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Sufficient Lie Algebraic Conditions for Sampled-Data
Feedback Stabilizability of Affine in the Control
Nonlinear Systems

J. Tsinias and D. Theodosis

Abstract—For general nonlinear autonomous systems, a Lyapunov
characterization for the possibility of semi-global asympotic stabilizabil-
ity by means of a time-varying sampled-data feedback is edtdished. We
exploit this result in order to derive a Lie algebraic sufficient condition
for sampled-data feedback semi-global stabilizability ofaffine in the
control nonlinear systems with non-zero drift terms. The ceresponding
proposition constitutes an extension of the “Artstein-Sotag” theorem on
feedback stabilization.

Index Terms—Stabilizability, Sampled-data, Time-Varying Feedback,
Lie Algebra, Nonlinear Systems

I. INTRODUCTION
Many significant results towards stabilizability of nomar sys-

tems by means of sampled-data feedback control have app&are

the literature (see for instance [1]! [2]) [4]-[13] and téla references
therein). In the recent works [17] and [18], the conceptVégak
Global Asymptotic Stabilizability by Sampled-Data Feedk¢SDF-

WGAS) is presented for systems:

&= f(z,u), (z,u) € R" x R™,
f(0,0)=0
and various Lyapunov-like sufficient characterizationthig property
are examined. Particularly, in_[18, Proposition 2], a Ligeddraic
sufficient condition for SDF-WGAS is established for the ecad
affine in the control systems

&= f(z) +ug(z), (z,u) €R" xR,

f(0)=0
This condition constitutes an extension of the well-knowntstein-
Sontag” sufficient condition for asymptotic stabilizatioh systems

(1.1)

(1.2)

({@2) by means of an almost smooth feedback; (5ée [3], [16] a

[16]). In order to provide the precise statement|of| [18, BBijoN
2], we first need to recall the following standard notatioRsr any
pair of C*' mappingsX : R® — R*, Y : R* — R’ we adopt the
notation XY := (DY)X, DY being the derivative of". By [-, ]
we denote the Lie bracket operator, namély, Y] = XY —Y X for

any pair ofC* mappingsX,Y : R™ — R". The precise statement of

[18, Proposition 2] is the following. Assume thatg € C* and there
exists aC?, positive definite and proper functidri : R™ — R™ such
that the following implication holds:

(gV)(x) = 0,2 £0
N { either (fV)(z) < 0, (“Artstein — Sontag” condition)
or (fV)(z) = 0; ([f,9IV)(z) # 0

Then system[{1]2) is SDF-WGAS.
Proposition 2 of present work establishes that for syst@ndj the
same Lyapunov characterization of SDF-WGAS, originallggmsed

(1.3)

({@2). This condition is much weaker thah {|1.3) and invohees
particular Lie sub-algebra of the dynami¢sg of the system[{1]2).

The paper is organized as follows. Section Il contains thie de
nitions of SDF-WGAS and SDF-SGAS and the statements of our
results (Propositions 2 and 3). Section Ill contains theofsoof
these results and in Section IV illustrative examples amvided.
More results for 3-dimensional systemis {1.2) are found 8j.[1

Il. DEFINITIONS AND MAIN RESULTS

Consider system[(1.1) and assume tifat R™ x R™ — R"
is Lipschitz continuous. We denote by(-) = x(-,s,zo,u) the
trajectory of [L.1) with initial conditionz(s, s, zo,u) = zo € R"
corresponding to certain measurable and locally esshnbelinded
control u : [s, Tmax) — R™, whereTmax = Tmax (s, zo, u) is the
corresponding maximal existence time of the trajectory.

Definition 1: We say that systeni (1.1) Weakly Globally Asymp-
totically Stabilizable by Sampled-Data Feedback (SDF-\8§i for
every constant > 0 there exist mapping® : R™\{0} — R™\{0}
satisfying

T(z) <7, VoeR"\{0} (2.1)

and k(t,z;20) : RT x R™ x R® — R™ such that for any fixed
(x,20) € R™ x R™ the mapk(-,z;z0) : R" — R™ is measurable
and locally essentially bounded and such that for ewery- 0 there
exists a sequence of times

th =0<ta<tza<...<t, <...,witht, - 0 (2.2)

in such a way that the trajectony-) of the sampled-data closed loop
system:

T = f(w7k(t,$(ti);$o)), te [ti7 ti+1)7 1=1,2,...

z(0) =z € R"” (2:3)
satisfies:

ti+1 —t; = T(m(tl))7 1= 17 27 e (24)
and the following properties:

. Ve>0=30=10(c) >0:|z(0)] <6
gtablllty. S le(®)] <e, V>0 (2.5)
Attractivity: Jim z(t) =0, Vz(0) € R" (2.6)
— 00

where |z| denotes the Euclidean norm of the vector
Next we give the Lyapunov characterization of SDF-WGAS pro-
posed in[[1¥] and [18], that constitutes a generalizatiotihefconcept
of the control Lyapunov functiorfsee Definition 5.7.1 in_[14]).
Assumption 1:There exist a positive definit€’® function V' :
R™ — R* and a functioru € K (namely,a(-) is continuous, strictly
increasing witha(0) = 0) such that for evert > 0 andzo # 0
there exists a constant = (x0) € (0,£] and a measurable and
locally essentially bounded contral-, zo) : [0,] — R™ satisfying

V(z(e,0,zo0,u(-, z0))) < V(zo); (2.7a)

V(z(s,0,z0,u(-,20))) < a(V(zo)), Vs € [0,¢] (2.7b)

in [17], implies Semi-Global Asymptotic Stabilizability by means of

a time-varying Sampled-Data Feedba¢BDF-SGAS), which is a
stronger type of SDF-WGAS. Proposition 3 is the main resttiur
present work. It constitutes a major generalizatiori of R&position
2] mentioned above and provides a Lie algebraic sufficientitmn
for SDF-SGAS(WGAS) for the case of affine in the control syste
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The following result was established in [17].

Proposition 1:Under Assumption 1, systeri (1.1) is SDF-WGAS.

We now present the concept of SDF-SGAS, which is a strong
version of SDF-WGAS:

Definition 2: We say that systeni (1.1) Semi-Globally Asymp-
totically Stabilizable by Sampled-Data Feedback (SDF-S{5i for
every R > 0 and for any given partition of times

Ty =0<To<T3<..<T,<.. withT, o0 (2.8)
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there exist a neighborhoodlI of zero with B[0,R] :=
{xeR":|z| <R} C I and a mapk : R" x II — R™ such

where (f*V)(z) := f(f'V)(z), i = 2,3,..., (f*V)(z) :=
(fV)(z) and in such a way that one of the following properties

that for anyz € II the mapk(-,z) : Rt — R™ is measurable and hold:

locally essentially bounded and the trajectary) of the sampled-

N+1
data closed loop system (P1) (f V)z) <0 (2.15)
x:f(a:,k(t,a:(Tl))), te [Tu Ti+1)7 7‘:1727 (2 9) (PZ)NIS Odd and
z(0) € II ' (- -1[f: g, gl - - 9l 9] V) (@) # 0 (2.16)
satisfies: N
Stability: VE|;((§))|:><355::> fi;(st)) |><0€: mv(?)fom (2.10) (P3) N is even and
- - (I[---[[f, 9], 915+, g 9] V)(2) <O (2.17)
Attractivity: tlim z(t) =0, Vz(0) € IT (2.11) N
Remark 1:(i) It can be easily established that SDF-SGAS impliegp4) NV is an arbitrary positive integer with
SDF-WGAS and the latter implies global asymptotic consoility (fN“V)(m) =0, (2.18a)
at zero.
g [l fL - fl V) () #£ 0 (2.18b)
(i) SDF-SGAS is stronger than the concept of sampled-datai-s (L1 M @)
N

global asymptotic stabilizability adopted in earlier werln the
literature, because the selection of partition of the tirmeg2.8)
is arbitrary. We also mention that, despite its semi-globature,
the advantage of SDF-SGAS is, according to Definition 2, that
partition of times in (2.8) and the corresponding controfoimed
in (2.9) are independent of the initial state, while in Defom
1, the partition of times (2.2) and the corresponding cdnino
(2.3) generally depend on the initial condition. This is @sential
difference between SDF-SGAS and SDF-WGAS.

By exploiting the semi-global nature of Definition 2, padtiarly
the requirement thab (2.110) arfld (2.11) are valid for initialue x(0)
lying in a compact set, we can obtain the following propositi

Then system[(1]2) satisfies Assumption 1, hence, is SDF-S&RS
therefore SDF-WGAS.

Remark 2i) It should be pointed out, that the generalized concept
of the control Lyapunov function given by Assumption 1, ttge
with the result of Proposition 2, play a key role for the dation of
the Lie sufficient condition of Proposition 3; it should bemmasized
here that the hypothesis of Proposition 3, guarantees tlaityaof
Assumption 1 for systeni_(1.2), butdpes not in general imply that
V involved in(Z13)(2.18)is a control Lyapunov functigraccording
to its standard definition in literature.

(i) For the particular case aV = 1, condition [Z.14h) is equivalent

which is one of the main results of the paper. Its proof is tasd® (9V)(z) = 0 and(fV)(x) = 0, the previous equality is equivalent

on a generalization of the procedure employed_in [17] forgteof
of Proposition 1.

to (2.14B) and obviously({2.16) is equivalent tf, g]V)(z) # 0.

It follows, according to the statement of Proposition 3,tthader

Proposition 2:Under Assumption 1, systerfi{1.1) is SDF-SGAS (1.9), system[(12) is SDF-SGAS and thus SDF-WGAS; the rlatte
We next present the precise statement of the central regult@nclusion, namely, thaf (1.3) implies SDF-WGAS, is thecjze

present work, which provides a Lie algebraic sufficient ¢to

statement of [[18, Proposition 2]. It turns out that Proposit3

for SDF-SGAS(WGAS) for the affine in the control single-inpuconstitutes a generalization of the previously mentioresailt in [18].

system [(1.R). Assume that its dynamigs g are smooth )
and let Lie{f,g} be the Lie algebra generated Hyf,g}. Let
L, := span{f,g} and L, 11 := span{[X,Y], X € L;,)Y € L1},
i =1,2,... and for any nonzerd\ € Lie{f, g} define:

=1,if A e Ll\{O}
=k >1,ifA=A; + A27 with A, € Lk\{O}
and As € span{uziz’f*lLi}

7

ordergr 1 A {

(2.12)

By exploiting the result of Proposition 2, the Campbell-Bek
Hausdorff (CBH) formula and applying a major extension oé th

proof of [18, Proposition 2] we get the following result fdvet case
(@.2), that constitutes the central result of present work.

Proposition 3:For system[(1]2) assume that there exists a smo
function V : R™ — R™, being positive definite and proper, suc

that for everyz # 0, either (¢V)(x) # 0, or one of the following
properties hold:
Either

(gV)(z) =0 = (fV)(x) <0 (2.13)
or there exists an intege¥ = N(x) > 1 such that
(gV)(x) =0, (f'V)(x)=0, i=12...,N (2.14a)
(AlAz . AkV)(CC) =0
VAL A, ... Ay € Lie{f, g} \ {9}
. k
with szl order(s Ay < N (2.14b)

(iii) Statement of Proposition 3 is fulfilled under weakeguéarity
hypotheses forf, g and V. Particularly, if we assume thaV :=
sup{N = N(z), x # 0} < +o0, where N = N(x) is the integer
involved in (2.14)-(2.18), then the result of Propositiohd@ds under
the assumption thaf, g, V € C* for certain integerk > N. It
also can be extended to multi-input affine in the control eayst; for
reasons of simplicity, only the single-input case is coasid here.

Ill. PROOF OFMAIN RESULTS

Proof of Proposition 2: Let R, p be a pair of constants with
R > p > 0 and defineS[p,R) := {z € R" : p < V(z) < R}.
By exploiting [2.78) and (Z.7b) and applying similar argumsewith

Ott{bose in proof of Proposition 1 in [17], it follows that foryg > 0
h

ere existss € (0,¢] such that for every € (0,0], a constant
L = L(p,R) > 0 can be found in such a way that for every> 0
andzo € S[p, R) there a exists a contral(-, zo) (as determined in
(22) with ¢ as above) such that, if we defing (s, zo) := u(s —
t,x0), s € [t,t + €], the trajectoryz (-, -, zo, u¢ (-, o)) of (L) with
x(t,t, o, us(-, z0)) = o satisfies:

V(z(t+e,t,z0,u(-,20)))) < V(xo) — L; (3.1a)
V(xz(s,t,z0,ut(-,z0))) < 2a(V(mo)), Vs € [t,t +¢]  (3.1b)

Let R > 0 arbitrary and let? > 0 be a constant such th&t[0, R] C
S[0, R). Consider a partition of constan{®?,,, n =1,2,...} with
Ri=R, 0<Ruy1 <Rn, n=1,2,... with lim R, =0

n— o0
(3.2)



Also, let {T,,v = 1,2, ...} be a given partition of times satisfying We next show that the map(-) satisfies both[(2.10) and(2]11).
(28). For eachi = 1,2,... and constantg; > 0,i = 1,2,... SinceV is positive definite and proper, in order to establish (2.it1)
consider the following partition of times: suffices to show that for initial nonzers(0) € TI(= S[0, R;)) and

sufficiently small 0 there exists a time € P, such that
P; = {tiyl =0, ti,2,%:,3,.. } with lim tip =00, 1=1,2,... y m= € Feo
p—>00

(3.3) V(z(t) Sp,Vt>7 (3.12)

satisfying the following properties: Let 6, 11 > 0 with 2a(6) < 1i; 6 < Ry and letm € N with

0 < tip <lipt1; (3.4a) Roni1 <0< Ry (3.13)
{TV,IJ:1,2,...}CPZ'CP7;+1; (34b) . .
€0 > tipi1 —tip >0, Vi,peN (3.4¢) We claim that there exists € N such thatt,, ; € P, and
Next we use the notation; ; (-, zo) := us, , (-, z0). By using [3.1h) V(@(tm,p)) <0 (3.14)

and [3.Ib) withp = Riyy and R = R, i = 1,2,.., W M&Y |pdeed, otherwise we would havea(tm,):p=1,2,...} N
find a constantl; > 0, a partition of times and sufficiently small S[0, Rmy1) = 0 and sincet, , € P, we obtain from [3.8) and

constants; > 0 such that[(34) holds and simultaneously for € @13 thatR,,., < V(z(tmp)) < V(z(0)) = (p—1)min{L,, v =
S[Ri+1, Ri) and for any pair of integeréi,p) € N x N, acontrol 1 701 vp =1,2,..., a contradiction, hence (3114) is fulfilled.

Uip(+5%0) : [tip, ti,p + £:] — R™ can be found satisfying: The latter, in conjunction witi{3.10) and the definition&fnd 1,

V(@ (tip+1tip, To, wip(-20))) < V(wo) — Li; (3.5a) implies 2‘;](‘/(:(75“’.’7))) (S) 2a(6) < ‘Léi thi_f(.:h. byl virtue l?f (21,
asserts that for given:(0) € II and sufficiently small constant

V(@ (s, tip, @o,tip (- 20))) < 2a(V(w0)), Vs € [ti’p’ti’p“:,l gy K > 0 there exists a time € Px. such that the map(-) satisfies
(3.50) V(z(t)) < 2a(V(z(r))) < pforall ¢ > 7, which establishe$ (2.1L.1).
The previous analysis asserts that, for giéh,,» = 1,2,...}, a Likewise, by using[(3.11) witht; = 0 we can establish thaf (2110)
partition of times[(3.B) can be determined in such a way fBaf), also holds for the magp:(-). We are now in a position to establish
(3:41) hold and simultaneously (8.5) is fulfilled, providéthtzo € that there exists a map: R* x IT — R™ such that the trajectory of

S[Ri+1, R:). For each initialz(0) € II := S[0, R1) consider the the sampled-data closed loop systdm](2.9) satisfies baill)(2and

mapz(-) : RT — R™ defined as follows: (2.11). Indeed, due to the first inclusion bf (3.4b), for egoren T
and vectorz € II there exist timeg; € Pw,k=1,2,...,v and
x(t) = x(t, tip, x(tip), Wip(-, T ) kP o0 P
Vi € %t) . (& tip (, ), uin , o)) N (3:62) inputsws, : [ti, . ppstip1pess) — R™, k=1,2,...,v—1 such that
P l,p+1)7 x(tl’l’) € S[Rl+17Rl)7 ,pE N koPh ket 1:Ph+1

wherez (-, s, z, u) satisfies: igopre < tipgr,prgrs B < kg1

. ik = lk+1 = Pk+1 = Pk + 1; (3.15a)
z = f(z,u), t > s, x(s,s,2,u) =2 (3.6b) tipy =Ti, tiypy = Tit1

An immediate consequence 6f (B.3). (3.4A).1(3.5) (Z.6he
following fact:
Fact 1: The mapz(-) as determined by[(3.6) is well defined and
satisfies:

T =z wl(t) P= Wiy ,py (tvxl)vt € [tilvp17ti2vp2]
T2 = x(tiQ;P27ti1;P1 ) mlvwl)? w2(t) 1= Uig,po (t7502)7
te [tiz,sztis,Ps]
x3 = Z(Lig,py tig,pa> T2, w2); W3(t) 1= Uiy ps (t,3),
Vi(@(tip+1)) < V(@(tip)) — Lis (3.79) t € [tiz,psstia,pal
Vi(z(s)) < 2a(V(2(tip))),Vs € [tip, tip+1], i,p €N (3.7b)
provided that z(t:,p) € S[Rit1, R:)

Ty—1 = (b, _y,py_ 1>ty _2,py_2> Tv—2,Wy—2);
wl’*l(t) = uiu71,PV71(t7:CV*1)7t € [tiufl)pu—17tiu;l)u]

and as a consequence of (3.7a) we get: . _ 15b)
Fact 2: Then, if we define:
V(z(ty)) < V(z(t)) — (k—1)min{L;, j =v,v+1,... it 2) = wi (1), £ € [tip i Liryrpaga ), 2 €11, (3.16a)
. k= 1727'“77/_17 th,pl :Ti7 tiy,py :TiJrl
oom}, VeEmv eNym > v, t; € Pr,i=1,2,..,k:
t <te<...<ty k(t, 2) == ¢i(t, 2),t € [13,Tit1),4=1,2,..., z€ 1l (3.16b)

provided that z(t1), z(t2), ..., x(tx) € S[Rm+1, Rv) (3.8) it is obvious that the map(-) as defined in[{3]6) coincides with the
solution of the closed-loog (2.9) with : RT x IT — R™ as defined

and - by (8.I58) and[(3.16), provided that their initial valuestat 0 are
. o ' the same. It turns out, according to stability analysis miadex(-),

V(z(ta)) < V(z(tr)),Vta > t1; ta,t1 € Peo := | | P, .
(2(t2)) < V{@(t)), Ve > bis to, b g that [2.10) and[{2.11) also hold for the trajectory of theteys[2.9)
o(th) €11 (3.9) with k& : RT x IT — R™ as defined above. [

o Proof of Proposition 3:Let0 # zo € R™ and suppose first that,
Moreover, by taking into accourit (314b]). (37b) ahd ¥3.8jollows: either (9V)(w0) # 0, or ZI3) is fulfilled withw = o, namely,
Fact 3 For anyrT € P, with z(7) € II, there exists a sequence(gV)(zo) = 0 and (fV)(xo) < 0. Then, in both cases above,

{tr,k = 1,2,..} with ¢, € Px anditgy1 > &, > 7, K = there exists a constant input such that both[{Z.Ta) an@ (2]7b) of
2,3,..., t1:=7 such thatk-hf;o tx = oo and Assumption 1 hold; particularly, for every sufficiently sina > 0
we have:
Viz(s)) < 2a(V(@(t))), Vs € [t terr) - (3:10) V/((5,0, 20, u)) < V(x0), ¥s € (0,¢] (3.17)

which by virtue of [3.9) implies: Assume next that there exists an integér= N(zo) > 1 satisfying

V(z(s)) < 2a(V(z(t1))),Vs > t1 (3.11) (213), as well as one of the properties (P1), (P2), (P3)) (#th



x = xo. In order to derive the desired conclusion, we proceed & om [3.24) and[(3.25) we find:

follows. Define: ko igi kAl iyt
2 .
() =S EL DAV RN RE) + —(’7 —i (AV)EW)
X:=f+4+ug, Y :=f+uyg (3.18) i—0 =1\ )
+ O(tkfl)
and for simplicity denote byX;(z) andY;(z) the trajectories of the €(AFV)(R(t)) + tp span {A1 AoV, Ag A1V} (R(t))

systemsi = X (x) andy = Y (y), respectively, initiated at time 5 o 5
t = 0 from somez € R™. Also, for any constanp > 0 define: +17p" span{A2 AoV, A1V, Ao A2V H(R(2))

+ t3p3 span{AoAsV, A2 A1V, A1 A2V, A3 AoV }H(R(t))

R(t) := (Xpt 0 Y)(20),t = 0, R(0) = xo (3.19) 4+t  span { A AoV, Ax_1 A1V, ., Ag ALV} (R(t))
m(t) == V(R(t)),t >0 (3.20) + p(A1V)(R(t))
and denote in the se () _ : . o + span{p*t A2V, p** AV, p T AV,
quel byt (), v = 1,2, ... its v-time derivative. karltkAkJer}(R(t)) I O(tk—l) (3.27)

We prove that, under previous assumptions concerning tegen
N = N(zo), there exist a constant = p(zo) > 0 and a pair of We show by induction that for every pair of integets & with

n . . . (n) . g

constant inputg.; and us such that(m)(O) =0,n=12..,N 2<n<k, the ntime derivativen: () of m(-) satisfies:
(N+1) . .
and  m "(0) < 0. This would imply thatm(t) < m(0) = V(zo) (n) n
) s~ t W (t,z0) = (A t

for everyt > 0 near zero and the latter in conjunction with (3.19) and m(t) € Sn(t,zo) ; (A5 V)(E(?))
(3:20) will lead to the validity of both inequalitieE (2]7aihd [2.7b) i=k P (A, 'A i A 'V)(R( ) v >2;
guaranteeing, according to Proposition 2, that](1.2) is -SIHAS. +> t/span Z 10rder{x Y}A s =+
In order to get the desired result, we express the time dems j=0 =" il e{1,2,...,n+j—2}

(ﬁ@)(()), v =1,2,... of the mapm(-) in terms of the elements of the + p" " HAn 1 V)(R(1))
Lie algebra of{f, g} and the functionV evaluated ato. We apply n nt1,2
the CBH formula to the right hand side map [of{3.19). Then f@re + span{p"t(A.V)(R()), p" T t" (Ant1V)(R(2)), ...,

k € N we find: P T (A V)(R(D)} + O ™) (3.28)
. with i ,4, ..., € No, j = 0,1,2,...,k. By taking into account
R(t) =pX(R(1)) + (DXpY) 0 X—pe(R(1)) (B27), it can be easily verified that inclusign{3.28) isdad fulfilled
=pX(R(t)) + Y(R(t)) + pt[Y, X](R(?)) for n = 2. Suppose thaf(3.28) holds for some integeR < n < k.
p 242 We show that it is also fulfilled forn = n + 1 < k. Indeed, from
+ S (1Y XL XJ(R(6) + - (3-21)  @28) the(n + 1)-time derivative ofm(-) is
tk n+1 d n .
+ L Y X)X XI(R@) + O(E) " @) = S((1) € DAV (R() R()
. D(p" AJ. AGV)R(E) v > 2; .
wherelim,_, o+ (O(t)/t) = 0. Let + Z t'span{ S0 OTder{x vyA =n+7; R(t)
7']—2: 1236{12 Ln+j—2}
Ao :==pX +Y, j=k p’gz(Ali .. Al’J/V)(R( ) v >2;
Ay = [ [[Y X] X] 7X]7V:1727--- (3.22) -I-thjflspan Zyzl OTd@T{X Y}A-J' =n+J;
—,_/ s » i
j=1

v

i =" ide{l,2,...,n+j—2}

n—1 5
Notice that, sinced, € Lie{X,Y}, we may define, according to " D(AnaV)(R())R(E) -
@12), the order of eachl, with respect to the Lie algebra of + span{p"tD(A,V)(R(t)), p" " t* D(Ant1V)(R(L)), ...,
{X,Y}; particularly, in our case, we have: pn+k71tkD(Ak+n71V)(R(t))}R(t)

+ span{p™ (AnV)(R(t)), p" Tt (A1 V) (R(2)), ..,

order A, =v+1, VYv=012,... 3.23 C
R ©29 P (AnyV)(R(E)),5 =0,1,2,...k} + O(t* ") (3.29)
Now, (3.21) is rewritten: Hence, by invoking[(3.24) we have:
. (nt1) n
R(t) = (Ao+ ptA; + %,;%%42 TR %pktkAk)(R(t)) rowty m (1) € (AFTIV)(R()
) ) (3.24) +span{pqtq(AqA3V)(R( N, g=1,...n,n+1, ..k}
thus, by invoking [(3:20), it follows that for any € N we have: Pt Ag A a- AGV)(R() v > 2
ko i + Z t'*9span ZV—1 order{X y}A g =n+J;
M) =S LL(AV)(RE®) + o) (3.25)  j=0.1,..k P=3Y i ell,2. . ntj—2}
i—0 v 0=0,1,....k
J+ta<k

Since we have assumed thgtl)(xzo) = (¢V)(x0) = 0, it follows

from (3.18), [3.2R) and(3.25) that P (A i Ag VIR(E) v > 2

+th span § S 1order{xy}A] =n+j;
m(0) =0 (3.26) rJ—Z”:lzﬂe{l comtj—2}



+ 0" (AnV)(R(2))

+ 0" Lspan{pTt(AgAn_1V)(R(t));q =0,1,...,n,n+1, ..., k}

+ span{p’ T T AL A VY(R()), 5 =1,2,...
coonn+ 10 kg=0,1,.. kj+q <k}

+ span{p" H(Anp 1 V)(R(1)), ooy p" 7 (A V)(R(D)),
i=1,2,.., k}+0@1t"™)

Notice that each new terntf*p~ A, ... A,,, V that appears above

satisfies
s=M
Z order{x yyA., = (n+ 1)+ K;

s=1

s=M
L=> me{l,2,....,(n+1)+ K -2} (3.32)
s=1

For completeness, we note that for the terpig?(A,AgV), ¢ =
1,...,k it follows, by taking into account[(3.28) anf (3]129), that
order(x yyAq+> i} orderx yyAo = (n+1)+q and obviously
(332) holds as well. For the terné"™ o™ (A, A ;... A, V) we
have: order(x yyAq + 27, Orde"'{X,Y}Ai;c = (TIL +1)+q+j
and, sincery, € {1,...,n 4+ j — 2} as imposed in[{3.30), we have:
rh4+qge{l,2,....,n+q+j—-2}C{L,2,....,(n+1)+ (¢ +
j) — 2}. Also, for the termst’ ' p™n (A ;A ... A; V) in (330)

1 O?”deT{X’Y}Ai? =(n+ 11) +j — 1 and obviously
ri e{1,2,...,n+j—2}Cc{1,2,...,(n+1)+j—2}. Likewise,
we handle the rest terms in the right hand side[of (3.30) asvsh
that both [[3.311) and (3.82) hold. These conditions imply tha right
hand set in[{3.30) is included ifi.+1(t, o), as the latter is defined in
(3:28), which guarantees that inclusién (3.28) holdsrfae= n + 1
and therefore is fulfilled for every pair of integeks> n > 2. It

we have:y "

follows from (3:27) and[(3.28) that

(2)

m(0) = (A3V)(x0) + (pA1V)(0)
for the casen = 2 and generally fom > 2:

(0) € (AFV)(wo)

pT?l (Az[fAngzB V)(l’o) v 2> 2;

9,43, .49 € No; Z;':l order{x yy Ao = n;
J

=301 e{1,2,..,n -2}

+ 0" (An1 V) (w0)

+ span

Y and by setting
Uz = —pui, p >0

we get

Ao=(p+1)f, Av=(p+Dulf 9]
Az = (P+ 1)(“%[[f7 g]vg] - Ul[[gvf]vf])

An = (p+ 1) [[f, gl gls- - 9]
————
+(p+Duf (- [f. 9], 9], 9], ]

+ - [fgh- gl flogl+ o+ Ll 9] £l gl -0 9))
-2 n—2

+ot (o Dl (Il [1f, 9 f1, -, f1. 1), ]

n—2

(3.30)

(3.33)

(3.34)
By taking into account definitio (3.18) of the vector fields and

(3.35)

+ L1091 £ 0 £ g A1 o+ (L 9 90, £ 1 FD)
-3 n—2

—(p+ D[ flg, £, f1, -, f], = 3,4, ..
—_———

n

(3.36)

Obviously, [3.36) implies:
A € span{A € Lie{f,g} \ {9} : order(; s A =k + 1}
k=0,1,2,... (3.37)

Also, we recall from [3:28) and(3B4) thaf, = >V 0 €
{1,2,...,n =2} and }°7_, order(x,yy Ay = rd + v = n with

(3.31) v > 2 and thereforer < n — 1. By (3.34)3.37) and the previous

facts we get:

T(0) € (p+ 1) (f"V) (o) + w1 (p, p + 15 70)

+ span {ufﬁk(p7p+ Lzo) k=2, .n— 2}
+p" o+ Duy (- (I, g1 g -, g]V) (o)
5,1—/
=" o+ Dl llgs £ fls- -, IV (o)
——

n—1

(3.38)

for n = 2,3, ... and for certain smooth functions, : R?> x R" —
R, k=1,2,...,n — 2 satisfying the following properties:

(S1) For everyzo € R™, each mapmy(a, B;20) : R — R is a
polynomial with respect to the first two variables in such g \rzat

span{mi(a, B;x0), k=1,2,...,n—2} C
span{(A1A2..A;V)(z0); i €N,
A, Az, A € Lie{f, g}\{g}; 20)=] order(; 3 Aj =n }
(3.39)
(S2) For eachxzy € R" there exist integersh;, p;,, i =
1,2,..., L e Nwith1 < \; < n—-22< u <n-1
such that the mapr; (o, 8; z0) : R? — R satisfiest (o, 3;20) €
span {a B a2 pH2 oM pREY. The latter implies that for
each fixedro € R™ the polynomialsri (p, p+1;z0) and—p™ ! (p+

V(.- 1g, f1, f1s- - -5 fIV)(z0) are linearly independent, provided
n—1
that
n—1
If we define:

&n(p;wo) :=m1(p, p + 1;w0) (3.41)
=" o+ 1) llgs 1, 1), -5 FIV) (o)
n—1
the inclusion [(3.38) is rewritten:

W(0) € (p+ 1)"(f"V) (o) + wr€n (03 0)

+ span{u]fﬂ'k(pm—i— 120),k=2,..,n — 2}

+p" o+ a1 g ), gV ) (@) (3.42)
n—1
and a constanp = p(zo) > 0 can be found with
&n(p3z0) #0 (3.43)

provided that[(3.40) holds. Suppose now that there exisistager

N = N(z0) > 1 satisfying [2.1#%), as well as one of the properties
(P1), (P2), (P3), (P4) withc = z¢. By (3.28) and by taking into
account[(2.14),[(3.38) an@ (3139) it follows:

(n)

m(0)=0,n=1,2,...,N (3.44)



and we distinguish four cases:
Case 1:(2.18) holds withz = zo. Then by using[(3.42) wit :=
N + 1 and by setting:; = 0 we find that for allp > 0 it holds:

(N+1)

P 0) <0 (3.45)

Case 2: N is odd and(2.18) holds withz = z¢. We again invoke
(3432) withn := N +1 and our assumption tha¥{ is odd. It follows
that for everyp > 0 there exists a constamt; = u1(zo), with |u|
sufficiently large, such that agai (3145) is fulfilled.

Case 3: N is even and(2.117) holds withz = xo. Then, as in the
previous case, by usinf (3}42) with:= N + 1 it follows that, for
any choice ofp > 0 and for any sufficiently large constant =
u1(zo) > 0, the desired{3.45) holds.

Case 4: N is arbitrary and both(2.184)and (2.180) are satisfied

C2(R,R), which satisfya(0) = 8(0) # 0 and &(0) % 5(0),

1

where (cly)(~) and g (-) denote the first derivatives of the functions
a(-) and B(-), respectively. Definer := (x1,2,,23)7, f(z) :
(z20(xs), —21B(23),0)”, g(x) := (0,0,1)" and V (z) := 1 (a7 +
x3 4 23). Letx # 0 and suppose thdyV)(z) = x3 = 0. It follows
that (fV)(z) = (f°V)(z) = (f3V)(z) = 0. We distinguish two
cases. The firstigf, g]V')(z) # 0,  # 0, which in conjunction with
the previous equalities, assert tHat (2.14) 4nd {2.16) opdxition 3
hold with N = 1. The second case i§f, ¢]V)(z) = 0, which, in
conjunction with(gV')(z) = xz3 = 0, = # 0 and hypotheses imposed
for the termsa(-) and 3(-), guarantees that[g, f], f]V)(z) # 0,
namely [2.18b) holds withV = 2. It is also obvious that in this
case, condition[{2.14) is fulfilled as well with = 2. It turns out,
according to the statement of Proposition 3, that the sysse&DF-

with 2 = zo. Then, due to assumptiof (2.18b), it follows tHal (B.405GAS.

is fulfilled with n := N + 1, therefore there exists a constant=
p(xo) > 0 satisfying [3.4B) withn := N + 1. By invoking again
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(B432) withn := N + 1 and by taking into account assumption

(2.183), it follows that for thisp above there exists a sufficiently
small constant.; = u1(zo) # 0 such that[(3.45) holds.

It follows, by taking into accoun{(3.19)._(3.P0}}. (31393.44) and

(3:45), that in all previous cases, there exists a constaistich that,
if for any ¢t > 0 we define:
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w(s;t, xo) == { ur, s € (t,t+ pt]

with p = p(zo) := 1 for the Cases 1, 2 and 3 and = p(xo)

(3.46)

as considered in the Case 4, then for every sufficiently small

o o(xzo) > 0 we havem(t) < m(0), V¢t € (0,0], where
m(t) := V((Xpt 0 Y2)(x0)) = V(x(t + pt,0,z0,w(-;t,x0)) and

z(+,0,z0,w(+;t,x0)) is the trajectory of[(1]2) corresponding to the [

input w(+;t,z0). Equivalently:

V(z(t,0,zo,w(:; #ﬁ,xo))) < V(xo),Vt € (0 (3.47)

) ﬁp]
Since the constanp = p(xo) is independent of, we may pick
e € (0,0] sufficiently small in such a way that, if we define
u(-,0) = w(;1i;,0), inequality in [3.47) holds fort :=
e, namely, V(z(e,0,z0, u(-,z0))) < V(xzo) and simultaneously
V(z(s,0,z0,u(-,20))) < 2V (x0), Vs € (0,¢]. We conclude, by
taking into account[{3.17) and previous inequalities, tloatevery
xo # 0 and¢ > 0, there exist = ¢(xzo) € (0,£] and a measurable
and locally essentially bounded contigl, o) : [0, ] — R such that
(27a) and[(Z7b) of Assumption 1 hold witl{s) := 2s. Therefore,
according to Proposition 2 (1.2) is SDF-SGAS. [ |

IV. EXAMPLES

The following examples illustrate the nature of Proposit® The
first example below generalizes Example 2[inl[17].

Example 1: For the planar casei; F(x1,z2), T2
u, (z1,72) € R?, where F : R? — RY is C*°, assume that for
every z1 # 0, either z1F(x1,0) < 0, or there exists an integer
N = N(z1) > 1 with 2£(21,0) = 0, i = 0,1,...,N — 1
such that one of the foIIO\?ving properties hold: (HY is odd
and ‘;]:—ﬁ(ml,o) # 0; (H2) N is even and:clglz—ﬁ(:cho) < 0.
Then by settingr = (z1,22)7, V(z) = L(a? + 22), f(x) :=
(F(z1,22),0)T andg(x) := (0,1)7 it follows that for thoser # 0
for which (¢gV)(z) = 0, either [2.IB) holds, ol (2.14) together with
one of the properties (P2), (P3) of Proposition 3 are futfilleence,
the system is SDF-SGAS.

Example 2: Consider the systemi; zoa(x3), T2
—:Elﬁ(l’g), T3 = u, (:El,:EQ,LE:;) S Rfi, where Oé(),ﬁ()
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