relation of q with s and r with t the

regions in the sum of A and B may vary. The shapes of block

matrices that can arise have shown in Figure 1. Intuitively, the

approach we take is to not concern ourselves with all possible

cases that could arise but to just choose one ordering. If this

ordering is wrong, then the hybrid function multiplicities

will cancel to yield the correct expression regardless.

Since there are 4 partitions in A and 4 partitions in B, we

only require 7 pieces to form a common refinement. To this

refinement for, we follow the same method as used previously:
{
A11, A12, A21, B11, B12, B21, P

}
(2)

with P defined as

P = U ⊖ (A11 ⊕ A12 ⊕A21 ⊕ B11 ⊕ B12 ⊕ B21) .

Clearly we can still express A22 using only the terms from

the common refinement by

A22 = U ⊖ (A11 ⊕A12 ⊕A21)

= U ⊖ (A11 ⊕A12 ⊕A21 ⊕ B11 ⊕ B12 ⊕ B21)

⊕ B11 ⊕ B12 ⊕ B21

= P ⊕ B11 ⊕ B12 ⊕ B21.

Similarly B22 can be represented as B22 = P⊕A11⊕A12⊕A21

and U as the sum of all 7 regions, U = A11 ⊕ A12 ⊕ A21 ⊕

B11 ⊕B12 ⊕B21 ⊕P. Thus A and B can be rewritten using this

new generalized partition as

A = A
A11

11
⊕ A

A12

12
⊕ A

A21

21
⊕ A

P⊕B11⊕B12⊕B21

22

B = B
B11

11
⊕ B

B12

12
⊕ B

B21

21
⊕ B

P⊕A11⊕A12⊕A21

22
.

With this, addition becomes straightforward: we add func-

tions for terms over corresponding regions. Since we are using

generalized partitions, not traditional partitions we cannot

guarantee disjointness. We must also apply a +-reduction after



summing each matching pair:

(A + B) = R+
(
(A11 + B22)A11 ⊕ (A12 + B22)A12 ⊕ (A21 + B22)A21

⊕ (A22 + B11)B11 ⊕ (A22 + B12)B12 ⊕ (A22 + B21)B21

⊕ (A22 + B22)P
)
.

A. Example: Evaluation at points

We now demonstrate evaluating this expression. Let us

assume a point (i, j) exists in the regionA11∩B12. That is, 0 ≤

i < min(q, s) and t ≤ j < r. Evaluating each of the hybrid sets

from (2) we find that only three have non-zero multiplicities:

A11(i, j) = 1, B12 = 1 and P(i, j) = 1−(1+0+0+0+1+0) = −1.

After removing all zero terms, this yields:

(A + B)(i, j) = R+
(
(A11 + B22)1 ⊕ (A22 + B12)1 ⊕ (A22 + B22)−1

)

= (A11 + B22) + (A22 + B12) − (A22 + B22) (i, j)

= (A11 + B12)(i, j).

As a second example assume (i, j) ∈ A22∩B12. Then we find

there is only one partition with non-zero multiplicity. Clearly

B12 = 1 but A22 <(2). Calculating the multiplicity of P also

yields 1 − (0 + 0 + 0 + 0 + 1 + 0) = 0. Very simply:

(A + B)(i, j) = R+
(
(A22 + B12)1

)
(i, j)

= (A22 + B12)(i, j).

B. Addition with Larger Block Matrices

This method extends easily from addition of two 2 × 2

block matrices to arbitrary addition of block matrices. If we

consider (conformable) k × ℓ and n ×m block matrices A and

B respectively of the form:

A =



A11 . . . A1ℓ

...
...

Ak1 . . . Akℓ


and B =



B11 . . . B1m

...
...

Bn1 . . . Bnm


.

For matrices to be conformable for addition they must have

the same dimensions. So we can partition the rows of A by

the strictly increasing sequence {qi}
k
i=0

and the columns by

{r j}
ℓ
j=0

. Similarly for B we partition the rows by {si}
n
i=0

and

the columns by {t j}
m
j=0

. With the additional constraints that

q0 = r0 = s0 = t0 = 0 and qk = sn and rℓ = tm. Each Ai j and

Bi j is defined over a rectangular region Ai j and Bi j:

Ai j = [[qi−1, qi)) × [[r j−1, r j)) Bi j = [[si−1, si)) × [[t j−1, t j)).

which gives the expression

(A + B) = R+




⊕

(i, j),(n,m)

(Ai j + Bnm)Ai j

 ⊕

⊕

(i, j),(n,m)

(Anm + Bi j)
Bi j

 ⊕ (Anm + Bnm)P

 .

VII. MatrixMultiplication

Next we consider the product of symbolic block matrices.

Again, we will assume 2 × 2 block matrices A and B. For

these matrices to be conformable for multiplication they must

be n × m and m × p rather than the same size as is required

for addition,

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
.

Where A11 is a q × r matrix and B11 is a s × t matrix. Note

that 0 ≤ r, s ≤ m but the ordering of r and s is unknown.

In the simplest case, r = s, four regions will arise each with

simple closed expressions,

AB =

[
(A11B11 + A12B21) (A11B12 + A12B22)

(A21B11 + A22B21) (A21B12 + A22B22)

]
.

One should notice the similarity between this and multiplica-

tion of simple 2 × 2 matrices. If we consider only the top-left

block, since r = s then the (q × r) matrix A11 and the (s × t)

matrix B11 are conformable. As are the (q×m− r) matrix A12

and the (m − s × t) matrix B21. Both products will result in

a q × t matrix which are conformable for addition. Thus the

term A11B11 + A12B21 is a q × t block.

If r , s then one approach would be to partition A into a

2 × 3 block matrix split along the vertical lines r and s and

the horizontal line q. And split B into a 3 × 2 block matrix

split along the vertical line t and the horizontal lines r and s:

Depending on the relative ordering of r and s this may cause

different blocks to be split. If s < r then A11 and A21 will be

split into blocks with columns from 0 to s and then from s

to r while B21 and B22 would be split into blocks with rows

from s to r and from r to m,

A =


A

(1)

11
A

(2)

11
A

12

A
(1)

21
A

(2)

21
A

22

 and B =



B
11

B
12

B
(1)

21
B

(1)

22

B
(2)

21
B

(2)

22


.

The resulting product is still a 2 × 2 matrix. Additionally,

each block is still the same size; the first block in the top-left

is still q×t. However each block is now the sum of three block

products:

AB =


(
A

(1)

11
B

11
+ A

(2)

11
B

(1)

21
+ A

12
B

(2)

21

) (
A

(1)

11
B

12
+ A

(2)

11
B

(1)

22
+ A

12
B

(2)

22

)

(
A

(1)

21
B

11
+ A

(2)

21
B

(1)

21
+ A

22
B

(2)

21

) (
A

(1)

21
B

12
+ A

(2)

21
B

(1)

22
+ A

22
B

(2)

22

)
 .

On the other hand, if r < s then A12 and A22 will be the blocks

split vertically while B11 and B12 will be split horizontally. In

turn, this leads to a different expression for the product of A

and B. In a now familiar pattern we can use hybrid functions

to give a single expression to deal with all permutations

simultaneously.

We shall refer to the product AB as the block matrix C,

C = AB =

[
C11 C12

C21 C22

]
.

C is an n × p matrix as determined by the sizes of A and B

and C11 is a q× t sub-matrix. This leaves C12, C21 and C22 to

be q× (p− t), (n− q)× t and (n− q)× (p− t) respectively. We

partition all three matrices along the axes 0..n, 0..p and 0..m



into the hybrid intervals

N1 = [[0, q)) N2 = [[q, n))

P1 = [[0, t)) P2 = [[t, p))

M1 = [[0, r)) M2 = [[r, s)) M3 = [[s,m)).

Assumption is too strong a word, but these partitions follow

the guess that r < s. So we construct expressions with this

in mind. If we chose incorrectly, then we plan to use the

negative multiplicity of M2 to correct our expression. Using

these intervals, we can now rewrite our matrices inline as

A = A
N1×M1

11
⊕ A

N1×(M2⊕M3)

12
⊕ A

N2×M1

21
⊕ A

N2×(M2⊕M3)

22

B = B
(M1⊕M2)×P1

11
⊕ B

(M1⊕M2)×P2

12
⊕ B

M3×P1

21
⊕ B

M3×P2

12

C = C
N1×P1

11
⊕C

N1×P2

12
⊕C

N2×P1

21
⊕C

N2×P2

22
.

(3)

It should be noted here that ⊕ is still the point-wise sum of

hybrid functions. It should not be confused with the direct sum

or the Kronecker sum of matrices which both use the same

⊕ operator. The × operator refers to the Cartesian product of

intervals.

For i, j ∈ {1, 2} the terms of C are given by

C
Ni×P j

i, j
(x, y) =

∑

M

R×

(
A

N1×M1

i,1

∣∣∣
X=x
⊕ B

M1×P1

1, j

∣∣∣∣
Y=y

⊕ A
N1×M2

i,2

∣∣∣
X=x
⊕ B

M2×P1

1, j

∣∣∣∣
Y=y

⊕ A
N1×M3

i,2

∣∣∣
X=x
⊕ B

M3×P1

2, j

∣∣∣∣
Y=y

)
.

(4)

There is some new notation here so let us unpack it. Recall

that we are taking the approach that matrices are simply

functions defined on N0 × N0. As a function we can take a

restriction of a matrix to a set of indices. In the above, we use

X and Y to denote the row and column indexing respectively.

For example with the matrix M, given below M|X=0 and MY=0

would be as follows:

M =



M[0, 0] . . . M[0, n]
...

...

M[m, 0] . . . M[m, n]



M|X=0 =

[
M[0, 0] . . . M[0, n]

]
M|Y=0 =



M[0, 0]
...

M[m, 0]


.

This is more powerful than just simple evaluation. We are

selecting not a fixed axis as (x, y) is the input to our function.

So for a matrix M|X=x or M|Y=y we transform M : X × Y → Z

to the curried M|X=i : Y → (X → Z) or M|Y= j : X → (Y → Z).

Within the context of equation (4), this transforms the blocks

of A into horizontal vector slices and B into vertical slices.

Ignoring the differences in transposition, when thought of

as functions, these both map from M (the common axis of A

and B) to functions with a common range. We therefore have

the pointwise sum of terms of the forms m 7→ (x 7→ A[x][m])

and m 7→ (y 7→ B[m][y]). The work of multiplying matching

A[x][m] with B[m][y] is handled by the R×. This leaves us

with the product of two functions with different domains, but

common range:

(x 7→ A[x][m]) × (y 7→ B[m][y]) = (x, y) 7→ A[x][m] × B[m][y].

Finally, we have the sum over M. If A and B are matrices

over a field F then the ×-reduction yields a function M →

(N × P → F). Summing over the set M leaves us with a

function (N × P → F) which agrees (at least by object type)

with our expectations for C. The familiar structure of summing

over a product suggest correctness when
{
M1,M2,M3

}
is a

strict partition of M (that is, when r ≤ s). Despite the mental

hurdles of say a 2×(−3) matrix, it continues to hold for general

partitions as well.

A. Example: Matrix Multiplication Concretely

We consider the product of two block matrices Q and R.

For this example, to better differentiate between blocks, we

change our notation slightly and give each block a distinct

letter name: A, B,C,D for the blocks of Q and E, F,G,H for

the blocks of R,

Q =



a1 a2 b1

a3 a4 b2

c1 c2 d1

c3 c4 d2


and R =



e1 f1 f2 f3 f4
g1 h1 h2 h3 h4

g2 h5 h6 h7 h8

 .

We again use N, M and P for the sets of indices. As 4 × 3

and 3 × 5 matrices, we have N = [[0, 3]], M = [[0, 2]] and

P = [[0, 4]]. To align with the blocks of Q and R, each of

these sets is partitioned as follows:

N1 = [[0, 1]] N2 = [[2, 3]]

P1 = [[0]] =
{∣∣∣ 0+1

∣∣∣
}

P2 = [[1, 4]]

M1 = [[0, 1]] M2 = ((1)) =
{∣∣∣ 1−1

∣∣∣
}

M3 = [[1, 2]].

We should note here that our guess was wrong: M2 has

negative multiplicity! Although we could have constructed two

expressions to handle this case as well, this is not necessary.

We can continue as if nothing is wrong, and the hybrid

function structure cancels multiplicities where needed.

We can still write Q and R as

Q = AN1×M1 ⊕ BN1×(M2⊕M3) ⊕CN2×M1 ⊕ DN2×(M2⊕M3)

R = E(M1⊕M2)×P1 ⊕ F(M1⊕M2)×P2 ⊕GM3×P1 ⊕ HM3×P2 .

The only difference is that originally the sum (M2 ⊕M3) = {2}

was intended to extend M3. When M2 is negative, it is a set of

indices which is smaller than the M3 = {1, 2} we started with.

Similarly, in the expression for R, (M1 ⊕ M2) is smaller than

M1. We use S to denote the product QR which is still another

2 × 2 block matrix by the same construction as equation (3):

S = Q ·R =

[
S 1 S 2

S 3 S 4

]
= S 1

N1×P1 ⊕S 2
N1×P2 ⊕S 3

N2×P1 ⊕S 4
N2×P2 .

To continue the example, we compute the block S 1,



S 1
N1×P1(i, j) =

∑

m∈M

R×
(
AN1×M1

∣∣∣
X=i
⊕ EM1×P1

∣∣∣
Y= j
⊕

BN1×M2

∣∣∣
X=i
⊕ EM2×P1

∣∣∣
Y= j
⊕

BN1×M3

∣∣∣
X=i
⊕ GM3×P1

∣∣∣
Y= j

)
.

As this is a small example, our curried functions only range

over {0, 1, 2}. This is a small enough domain to express each

of the functions as a set of point-wise mappings. We therefore

expand out each of our terms as formal hybrid sets (recall a

hybrid function is a special hybrid set of ordered pairs):

∑

m∈M?

R×

( {∣∣∣∣
(
0 7→

[
a1

a3

])+1
,
(
1 7→

[
a2

a4

])+1
∣∣∣∣
}

⊕
{∣∣∣ (0 7→ [e1])+1 , (1 7→ [e⊥])+1

∣∣∣
}

⊕

{∣∣∣∣
(
1 7→

[
b⊥
b⊥

])−1
∣∣∣∣
}
⊕
{∣∣∣ (1 7→ [e⊥])−1

∣∣∣
}

⊕

{∣∣∣∣
(
1 7→

[
b⊥
b⊥

])+1
,
(
2 7→

[
b1

b2

])+1
∣∣∣∣
}

⊕
{∣∣∣ (2 7→ [g1])+1 , (2 7→ [g2])+1

∣∣∣
} )
.

We are using e⊥ and b⊥ here to represent that the functions

E and B are undefined for these points. In reality, we would

simply not even attempt to evaluate B|X=x(1) or E|Y=y(1) as the

functions are undefined. These points are actually contained

in the A and G blocks, once again we must delay evaluation

with pseudo-functions.

Applying the ×-reduction R×, we group terms by their input

value (e.g. 1 7→ x with 1 7→ y) and flatten using the multiplicity

to repeat or invert the × operator. In this case, we are dealing

only with multiplicities of +1 and −1 which correspond with

multiplication and “division”. This is not true division, as 0×−1

0 = 1 without fear of division by zero. Otherwise for non-

zero operands, ×−1 agrees with the normal understanding of

division. This is made possible by working with multiplication

as a group rather than as a ring and so we are not worried the

interactions between multiplication and addition. This yields
∑

M1⊕M2⊕M3

{∣∣∣∣
(
0 7→

[
a1

a3

]
×+1 [e1]

)
,

(
1 7→

[
a2

a4

]
×+1 [e⊥] ×−1

[
b⊥
b⊥

]
×−1 [e⊥] ×+1

[
b⊥
b⊥

])
[g1],

(
2 7→

[
b1

b2

]
×+1 [g2]

) ∣∣∣∣
}
.

After some cancellations in the second term, we evaluate ×+1

as matrix multiplication and sum over all of M

S 1
N1×P1 =

[
a1

a3

]
[e1]+

[
a2

a4

]
[g1]+

[
b1

b2

]
[g2] =

[
a1e1 + a2g1 + b2g2

a3e1 + a4b1 + b2g2

]
.

As expected, we have a |N1| × |P1| = (2× 1) matrix which will

form the upper left block of S . Ignoring the block structure

of Q and R and performing normal matrix multiplication, we

also find that these values agree with S [0, 0] and S [1, 0].

Computations for the blocks S 2, S 3 and S 4 are performed

similarly yielding blocks of varying sizes. Together, these

blocks form a strict partitioning of S as a 2 × 2 block matrix.

B. Multiplication with Larger Block Matrices

Extending to larger block matrices is a fairly trivial affair.

Once again we use {Ni} to divide the rows of blocks in A

and {P j} to divide the block columns of B. Mk and M′
k

are

two different partitions of the common axis for A and B

respectively,

A =



A
N1×M1

1,1
. . . A

N1×MK

1,K

...
...

A
NI×M1

I,1
. . . A

NI×MK

I,K


B =



B
M1×P1

1,1
. . . B

M1×PJ

1,J

...
...

B
MK′×P1

K′,1
. . . B

MK′×PJ

K′,J



=

⊕

i∈[[1,I]]

⊕

k∈[[1,K]]

A
Ni×Mk

i,k
=

⊕

k′∈[[1,K′]]

⊕

j∈[[1,J]]

B
M′

k′
×P j

k′, j
.

As before, the blocks of C will be of sizes Ni × P j:

C =
⊕

i∈[[1,I]]

⊕

j∈[[1,J]]

(
C

Ni×P j

i, j

)
=



C
N1×P1

1,1
. . . C

N1×PJ

1,J

...
...

C
NI×P1

I,1
. . . C

NI×PJ

I,J


,

where each Ci, j is defined as

Ci, j =

∑

M

R×


⊕

k∈[[1,K]]

A
Ni×Mk

i,k

∣∣∣∣
X=x
⊕
⊕

k∈[[1,K′]]

B
M′

k
×P j

k′, j

∣∣∣∣
Y=y

 .

VIII. Conclusions

We have developed the concept of hybrid intervals as inter-

vals on ordered sets with multiplicities that can be negative.

This allows various identities to be written compactly, without

having to consider multiple cases.

We have recast symbolic block matrix algebra by viewing

matrices as piecewise functions of hybrid intervals of indices.

This formulation allows addition and multiplication of ma-

trices of symbolic block sizes without worrying about how

the block sizes relate to each other: Any generic relationship

among the block sizes may be assumed and the hybrid interval

multiplicities assemble the correct arguments for any particular

values of the symbolic block size parameters.
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