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Refined Schur Method for Robust Pole Assignment with
Repeated Poles

Zhen-Chen Guo, Jiang Qian, Yun-feng Cai and Shu-fang Xu

Abstract—Schur-type methods in [6] and [11] solve the robust pole Van Dooren [[14], where the adopted measures are closeljedela
assignment problem by employing the departure from normalfy of the  to the condition number of the eigenvectors matrix/f. Method

closed-loop system matrix as the measure of yobustness. Thevork well 1 in [14] is implemented as the functioplace in the MATLAB
generally when all poles to be assigned are simple. Howevarhen some

poles are close or even repeated, the eigenvalues of the carteal closed- C9ntr0| system toolbox. Metha@lin [14] may not converge, and then
loop system matrix might be inaccurate. In this paper, we preent a Tits and Yang[[2B] posed a new approach upon it, which tends to
refined Schur method, which is able to deal with the case wherome or  maximize the absolute value of the determinant of the eigetovs

all of the poles to be assigned are repeated. More importary] the refined  \5¢rix of A, and is implemented as the functiambpole (from

Schur method can still be applied whenplace [14] and robpole
fail to output a solution when the multiplicity of some repeaed poles is SLICQOT). Based on recurrent neural networks, a method tcen

greater than the input freedom. is put forward in [16], where many parameters need to be tatjus
Index Terms—robust pole assignment, repeated poles, departure from in ordgr to aCh'?Ve fast convergence. Notice that theseodetk?.an
normality. deal with both simple and repeated poles. However, theytarative

methods and hence can be expensive. Moreover, in these asetho
the multiplicity of any repeated pole € £ must not exceed the input
freedomm. Otherwise, they will fail to give a solution. There exist
) ] ) feasible methods[([22]-T24]) when the multiplicity of somepeated
HE behavior of the state feedback control system in enginger oo exceeds the input freedom. They also tend to minimize the
is essentially determined by the eigen-structure of theede qngition number of the eigenvectors matrixf. In both methods,
loop system matrix. Such observation ultimately evokesafising he real Jordan canonical form of the closed-loop systentixniat
of the pole assignment problem, which can be mathematis#iiied ey pjoyed, and the size of each Jordan block of the repeated 0
as follows. Denote the dynamic state equation of the timariant  55sumed to be known in prior, which is, however, generaliyl fia
linear system by obtain. Additionally, both methods could be numerical ab since
(t) = Az(t) + Bu(t), the computation of the Jordan canonical form of a matrix isallg

where A € R™*™ is the open-loop system matrix afgl € R**™  Suspected. _
is the input matrix. In control theory, th&tate-Feedback Pole Another type of methods uses the departure from normality of
Assignment Problem (SFPA)is to find a state feedback matrixAc s the measure of robustness. It is firstly proposed astfie/r
F € R™™ such that the eigenvalues of the closed-loop systeffiethod inl[6]. Some variations can also be found there. Ricene

matrix A. = A + BF, associated with the closed-loop system authors [[11] made some improvements to the methods progosed
[€], especially for placing complex conjugate poles, whicheferred

&(t) = Az(t) + Bu(t) = (A+ BF)z(t) = Acx(t), to as theschur-rob method. All these Schur-type methods are
are the given poles il = {\1, s, ..., A}, which is closed under designed for the case when all poles to be assigned are sithple

complex conjugate. Many valuable contributions have beaderto SOMe poles are close or even repeated, these methods Lantptit a
the SFPA. We refer readers td [3]]8][12][17/=[20] 23] T29] solution F, but the relative errors of the eigenvalues of the computed
[32] for details. It is well known that th&FPA is solvable for any Cclosed-loop system matrid. = A+ BF, compared with the entries
£ if and only if (4, B) is controllable [31], [32]. Through the rest N <. might be fairly large. _ _
of this paperwe will always assume thdt4, B) is controllable In this paper, we intend to propose a refined version of the
Whenm > 1, the solution to theSFPA s generally not unique. It Schur—rob method [11] specifically for repeated poles. It is well
then leads to the problem on how to explore the freedonif sich known that a defective eigenvalue, whose geometric midiiplis
that the closed-loop system achieves some desirable pieeAn 1SS than its algebraic multiplicity, is generally more siéve to
important engineering application is to find an approprisglution Perturbations than a semi-simple one, whose geometric lgedraic
F € R™*™ to the SFPA such that the eigenvalues of the C|osed_|008‘lu|tlp|ICItles are identical. So in the present refined Scmethod,
system matrixA, = A + BF are as insensitive to perturbations orfVe Manage to keep the geometric multiplicities of the regseables
A, as possible, which is known as tiiate-Feedback Robust Pole @S 1arge as possible by constructing the real Schur formioin
Assignment Problem (SFRPA) more special form, and then attempt to minimize the deparfram
To solve theSFRPA it is imperative to choose an appropriate meglormality of A.. The present refined Schur method can achieve
sure of robustness to characterize the “insensitivity”risatively. higher relative accuracy of the placed poles than those rdgpa
Based on different measures, various methoHs[[4]-[7][14], [13]- Methods in[[B],[[11] for repeated poles. Moreover, it stithks well
[16], [21], [22], [24]-[2€], [28], [30], [32] are put forwat. The most when methods in[[14],128] fail in the case where the multiipyi

attractive methods might be those given by Kautsky, Nichatsl of some poles is greater than. Numerical examples illustrate the
superiorities of our approach.
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drawn in Sectiof V. Lemma Il.1. Let A,B € R™ ™ be symmetric, then there exist
a diagonal matrix® = diag(61,02,...,0,) with 6; > 0 (j =
Il. PRELIMINARIES AND NOTATIONS 1,2,...,n) and an orthogonal matrix/ € R*>"*?", whosej-th col-

We first briefly review the parametric solutions to tBEPA [6], umnu; and (n+ j)-th columnu,, ;; satisfyu,,; = { _I”} uj,
[17] using the real Schur decomposition of the closed-lopgtesn In

matrix A. = A + BF. Let such that
A B .
A+ BF =XTX' 1) {B _A} = U diag(©,-0)U . (5)
be the real Schur decomposition of., where X € R"*" is B A 0 _0
orthogonal andT” € R™ ™ is upper quasi-triangular. Without Furthermore, it holds that{_A —B] =U {_@ 0 ] U,

loss of generality, assume thd is of full column rankand let
B=Q[R" O}T — (@ Q)[R O}T — Q.R be the QR Lemma[lL1 can be verified directly by utilizing propertie$ o

decomposition ofB, where@Q € R™*" is orthogonal,R ¢ R™*™  Hamiltonian matrices, and we skip the proof here.
is nonsingular upper triangular, aiigh € R™"™. Then withX and | emma 11.2. (Jacobi Orthogonal Transformatiofi [L1]) Assume that

T' satisfying x,y € R™ are linearly independent, then there exists an orthogonal
Q1 (AX — XT) =0, (2) matrixQ € R**? such thatz'g =0 with [ §] = [z ] Q.
the parametric solutions to tH&FPA can be given by Actually, the 2 x 2 orthogonal matrixQ in Lemma[lL.2 can be
L . obtained as follows. Leb: = ||z[|3, 02 = |[yl3, Yy =2y, 7 =
F=R"Q:(XTX -—A). 2221 and definet as
El:ﬂonst{aqu.entlé/jz once tr;(te prtk&ggoﬂé{jand thg uzp.er qu:fsl;trllangular L (r + VIF72), it >0,
satisfying [(2) are obtained; will be acquired immediately. T\ —1/(—r+ Vi), if r<o.

When solving theSFRPA, we employ the departure from normal-

ity of A. as the measure of robustness, which can be specified_as . .
([yZI]) P T%en the required) is Q = {_CS i} wherec = 1/4/1 + ¢ and
n s = tc.
Ar(Al) = |1 Acll% _Zl)\j|27 Throughout this paper, we denote the space spanned by the
j=1 columns of a matrix\/ by R(M), the null space byV (M), and

where),, j = 1,...,n, are the poles to be placed. As M11], wehe set of eigenvalues a¥/ by A(M). The MATLAB expression,
writt T = D + N, where D and N are the block diagonal part which specifies the submatrix with the colon notation, w#l bsed

and the strictly upper quasi-triangular partI),ngespectively. Let the "]\‘?in ne(;esé)sary, th:ttiﬁf(k :dLSI: t) refet:rs tov\t/hedsubrtnja)zrix of
. . en s mm] . ormed by rowsk to [ and columnss to t. We denoteX =
2 x 2 diagonal blocks inD be of the form[i%lmw Re) th v @2 - an]andX; = [o1 - ;). Wiite the strictly

—

Im(X\) #0,0# d € R. ThenAr(A.) can be reformulated as upper quasi-triangular pai¥ of TasN = [t % -+ ). For
1 ) simplicity, we also denot&’(1: j,1: j) by 7.
Ap(Ac) = \j INIZ+ > (- 5)2Im(A), ®)
im0 I1l. REFINED SCHUR METHOD FOR REPEATED POLES
where the summation is over all x 2 diagonal blocks inD. The method in[[1f] can dispose both simple and repeated .poles

Hence, if some poles to be assigned are non-real, it is not ofowever, the repeated eigenvalues of the computed compared
the corresponding part itV that contributes taAr(A.), but also \ith the entries ing, might be inaccurate. So this paper is specifically
that in D. Our method displayed in the next section is designegkdicated to repeated poles, both real and non-real. Adeubiout

to solve theSFRPA by finding some appropriaté&’ and 7', which j the Introduction part, a semi-simple eigenvalue is lesssitive to
satisfy [2), such that the departure from normalityof, specified in - perturbations than a defective one. Thus when solvingSRBPA,

(. is minimized. Acquiring an optimal solution tain Ar(Ac) IS we would keep the geometric multiplicities of repeated polas
rather difficult. So instead of obtaining a global optimalusion, we  gjgenvalues ofd., as large as possible, which is actualized by setting
prefer to get a suboptimal one with lower computational £o$he special structure in the upper quasi-triangular matriin ().
matricesX andT satisfying [2) are computed column by column via Analogously to [[6], [11], we computeX and T' satisfying [2)
solving a series of optimization problems. Specificallyresponding cojumn by column, minimizing corresponding functions @ssted

to a real pole); (the j-th diagonal element inD), the objective \ith A2 (A.) for real poles or complex conjugate poles. We start with
function to be minimized, associated withi;:(Ac), is [[v;][3, where  he first pole,, which is assumed to be repeated with multiplicity
#; = [v] 0] with v; € RI"! is the j-th column of N; while 4, (> 1), that is, it appears exactly; times in £.

corresponding to a pair of complex conjugate polesA;+1 = A,

s 1 A. Assigning repeated poles

2 2 2 2
[villz + llos+allz +1m(X;)7(8 = )7, “) The strategies vary depending on whetheris real or non-real.

N T . _ 0 < . 1) \; is real: As an eigenvalue ofA. = A + BF, denote its
wheredj s = [vjyx 0] With vy € RR 7= ﬁlyn?re the(s + geometric multiplicity byg:. It then follows thatg, < m ([14]).
k)-th columns of N for k£ = 0,1, and JIe(rnA(qu Re((;vj)) is the If a1 < m, the methods in[]14],[128] can be applied, assigning
corresponding? x 2 diagonal block inD: 0 / / A1 as a se_mi-s_imple eigenyalue. Otherwise, thgdzlis> m, those
The following two lemmas are needed when assigning compl8¢ethods will fail. In our refined Schur method,df < m, A, can
conjugate poles. also be placed as a semi-simple eigenvaluelpfwith g1 = a; if

a1 > m, A1 can still be assigned witth = m. Notice that geometric



multiplicity issues are not involved in those Schur-typetimoels in

(6], [L1].
Comparing the first;; columns of [2) brings
Qs AXay = Q3 Xay Tuy, (6)

where Xo, = X(;,1 : a1) satisfying X, Xo, = I., and Ty, =

T(1:a1,1:a1) with X(Ta,) = {\1,...,\1} are to be determined.
——

More specifically, to maximize the getlnmetric multiplicigy, we take

T,, in the special form of
ni n2 s ny
D11 ()\1) * e * ni
DQQ()\l) e * no
T, = _ (1)
Dy (M) ny

with Dkk()\l) = Alfnk, k=1,....,0,n1+---+n = ai. The
integersny, k = 1,...,1, are also to be specified. Once su&h,
and T,, satisfying [8) are found, the geometric multiplicity af
will be no less thammax{n; : k& = 1,...,l}. So we shall make

theseny, as large as possible. In the following, we show how to s

theseni,...,n; and obtain the corresponding columnsXf, and
T,, meanwhile.

SinceD11(A1) = A1ln,, by equalling the first; columns in both
sides of the equation ifi}(6) and noticing the orthonormaliregnents
on columns ofX, it shows that the firsk; columns of X should
satisfy

M, [‘Tl xnl] =0,
8
[z1 Tny] | 11 Ty | = Iny, ®
where
My = Qs (A= MI). ©)

Here, M is of full row rank by the controllability of the matrix perci
(A, B), which implies thatdim(N/(M1)) = m. Let the columns of
S € R™™ be an orthonormal basis 8f (11). We then display how
to determinen; and find corresponding,,, = [z1 Tn,] by
distinguishing two different situations.

a) Situation | —a; < m : In this situation, we set
ni = ai. Then by selectingzi,zz,...,zq, € R(S) with
[:cl To xal]T [:cl To :cal} = I,,, we have al-

ready assigned al\; and then proceed to the next pole as described

in the next subsection — Subsection Tll-B. It is worthwhitegdoint
out that with such choice, the geometric multiplicify of A1 is just
a1, that is, \; is a semi-simple eigenvalue of..

b) Situation Il —a; > m :
choosem orthonormal vectors from\V'(M1). So we sei; = m, and

then chooseX,,, = SZ with Z € R™*™ being some orthogonal

matrix.

In this situation, we can at most

From [8) and[{l7), théq + 1)-th, ..., (¢ + n&)-th columns of X

and N must satisfy
-
[Tqrs  Vars] € N(Mya), (10)

where ¥ ;, the (g + j)-th column of N, is g1, = [v]y; O}T
with vg+; € R? for 5 =1,...,ng, and

T T
A—-MI,) —-Q2X
quq — [QZ( X;F 1 ) Q(Z) q (11)
Suppose that the columns of
S5 : (1) nxm  a(2) xm
Sgq = S‘gg with S, , € R , Siq ERIT™, (12)
9,9

form an orthonormal basis 0¥ (Mg,q), wheredim(R(Sq,q)) = m
is guaranteed by Theoref 1 in Subsectlon III-C. L&t

! 0
Uq,qzq,qVqTq = Uq,q|: 8’(1 0
composition (SVD) ofS{!) with rank(5{)) = =, and ¥},
diag(o1,q, -+ ,0r4.4)s O1,g = -+ 2 0ryq > 0. Keep in mind
that a1 — ¢ is the number of the pole\; to be assigned, andg,

] V,', be the Singular Value De-

(ia% the rank ofsé}g, which is the maximum number of orthonormal

vectorsx,; satisfying [I0). We then need to distinguish whether
a1 — q < rq Or not these two cases to discuss how to determine
and get thosecqyj,vq+5,7 = 1,...,n%. Note that ifry = 0, there
does not exist nonzero vectar,; satisfying [20), and hence the
method will terminate. Fortunately, Theordrh 1 in Subsediid-Cl
can assure that, is always nonzero.

o Case i: (a1 — q) < rq. Inthis case, we can sefy = a1 — ¢,
that is, we can assign the remainiig together. From[(10), to
minimize the departure from normality if](3), it is natural t
solve the following optimization problem

. 2
min || [vg+1 vgi2 Vay] Il (13a)
My,q Torl  Terz v Tar| 0,
S.t. Vg+1  VUg+2 Va,
T
[€q+1 Tar]  [Tatr Tay ] = lay—q,
(13b)
for xg4+1,...,%a; anduvg4a,. .., vq,. By the definition ofS, 4

we know that there existg € R™*(41=9 peing of full column
rank, such that

[Tgr1 Tgto Tay| = 5(5,1327
@ (14)
[vq+l Vq+2 Ua1] = Sq,qZ‘
Hence, the optimization problei {13) is equivalent to
min tr(Z" ST 82 7). (15)
278y S04 7=Tay—q

Let Z = V,,Z with Z = [2]  2]]", 21 € Riax(@1-0),
Using 50T 8% 4+ 52T s — 1., then the problem({35) is
q,9 q,9 q,9 q,q9 ms

Now assume that we have already obtaifegd= [z1 4] equivalent to
andT, =T(1:q,1:q) with ,min tr(Z' 2). (16)
7T s1 7
m na . N1 ~ 2y By qZ1=1ay —q
Di1(\1) * * n1 Write Z, = ¥, ,Z1, then [I8) equals to
Daa(M1) -+ * n2 ) - -
T, = _ _ _ ’ _min (2] (Sg,4) 2, (17)
" : : Zy Z1=Iay —q
Di—1,k-1(M1) Nk—1 with Z, = 0. Obviously, the minimum valug %! * ﬁ of
wherek > 1, Y"1 n; = ¢, n1 = m and Dy; (A1) = Milny, j = (@7) is obtained whe; = [e; €a;—q|, SUggesting that
1,...,k—1. We will show how to determine, the corresponding (@I5) achieves its minimum when
columns of X and the corresponding strictly block upper triangular 1

partT(1:q,q+1:q+nk)inT.

. 1
€ar—q) dlaug(a1 pE

7 = quq [61

, .
Oay—q,q



Once sucl? is obtainedxg+1,...,%q, andvg4i,...,vq, €an 2) A1 is non-real: Let A1 = a1 + i81, whereas, 31 € R and
be computed by[(14). We may then updafe and T, as p1 # 0. As the eigenvalue ofl., its algebraic multiplicity is denoted
Xy = [Xg Zqp1 Tgps o Tay] RV, by a1. Then\; = a1 —i3; is also an eigenvalue of. with algebraic

multiplicity a;. We are to assign alk; complex conjugate pairs
Vgr1 Vgiz 0 Vay c R {A1, \1} .in turn, where the complex conjugate poles and \; are
) placed simultaneously.
Comparing the firsRa; columns of [2) and recalling thaX is
orthogonal, one can show th#b,, and X»,, must satisfy

Q3 AXoay — Q3 Xoa,Toa, =0, X9, Xoa, = I2a,, (20)

T,

Ty
‘ )‘11111*11
(18)

and proceed with the next pole.
» Case ii: (a1 —q) > rq. In this case, we can choose at most

rq orthonormalaz,;, j > 1. So we sety, = r, and let with A(T2e,) = {A1,...,A1,A1,...,A1}. There is a classical
— ———
[Zar1 - @arrg] = Uaa(:,1:mg), strategy in [11] to geﬂ(izla1 and XZ;I satisfying [2D). Here, the
[Vg41 -+ Vgrry] =SS Vaa(:,1: 7*11)(2;(1)71 substantial refinement on the strategylin [11] is taking thengetric
It can be easily verified that SUCR,,, vsss § = 1.+ .7a) multiplicities of \y arid A1 inio account. That is, we would choose
satisfy [I0). It is worthwhile to point out that in this casew Ta, in a more special form:
do not need to solve an optimization problem similar [fal (13) 2n1 2n2 2ny
in Case i because the value of the objective function now is a Di1(A1) * * 2n,
constant when the constraints are satisfied. We can therteupda Das(A1) - * 2n2
X, andT, as Toa, = . : o
Xgny, = Xgpry Dy (A1) 2ny
=[Xy @gt1 Tgr2 or Tgpn,] € RV, (21)
where Dy (A1) = diag(D(01,6(A1)), - - ., D(0ny,,x(A1))) With
Tq+;k = Totr, (19) D(6p.k(A1))
@ | Yart Tt Vakrg Re(\1) 8y (A1)IM(A1)
_ Rlatra)x(atrq) _ 1 P,
‘ )\1[Tq : —5p,k1(>\1) Im()‘l) Re()‘l) ’ 0 75 0 7k()\1) €R
In this case, some\; are still unassigned. We can then pursue (22)
a similar process either i€ase ior Case iiuntil all A\, are for p = 1,...,n, k = 1,...,l, and 3% _, nx = a1. With such
placed. special form ofTx,, , the geometric multiplicityy; of A; (and):), as
Eventually,T,, being of the form[{I7) would be acquired. And thisa repeated eigenvalue df., is no less thamax{n, : k=1,...,1}.
procedure is summarized in AlgoritHnh 1. Similarly to the case wher,; is real, we then tend to choose
_ — max{n, : k=1,...,1l} as large as possible while computifig.,
Algorithm 1 Assigning real\, and X,,, satisfying [20). However, the placing procedure for the
Input: case when\; is real can not be easily extended to this non-real case.
A,Q2, A1 € R anda; (the multiplicity of A\1). The reason is that for the repeated and non-real poles, dtiemy
Output: those columns inV that contribute toA»(A.), but also those,
OrthogonalX,, and upper triangula¥’,, . in the diagonal blockd)(d,.x(A\1)) in D, which may differ in each
1: Find S € R™*™, whose columns are an orthonormal basis df x 2 blocks of D. Let us take the firstn; columns of X and T’
N (M) defined in[(9). as an illustration. Assume that; is known (Indeedn: is also a
2. if a1 < m then parameter to be determined. We will discuss how torsetater.),
3 SetX,, =SZ with Z ¢ R™** satisfyingZ' Z = I,, and then to find the firs2n; columns of X and 7" simultaneously, we
To, = Mla,. need to solve the following optimization problem origirchttrom
4: else minimizing Ar(A.) defined in [(B):
5 SetX. (5,1:m)=8,To,(1:m,1:m) = Ailm, g =m; _ ) 1 )
6:  while ¢ < a1 dg 61,1<A1>Tl,?n1,1<xl>ﬂl((61'1()‘1) 5171(/\1)) T (23a)
7 Find S = Sl with §; € R™™ S, € RY*™, whose 1
2 , . + (Ony 1 (M) — —=)7)  (23b)
columns are an orthonormal basis&f(M, ,) in (); Ony.1(A1)
8: if (a1 —¢q) < rank(S:) then s.t. Qs (AX2n, — Xon, Di1(M1)) =0,  (23c)
9: Solve the optimization probleni (IL3); XzTanznl = Io,. (23d)
10: Update X, (:,1 : g¢) andT,, (1 : ¢, 1 : q) by (I8), set
q=ai. The above optimization problem is fairly difficult to solv@he
11: else associate optimization problems corresponding to otbegf (A1),
12: Update X, (:,1 : ¢) and Ty, (1 : ¢,1 : ¢) by (T3), set k > 1 are even more ticklish to solve. Be aware that in the case
q = q+ rank(S)). considered in the above part whan is real, thosey, 1 (A1) vanish,
13: end if and we only need to find the columns &f and T' satisfying the
14: end while two constraints. Hence, rather than acquiring the colunin¥ @and
15: end if T corresponding to eacty, (A1) straightway, we shall compute

those associated witl (6, x(A1)), p = 1,...,nk, k = 1,...,1,
alternately. That is, in each step, we only compute two mohenens



of X andT corresponding td(d,,x(A1)). Bear in mind that those  Now assume that the fir@lg (1 < ¢ < a1) columns ofX andT

ni,...,n; are also to be determined in the assigning process sutéve already been obtained with
thatmax{ny : k=1,...,1} is as large as possible.
We start with the first two columns ok and 7". Comparing the Qs AXog = Q3 XoyThy, Xqung = Iaq, (30)
first two columns of[(20), we have
. . ai S1.1(\)B we are to find the subsequefitq + 1)-th and(2¢ + 2)-th columns
Q2 Az 2] =Qz [11 2] ) o ; of X andT'. HereTy, is of the form similar as[{21):
1,1 1
(24)
T 2q
z1 @2 =0, [lz1]l2 = [lz2f2 = 1. (25) o, o ome o
Note that the corresponding strictly upper quasi-triaagyart in Dii(A1) - * * 2n1

T vanishes here, and the corresponding objective funciipmdgw _
becomess? (91.1(\1) — 5(577)*- Apparently, it achieves its mini-
mum value0 at 1,1 (A1) = 1. We then show how to find; and -
satisfying [2%) and(25) witld;,1 (A1) = 1. Similarly as in [11], it is

Di—1,5-1(M1) * M1
Dkk()\l) 2nk

equivalent to findrs andz2 such that (31)
Qs (A= ML) (21 +iz2) =0 (26) whereD11(A1),. .., Drr(A1) are block diagonal witl2 x 2 matrices

) _ . being of the form[(2R) as the diagonal blocks and+- - - +nx = q.
with (23) holding. Notice thatni,...,nr—1 have already been determined, whilg

It holds thatdim(N(Q; (A — A\il,))) = m since (A, B) is
controllable. Assume that the columns 6f € C™*"™ form an
orthonormal basis of\V(Qg (A — \i1,,)). Define S = Re(S),
S2 = Im(S). Then [286) implies that +iz2 = (S1+iS2)(y1 +iy2)
for somey.,y2 € R™, or equivalently

might still be updated when computing tf@y + 1)-th and(2q + 2)-
th columns ofX andT. More specifically, denote

Dll()\l) *

T, =

x1 = S1y1 — Soy2, a2 = S1y2 + Soys. 27) Dy k' (A1)

If we can choosgy; andys to satisfyz{ zo+z4 1 = 0 andxz{ z; —
x4 2 = 0, then the normalized; andz. will satisfy (28) and[(2B). with p = 2n1 + -+ + 2n,_1 and let Dy (A1) =diag(D(d1,x(A1)),

Direct calculations show that ... D(05,k(A1))), then the resulteds,+2 could be in the form of
T T T
Tyt rex = [y ys |Hilyl w2 (28) T, N Vagr1 Uzgqia
T, T T T T T T
T1 X1 — Ty T2 = [Zh yz]HZ [Zh yz] s
with Toar2 = D () 0 T(32)
_[SIS2+858 SIS -85S D(6;11.1(A
Hl — |:st1 B S;SZ _(S;—SQ n 5;51) , ; ; . Rp ( ]+1,k( 1))
2 1, U2q+2 )
Hy = { Si 81— 598  —(S{S:+ Sszl)] " "
2T (S8 + 87 8) ST S -8TS | or in the form of

Since S*S = I, it can be easily verified thaf S» = S, S; T
and S Sy + S Sy = I,. If ST S =0 and ST S, = L1,,, then 2 2q

T m 2 m Togt2 = » o U2g41,U2g42 € RTY
x{z2 = 0 and ||z1]]2 = ||x2|]2 for anyy1 € R™ andy. € R ‘ D(s o)
due to [28). In this case, we may arbitrarily choaseand y» with LE+H1AAL (33)
lyill2 = |ly2ll2 = 1, thenx; and z» computed by[(27) satisfy
[@5) and [2b) as required. I§; S2 # 0 or S{S1 # %I, then
rank(H1) > 1. Now by LemmdTl1, assume that

V2g+1  V2q+2

If Toqt2 is in the form of [32)n will be increased by, meaning
that n;, would be updated as; £ ny + 1; while if Tb,42 is in the
form of (33),ny is fixed andny. 1 is initially set to be 1. Taking the
0 —6} i geometric multiplicityg; of A1 (and ;) into account, we incline to
-0 0 ’ maken;, as large as possible, suggesting that we would ptEfgr.
in the form of [32) whenever possible.

H, = Udiag(®,-0)U", Hy=U {

whereU is orthogonal whosg-th columnu; and(m+ j)-th column

) —1I,, ) We now turn to show how to determine whether](32) is possible
Unmtj SANSTY um+; = I, uj, j = 1,...,m, and© = and how to find the2q + 1)-th and(2q + 2)-th columns ofX and
diag(61,02,...,0,m) with ; >0, j=1,...,m andf; > 0. Then 7 accordingly. Provided thal,+2 is in the form of [32), then by
with comparing thg2q+1)-th and(2¢+2)-th columns of[(2D) and noting
- that X is orthogonal, we have
i ] =U[p 10 - 0 —p 1 0 - 0],
(29) Qs (A [T2g41  Toagr2] — Xp [V2gr1  V2gi2]
whgreu = v/02/01, one can show that; andz, comqued by[(27) = [— (2941 $2q}+2_] -0D(5j+1,k()\1))) =0, (34)
satisfyz; z2 = 0 and ||z1]|2 = ||z2]]2. Thus the normalized:; and 2q [T2q+1 P242] =T,
T2, .. 21 £ 21/|x1]|2, T2 £ 22/||22||2, Are the vectors desired. (w2041 @2g12]  [w2011  T2g42] = L.

Overall, we can obtainX, = |21 2] and Tz = D(611(A\1)) =
Our goal now is to minimize[{4) subject td_{(34). By writing

a1 Bl . .
Do(\) = {_51 aJ in either case. i+1,6(A1) = 52 with 0 # 61 € R and 6> € R, it follows from



[17] that the restriction[{34) is equivalent to

Tag+1 + il2qt2| _
2q,p | ~ .~ =0,
V2g+1 + 102q+2
~ ~ T r~ ~ . 2 2
[F2g+1  Z2q12] [F2g41  T2qi2] = diag(1/67,1/63),
= 7 =
Tog+1 = 018241, T2g+2 = 0282442,

V2g+1 = 01T2g+1, Vagt+2 = 02¥2q+2,
(35)

where

T (A—M\I,) —-QiX
Moy, =[O A~ (36)
q

Let the columns of

be an orthonormal basis 0¥/ (Mz,,,). We shall distinguish three
cases upordim(R(Sg?p)) to reveal the assigning process, i.e., to
COMPUteT24+1, T2g+2, V2g+1 andvagro such that[(W) is optimized.
« Case iii dim(R(S5)),)) > 2. Let S{, = UngpXogp Vi p
be the SVD ofsgfz)p with o1, o2 being the first two largest
singular values ofS5.), and let@i = Re(Uzgpe1), §1 =
IM(Uzgper). If 3151 = 0 and [|Z1]]2 = [|71]z = 2, we
take

Tagi1 = V281, Vagp1 = \/iRe(Séi?p‘/Zq,pel/o—l)7
Tagr2 = V201, vagr2 = V2AM(SS) Vag per for).

With such choice,[(34) is satisfied with 1 (A1) = 1, which
results in the third term in the functlon defined D (4) vaiigh
and the first two terms achlevmg%, a value that is a compa-
rable multiple (less thal) of its minimum (Please refer to [111]
for details.). Otherwise, that i g1 # 0 or ||F1l2 # ||71]/2,
the suboptimal technique for assigning complex conjugatesp
in [11] is applied. Specifically, denoté, = Re(Uzg,pe2), G2 =
Im(qu peg) and defineﬁbq,p = :il 5:2], ?Qq’p = [231 gz],

wy = S Vagpei/o1, we = 542 Vag,pe2/o2, then we set

2qp 2q,p

Tog+1 = [Xogp —Yagp] [ 72 G Cz}T7

T2g+2 = [172q,p X2q,p} [71 72 G CZ}Tv

V2g+1 = [REwy) Re(wz) ~IMwy) M) ] [v1 72 G Cz}T7
V2gt2 = [IM(wy) IM(wy) Rewy) Rew) [ [11 72 G sz ;

where[y1 72 G Cz]T € R* is to be chosen such that the
function defined in[{¥) is optimized in some sense. We refer
readers to[[11] for more details on this suboptimal techeiqu
Overall, the resulted®,+2 will be in the form of [32) in this
case.

. Case iv: dim(R(S5),)) = 1 and Re(u),Im(u) are
linearly independent Here v is the left singular vec-
tor of S 2” corresponding to its unique nonzero singular

value ;. In this case, suppose thﬁéé?p € R™", and
let Voq, € R™" be the right singular vectors matrix
of S5v) . Define Ni(Mzgp) = {[u” w']" : w =
S Vagp |2 m  m]', m2,...,n. € C}, then in
the sense of nonzero scalingyi (M2q,) is the unique subset
of N(qu‘?) satisfyingz € C", w € CP, z # 0 with
[z7 w'] €N(Mzgy). Write w = Re(u) + ilm(u) € C*,
w = Re(w) 4 ilm(w) € CP, then we have that Re), Im(u),

Re(w) and Im(w) satisfy
Qs (A[Re(u) Im(u)] — X, [Re(w) Im(w)]
— [Re(w)  Im(u)] Do(A1)) =0,
X3, [Re(u)  Im(u)] =0,

14:)'1

and ||w|3 = + |2+ e
Since Réu) and Im(w) are linearly independent, we shall
pursue the Jacobi orthogonal transformation in Lerima Ih2 o

them, i.e.,[Z2g11  T2q12] = [Re(u) Im(u)] {_cs i

set w2441, T2q+2 be the normalized vectors afag+1, Z2g+2,
respectively. Accordinglypag+1,v24+2 are defined as

}, and

[U2q+1 ’U2q+2]

= [Re(w) Im(w)] {c s] [m L } (37)

—S C

It is worthwhile to stress again that now we have,, s =
[V3g+s O}T, vagrs € RP for s = 1,2. Be aware thatw
is unknown here since those valugs, ...,n, € C have not
been specified. Notice thab(d; .1 x(\1)) has already been

determined withd; 1,5 (A1) = 1224112 so we are to choose
Z2g+21l2"

appropriatens, . .., 7, to minimize ||vag+1]3 + ||v2gt2]|3, the
first two terms of the function defined iQl(4).

Define S2q WVoqp  =[wi W] with w, e CP,
Yi f[Re(W) —Im(W)], Y2 =[Im(W) ReW)], and
Re(y) +ilm(y) = y = [n2 - nT}T, then with some

simple computations, we have
o213 + llv2g+213
=[Re(y)" Im(y)'] H [Re(y)" Im(y)"]
T[Rey)T )]+,

)

where

= 3 (CYVl — SYQ)T(Cyl — SYQ)
Z2q+1113

[ (sY1 + cYa) T (sY1 + cYa),
a+2112

2 ? s2
:U_1< _ +— 2>Y1TRe(w1)

[Z2q+1013 [ E2q+2]13

2 2
L2 ¢ Yy Im(uws)
g1 2

[Z2q+1013 [ E2q+2]13

2cs 1 1 T T
+ — = — == Y, Re(wq) + Y7, Im(ws s
o <nxzq+2|\% ||x2q+1n3>(2 olwn) + ¥ Im(wn)

2 2 R 2
= (s + ety ) IRl

[Z24+1113 1|1 Z2q+2]13 i

2 2 2
5 c tm(w)2
+ ( = 5+ = 2> 2

[Z2q+1113 ~ [[Z2q+2[13 o;
2cs 1 1 T
+ 23 (ol ~ Ty Rt imon)
Apparently, H is symmetric semipositive definite. We can fur-
ther show thatH is nonsingular, that is, it is positive definite.
Indeed, assume thgtc R?"~2 satisfiesH f = 0, which is then
equivalent toY; f = Y2 f = 0 by the definition ofH. Using the
definitions of Y7, Y> and W, we have

Y'Y+ Y5 Yo = I, (39)

So it must hold thatf = 0, which implies thatH is symmetric
positive definite. Consequently, the minimizer Bf1(38) can b

given by

[Re(y)” Im(y)"]" = —%H’lg-



Accordingly, v2g+1 andvs, 2 can be computed by (B7). In all,

The procedure assigning\i, \1} is summarized in the following

in this case, the size dDy; (A1) in Ty, is increased by, and  Algorithm 2.

T>q+2 being of the form of[(3R) will be obtained.

« Case Vv: dim(R(SSY

2q,p

)) = 1 and Re(u),Im(u) are linearly ~Algorithm 2 Assigning complex conjugaté:, A }

dependent, ordim(R(S5,),)) = 0.
find xogt1, Togr2 and vagi1,v2q+2 € RP satisfying [(3%),

In this case, we cannot Input:

A, Q2, A1 € C with Im(A1) # 0 anda: (the multiplicity of A1).

meaning that7T,+2 cannot be chosen in the form df_{32).Output:

Instead, we seflb,+2 in the form of [33) to continue the

assigning process, which leads to: 1

Q3 (A [z2g41

Tag+2] — Xog [V2g+1  V2g12]
- [x2q+1

T2g12) D(61,k41(M1))) =0,

40 3:

Xog [w2g+1 x2qT+2} =0, (40)
[$2q+1 562q+2] [$2q+1 562q+2} = 127 4
With vagi1,v2g+2 € R*I. Denotedy pi1 (A1) = § with 0 #

51 € R andd, € R, then [4D) is equivalent to some constraints
similar to those in[(35), where the essential differenceeisr
that the parametar in (39) is replaced b2q. More specifically,

6
7
the matrixMa, , in B8) now turns toMs, o4, where the(1,2) &
9

block is —Q4 X2, presently, instead ofQJ X,. Bear in mind
that now we haver,+1 € R* andvz,12 € R?, indicating
that the2 x 2 block T'(2qg + 1 : 2¢ +2,2q + 1 : 2¢ + 2) locates
in the (k + 1)-th diagonal blockDy, 1 k41 (A1) Of T4, . Now,
we are to computersg+1, Tog+2, Vag+1 and vegto satisfying
some nonlinear constraints such that the correspondiregig
function specified ag14) is optimized.

The forthcoming Theorerl 2 in Subsection TlI-C demonstratels(),

that dim(A/(Mzq,2,)) = m and there existdz” w']' €
N (Mag,24) with z € R™, w € R?*? such thatz # 0 and Réz)

and Im(z) are linearly independent, meaning that we can alwaylsz_

find z2q11, Tag42, V2g+1 andvegto to satisfy [40).

Suppose that the columns 8%,,2 = [Séé);q

(1) (2) 2 .
Soq0q € C™, Sy, € C*%™ form an orthonormal basis

Of N'(Mag,2q) and 16tS5.),, = Usg 252,24 Vs 24 be the SVD 14
with the singular values in decreasing order. Different™

of S50,
placing strategies based @ank(séé?zq) will be employed to
acquire the(2¢ + 1)-th and(2¢ + 2)-th columns ofX andT'.
Notice that Theorerhl2 ensures thahk(Sézzq) > 1.

If rank(S5,),,) = 1, thenSS.,. has only one nonzero singular
valueo; with u = Usq,24e1 being its corresponding left singular
vector. Theorerfl2 assures that(Reand Im(u) must be linearly
independent. Then the assigning procedure is similar dasrtha
Case iv While rank(Séfl?Qq) > 1, the assigning procedure is

similar as that inCase iii.

2:

11:

(Q)T T .
52q72q] with 13-

16:
17:

OrthogonalX2,, and upper quasi-triangul&fzq, .

Find S = S1 + 4S2, whose columns form an orthonormal basis
of N(Q3 (A= \1n)).

if S/ S2=0andS| S1 = 11 then

Sety:,y2 € R™ be any vectors with|yi||2 = [|yz2/l2 = 1;
computery, z2 by (24) and sefls = Do(\1).

. else
Computer, z2 by (22) withy:,y2 € R™ defined as in[(29);

normalizex1, z2 and setls = Do(\1).

cend if
: Setj =2,k =0.

while j < 2a, do

Find o

S n
S gk
S],k |:Sj(i):| k’ )
whose cqumnTs form an orthonOLmaI basis of the null space
(@ (A= MIn) —Q2 Xi

of S§%) = U135 6V}
if rank(S;}zg) > 2 then

Compute the(j + 1)-th and (5 + 2)-th columns of Xz,

andT,, as inCase iii setj = j + 2.
else ifrank(S!)) = 1 and REUj re1) and ImUj xe1) are
linearly independenthen

Compute the(j + 1)-th and (5 + 2)-th columns of X2,

andTy,, asinCase iy setj = j + 2.

else
(1)
Sjq = S”(z”) "
S J

Find
whose cqumrTls form an orthonoLmaI basis of the null space
Qx(A—MI) —Q2X;

of Mj’j = 2 ( XJT 1 ) 8 J
1)-th and(j 4 2)-th columns ofX2,, and7Ts,, as inCase
v, setk=jandj =j + 2.

end if
end while

; compute the SVD

] ; compute thej +

Accordingly, in either situation, we can compute
T2g+1, L2q+2, V2g+1, V2q+2 with T2q+2 in the form of
(33). Moreover, in this casey, is fixed, andny. 1 is initially
set to be 1.

The above placing process can be proceeded with ungihall\; }

have been assigned. From the assigning process, we canasat trlready obtainedX., = [21 T2 € R
ro X ro leading principal submatrif’., of T" satisfying

Toq = D11(M\1) in @), Mag,, defined in [(3B) would be

B. Assigning repeated polesi+1 (j > 1)
Suppose that the poles, . .., A\; have been assigned. Here the set
{A1,...,\;} is closed under complex conjugate. That is, we have

z,,] € R™" and the

M: [Q;—(A — )\1In)] Q2 (AXrg = Xy Try) =0, X;I;Xm = Iy,

2q,0 — ) .

! Xag wherero = Y7 _, ar With a1,...,a; being the multiplicities of
whererank(Mzq,0) < (n—m)+2q. Thus provided thag < [ |—1, At,---,A;, respectively, and

we havedim(N (Mzq,0)) > 2, which will lead the resulte2q+-2) x ATrg) = I, A, o Mgy A C 2L

(2q +2) leading principal submatriffs,12 of T" in the form of [32), ’ — ——

ay a;

i.e., Tag+2 = diag(T2q, D(d4+1,1(A1))), suggesting that the size of
the first diagonal block iff2,, is increased bg. Consequently, in the Then we are to assigh;; with multiplicity a;+.. Here we assume
case ofa; < | 2], bothA; andA; can be placed witly; = a1, that ;41 > 1. Similarly, we will again distinguish into two different

2
is, they are assigned as semi-simple eigenvalued.of A + BF. cases when\;: is real or non-real.



1) A\j4+1 is real: To make the geometric multiplicity ok;;, as
large as possible, we také(ro+1: 7o + aj+1,70 + 1 : 70 + ajy1),
the block diagonal part ifT" corresponding to\;+1, in the special
form of

T(ro+1:7r0o+ ajt1,70+1:70 4+ ajr1)

ni1 n2 ny
D11(Ajt1) * n
— Das(Ajt1) n2
Dy (Nj+1) n
(41)
Whel’eDkk()\j+1) = )\j+1]nk, k=1,...,1, andzzzl Nk = Aj+1-
With this form, the geometric multiplicity of\; 1 will be no less
thanmax{n, : k = 1,...,1}. Theoretically, ifn1 = aj+1, A\j+1

achieves its maximum geometric multiplicity and serves a®mi-
simple eigenvalue ofi., which is the most desirable. However;
can not be chosen to be equaldp;; in some cases.

The assigning process of obtaining the columnsXofand T
corresponding to the first diagonal blodRi:(A\;+1) in @) is as
below. By noting the form of"(ro+1 : ro+aj4+1,70+1 : ro+aj+1)
in (@), then comparing the +1)-th to the(ro+n1)-th columns of
(@) shows that the corresponding columnsX6fand 7" must satisfy
AN v:ﬁkf € N (M) for 1 < k < ny, where
_ {Q;(A - )‘j+11n) —Q;Xr0:|
- T 0 ’

Mg g (42)

X

70

and vr 4k = [0, 4k O}T, Vro+x € R™ for 1 < k < ny. Let the

columns of

S _ 57("3?7"0
70,70 T 2
Sk

be an orthonormal basis 0¥ (M., ). Write rr, = rank(Sﬁ(l)),ro),

which indicates that we can select at mos} linearly independent

vectors fromR(Sﬁ[l)?m). That is,n; cannot exceed,,. Similarly as

n

(43)

To

the previous subsection — Subsec{ion TltA1, must be nonzero to

assure that the assigning procedure would not interrups. rélated

results are summarized in Theordh 1 in SubsediionllI-C.he t

following, two different cases will be disposed separately
e Caseiiajt1 < rp. Inthiscase, we set; = ajy1. With this
choice, \j+1 will act as a semi-simple eigenvalue df.. Then
to get a small departure from normality af., it is natural to
consider the following optimization problem:

. 2
min ” [vT'oJrl Urg+2 v7'0+a]‘+1} HF (44&)
Mr'o»’r“o Trott $r0+aj+1 - 07
Urg+1 Urg+aji1
S.t. (44b)
T
[:CT'0+1 x7'0+aj+1:|
[:CT'0+1 m?“o+flj+1] = Iflj+1‘

Apparently, it can be solved by the same method that sd\@&s (1

Once the solution is obtained,, and7;., will be updated as

XTo+aj+1
= [XTO Tro+1 $T0+aj+1] € Rnx<r0+aj+l)7
Tf'o+a]‘+1
v, Urg+1 Urg4a;t1 (rota; _
_ c R("0 ¢1j+1)><(T0+%+1)7
‘ Aj+ilayyy

(45)

where Tyy+a,,, IS the (ro + aj+1) X (ro + a;+1) leading
principal submatrix of7".

o Case ii: ajy1 > 7r,. In this case, the maximum possible
value ofn, is r,,, and we then set; = r,,. Similarly to Case
i in SubsectiofTIEAL, €15\, = Urg.ro Zro.ro Vi o bE the
SVD of Sﬁ.(l)),r.o with o1, . - ., 0, o DEING its singular values,
then we take

[mm+l $T0+7"m} =Ury,ro [61 e?"m} )
[Um+1 vr'o+m0}
_g® (Lt 1
*Sr'o,f'o V"OJ‘O [61 67'7‘0} dlag(m,m [N Trrg o )

and updateX,, and T, as

Xrgtny = Xrgtrr,

X
= [XTO Tro+1 xro+7‘ro] eR" (T0+”0)7
Tro4ny, = ro+Trg
TTO Urg+1 Urg+rrq
_ c Rro+rro) X (ro+rrg)
‘ Aj+1lr,,

(46)

Hence, ifa;+1 < rry, all \j4+1 have been assigned, and we can
continue with\;12; while in the case ofij+1 > r,,, we still need to
perform a similar procedure &ase iandCase iiuntil all \;;, are
assigned. Ultimately, we would acquire th® +a;+1) X (ro+a;+1)
leading principal submatrix of’ being of the form

T7‘0+aj+1
T * *
Ajtilng oo *

c R(T0+aj+1)><(7‘0+aj+1)7

Njt1ln,

where Z;zlnk = aj4+1. Furthermore, the geometric multiplicity
gji+1 Of N\jy1 satisfiesmax{ni : k=1,...,1} < gj+1 < m. We
synthesize the assigning processigf.; in Algorithm[3.

2) )\j+1 is non-real: Let )\j+1 = aj+1—|—i/3j+1 with Qj41, 5j+1 S
R andg;+1 # 0. In this part, we shall sketch the process of assigning
all complex conjugate pair§\;i1,\;+1}. Denote the algebraic
multiplicity and geometric multiplicity of\;+1 (and X\j11) by a;+1
and g;11, respectively. To make the geometric multiplicigy+1 as
large as possible, similarly &@5.,, in Subsectior 1II-A2, we take
T(ro+1:7r0+2aj41,70 + 1 : 70+ 2a;41) in the special form of

T(ro+1:ro+2aj41,70 + 1 : 70 + 2a;41)

2n1 277,2 e QTLl
Dll()\j+1) * e * 2n1
— Daa(Aj1) -+ * ny
Du(Aj+1) 2n

(47)

where Dkk()\j+1) = diag(D((st()\jJﬂ)),...,D((Snk,k()\jJrl)))
with

D(8p,k(Nj+1))

Re(Aj+1)
—mlm()\jﬂ)

Sp ke (Aj+1)IM(Aj+1) (48)

Re(Aj+1) ’



Algorithm 3 Assigning real\; 11 Im(u) are linearly independent. We then apply the Jacobi orthaigon
Input; transformation in Lemm@Tll2 to orthogonalize (R¢ and Im(«), and
A, Q2, Xy, Trg, Aj+1 € R anda;41 (the multiplicity of \;11). then normalize the resulted vectorsiag.+1 andx,,+2. Furthermore,
Output: Uro+1 and vy, 4+2 Will be obtained by minimizing some function
OrthogonalX+4,,, and upper quasi-trianguldf,,a,. , - defined similarly as that if_(38). The process resemblesith@ase
1: Setq = 0. iv in Subsectiof TII-A2, and we omit details here.
2: while ¢ < a;j1, do Now assume that we have obtaingg ( 1 < ¢ < a;+1) columns
3 Find of X and T corresponding to{\;+1,\;+1}, we then proceed to
G [51] n compute thero+2¢+1)-th and(ro+2¢+2)-th columns ofX andT,
Sa ro+q ’ which virtually are associated with the diagonal bl&kro+2g+1 :
whose columns form an orthonormal basis\6fMy 1 q.rg+q), "0+ 24+ 2,70 +2¢+1: 70 +2¢+2) in T'. The whole procedure
where is similar to what we do to get th€2q + 1)-th and (2q + 2)-th
- - columns ofX and7’ in Subsectiof TI-A2, and we just give a concise
Myosqrota = {Q2 (AX_T)‘J'“I”) —Q2 Xrotq : presentation.
ro+aq 0 Assume that
4: if (aj+1 —¢) <rank(S:) then Tro ¥ o *
5: Solve the optimization probleni_{(#4) withy replaced by D1 (s
(ro +q) anda;j+1 by (aj+1 — q); Trotoq = 1 (Ajp1) o * ,
6: Update X+, and T;,+, similarly as [45), sety = a;j;1. :
7. else o Dit(Ajt1)
8 ;ﬁj‘ijﬁfmﬂ and Ty similarly as [48), sey = q + where Dy (A\j11) € R *2 =1, . t, andT(ro+2¢ — 1 :
9 end if ro+2¢,m0 + 29 — 1 : 7o + 2¢q) = D(0s,:(Xj41)), indicating that

T(ro+2g—1:7r0+2¢7r0+2¢—1:1r90+ 2q) is thes-th 2 x 2
diagonal block inD(\;+1). Denotep = ro + 2n1 + -+ + 2n4—1.
Then likeTq+2 in Subsectiof II-AR T’ 424+2 could be in the form

046 Ns) ERp=1,....me k=1,.... L andY._ mp= O
aj+1. Apparently, as eigenvalues of., the geometric multiplicity Ty * Urg+2q+1  Urg+2q+2
gj+1 Of Aj11 (@nd Xj41) is no less thamax{ns : k=1,...,1}.
Similarly as that in Subsectidn Tl-A2, we shall place onenptex ~ Lro+2q+2 = Dt (Ajt1) 0 ,
conjugate paif\;+1,\j+1} at a time, obtaining two columns af
and X corresponding to th2x 2 matrix D(8, x(\;+1)) concurrently. D(0s+1,6(Aj+1))
Firstly, we dispose the issue that how to obtain the+ 1)-th and Urg+2q+1, Urg+2q+2 € R,
(ro+2)-th columns ofX andT'. Notice thatl'(ro+1 : ro+2,70+1 : (50)
7‘0-|—2) = D((51,1()\j+1)). Define&l,l()\jﬂ) = g—f with 0 ;é 01 €R or
andd: € R, then it follows from [11] that

10: end while

Trot2q | Urot+2q+1  Urg+2q+2

1 - T _
—Trgd+1 T 5= Trgt2 ro+2q+2 )
Moo |1 0 =0, (49) ‘ D(61,t+1(Aj+1))

Evr'(ykl +igvr0+2 o
T q
Urg+2¢+1; Urg+2q+2 € R7OT7

where the definition of\/,, ., is analogous to that specified i {42)
and 1k = [0, 41 O]T, Vro1+k € R for k=1, 2. And the in- And to get a largey; 11, we incline to7;, 12442 being of the form
trinsical changing onV/,., ., is that now\; 1 € C with Im(X\;41) # N (&0), which suggests that we need to regard the null spéce o
0. Accordingly, to get Propek, 41, Tro+2, Vrg+1, Urg+2, 01 andda,  Mro+2q,p, Where
we need to minimize the function defined [ (4) subject to the t _ (@A =Nnl) -QiX,
constraints[(49) andzro+1  Trgr2] [Trot1  Trot2] = L. Mg y2qp = X7 0 -
Theorem[2 in the forthcoming Subsectign_III-C shows th o
dim(N (M, .r)) = m and there existsz"  w']' € N(Myqy.r,)
with 0 # z € C", w € C™ and Ré¢z), Im#z) being linearly inde- R Sﬁf})ﬁw n
pendent. Defines,, ,, = [55(1)):0 Sﬁg);] with %0, € Cx™, rotEar T g p

ro+2q,p
Sﬁﬁ?m € C*™ whose columns form an orthonormal basis oform an orthonormal basis aN'(M,,+24). Then the assigning
N (M, ), the placing process will be realized through addressingocedure is similar as that in Subsection TItA2, which ec@n-
two distinct cases upamnk(Sﬁé),T.O?. For convenience, we denote theplished by distinguishing three different casemk(sﬁigq’p) > 2,
left and right singular vectors OST.(l)),,.O, corresponding to its largest mnk(s(l) ) = 1 and Réu) and Im(u) are linearly independent

_ ] ro+2q,p
singular values, by u andv, respectively. with u being the left singular vector c§'" corresponding to its

1 L . ro+2q,p
If rank(Sy)r,) > 2, a similar placing process as that@ase iiiin only nonzero singular value, and otherwise.

Subsectiof T-A2 will be implemented. That is, if Rg) " Im(u) = 0 Guaranteed by Theoreld 2 below, we can proceed with the above
and [[Re(u)[[2 = [Im(u)[l2 = ? we setz, i1 = v2Re(w), assigning procedure till all columns of and 7" corresponding to
Trote = V2IM(u), and vrg 11 = VZRES\D 0 v/01), vrgr2 =  {Aj11, \j41)} are acquired, which eventually yieldS(ro + 1 : 7o +
ﬁlm(sﬁﬁ?mv/m). Otherwise, the complex conjugate pair placin@a;4+1,70 + 1 : 70 + 2a;+1) being of the special form specified
strategy in[[111] would be applied. Wheank(sﬁgrg) =1, Theorem in (@7). And we recapitulate the assigning process of theatsal

@ in the following subsection would guarantee that(®eand complex poles{);i1,\;4+1} in Algorithm[A@.

(51)

aéuppose that the columns of



Algorithm 4 Assigning complex conjugaté); 1, \j+1}

Input:
A, Q2y Xr-o, Tro, )\j+1 € C with |m()\j+1) ;é 0 and Aj+1 (the
multiplicity of A;11).
Output:
Orthogonal X +24;,, and upper quasi-trianguld,,+2a;_ , -
1: Setl =k = ro.
2: while [ < T0 + 2aj+1 do

3. Find o
S n
Sl,k - l(’2k):| 5
|:Sl,k k
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Proof: The conclusiondim(N (M, 44,r4+4)) = m is just that
M+ q,7+q is Of full row rank. Assume that € R™~™ andv € R" "4
satisfy [u" v ] Myyqriq =0, thatis,

u' Q3 (A=) +v' X, =0, (52a)
u' Qg Xriq =0. (52b)

Post-multiplying X+, on both sides of (52a) gives
u'QJ (A= M) Xpig+v' =0. (53)

Substituting@s AX,+, = Qs X,1Trr, into (B3) leads tov =
0 and v' Qg (A — A\,,) = 0 by (BZB). Thusu = 0 since

whose columns form an orthonormal basis of the null space 0fi, B) is controllable. SaV; 4,4 is of full row rank, and hence

_ [@3 (A= Njsaln)
My = X7
of Sl(ylk) = Ul,kZl,lefk.
4 if rank(S{}) > 2 then
5: Compute thel+1)-th and(l+2)-th columns ofX, 24, ,
and Ty 24,,, as inCase iiiin Subsectiof TI-AP; set =
[+2;
6: else if rank(Sl(’lk)) = 1 and ReU;re1), Im(U;rer) are
linearly independenthen

(L
_Qé X’“]; compute the SVD

7 Compute thegl+-1)-th and(l+2)-th columns ofX .+ 24, ,
andTy+24,,, as inCase ivin Subsectiof I-AD; set =
142
8. else
9: Find o
S
Sz,l - |: l(’Ql):| ln )
Sl,l
whose columns fo;m an orthonormal pasis of the

Qx (A= Xjil,) —Q2X
X, 0

the (I + 1)-th and (I + 2)-th columns of X, 12.,,, and

Tro+2a;., @sinCase vin Subsectiof II=A2; sek = [ and

space ofM;; = "' compute

l=1+2.
10:  end if
11: end while

C. Theoretical support

While assigning repeated real poles, the assigning proeede-
scribed in Subsectiors TI-A1 ard 1[I-B1 can be carried orydh

the ranks ofS{') in (I2) andS(.). in @3) are nonzero, which is [="

guaranteed by the following theorem.

dim(N (M +q,r4+4)) = m.

Now we are to proves; # 0. It holds obviously if(r + q) < m.
We now consider the case whén+ ¢) > m. Assume thaiS; = 0,
thenrank(S2) = m and Q3 X,4,S2 = 0. Hence there must exist a
nonsingular matrix¥ € R™*™ such that

X, 1452 = BW. (54)

Since Qs AX, 14 = Q3 XyyqTriq With T, being the(r + ¢) x
(r+¢) leading principal submatrix df’, so there must exist a matrix
K e R™*("+9) suych that

AX,ig= XryTriq+ BE. (55)

Post-multiplying S> on both sides of[{35) and substituting(54)
into it give ABW = X, ,Tr14S2 + BKS>. Noticing thatW is
nonsingular, so

AB = X,y Ty gS2W ™ 4 Xy 0 SoW T K SoW 1

Denote G1 = Ty ygSoW ! + SoW 'K S, W1, then it can be
simply verified by induction thatd*B = X,.,Gr with Gx =
Tr4qGr—1 + SoW 'K Gr_1. And this eventually leads to

null

[B AB A"'B] = X, 4qL
for some L € RFOxmn - which  implies  that
rank([B AB A"'B]) < (r+q) < n, contradicting with
the controllability of (A, B). HenceS; # 0. [ |

While assigning non-real repeated poles, continuing tsgasg
process is based on the facts that the matdix;, appearing in Step
15 in Algorithm[2, satisfies thatim (N (M, ;)) = m and there exists
wT]T € N(M;,;) with z € R™, w € R7, such that: # 0 and
Re(z) and Im(z) are linearly independent. This also applies to Step
9 in Algorithm[4. The following Theorem then ensures thatsthe

Theorem 1. Assume thatA, B) is controllable. Suppose that the processes can be continued.

poles Ai,...,\; € £, with multiplicities a1, ..., a;, respectively,

have been assigned. Let, . .., z, be the corresponding columns of Theorem 2. Assume that (A,B) is controllable. Let
X obtained from the assigning process in former subsectiohgre {A1:---;A;} C £ be a self-conjugate subset with, . .., a; being
r = 3 _ aj Assume thath € R is distinct from Ay, ..., \;, the multiplicities of \1,...,\;, respectively, and leti,...,z,

and has been assigneg times with the corresponding columnsPe the associate columns ok obtained from the assigning

Tr41,...,Triq (r+qg < n)in X being obtained. Denot&, ., =
[:cl :cr+q] and
Movr o [@A=A) QI Xy
r+q,r+q X:+q 0 .
Let the columns of
Si| n
S =
[52} R’

be an orthonormal basis oV (M, t4,r+4¢). Thendim(R(S)) = m
and S; # 0.

process in previous subsections, where= "7 | ax. Assume that
A=a+iB € C (8 #0) is some pole distinct from, ..., A;, and
Trg1y Trt2y -« Trg2g—1,Try2q (1 + 2¢ < n) are the columns of
X corresponding to complex conjugate pafis, A\}. Define

Q3 (A= Aln) —Q3 Xrizg

Mr+2q,r+2q = |: XT ) 0 s
r+2q

and let the columns of
o 51 n
5= |:52:| r 4 2q

be an orthonormal basis oV (M, +24,r+24), then we have
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1) dim(R(S)) =m;
(2) S1#0;
(3) there exist0 # » = Rez) +ilm(z) € C" andw € C"+*
with R€z) and Im(z) being linearly independent, such that
[" wT]T € R(S).
Proof: We can prove thél), (2) results by the method proving o ~
Theoren{]L, and we skip the proof process here. the counting time (the algebraic multiplicity) of (and \) in £. The
Regarding(3), if dim(%\f(Q;rXr.Hq)g < (m—1), then there exist Schur-multi algorithm below combines techniques designed for
two vectors [le wf] , [Z; w;] € R(S) with 0 # 2z € simple poles in[[11] and techniques for repeated poles & ghper.
C™, 0 # z, € C", and z1, 2 being linearly independent. Let Again, we denote the multiplicity ok; € £ by a;.

D. Algorithm

The framework of our algorithm referred to asc¢hur-multi”
is given in this subsection. We assume that repeated ress jpppear
together ing, while repeated complex conjugate poles appear in pairs,
that is, they appear &\, A}, ..., {\, A} in £ adjacently, where is
—_—

7w =@ tin) [ wl ]+ (Etim) [¢d wl]
&1,82,m,n2 € R, then we can always find suitablg, &2, 71, 12

Algorithm 5 Framework of our Schur-multi algorithm.

such that the real part and the imaginary part of the resultécput:

z are linearly independent. lim(N(Q3 X,424)) = (m — 1),
assume thatws, ..
of N(Q3 Xy424) and0 # z = (1 4+ i)y, y € R™, w € C"7%1

satisfy [T w']' € R(S) with |23 + |w|3 = 1. Obviously,

it holds thatQ; (A — al.)y + 8(Q3y = Q3 Xry2,REw) and

CQa (A —al,)y — BQRiy = Q3 X,12,im(w). Thus there exist
u,v € R™ such that

C(A—aln)y — By — Xry2qlm(w) = Bo.
It follows from (58) that
B+ ¢y + Xr2q(IM(w) — (Re(w))
=(Bu — B, (57a)
(14 ) (A= aln)y — Xri2q(¢IM(w) + Re(w))
—Bu+ (Bu. (57b)
SinceQs Xr 424 [wi wm-1] =0, hence
X'r+2q [wl wmfl} = BG (58)

for someG € R™ (™= with rank(G) = m — 1. And it follows

from Q3 AX, 124 = Q3 X, 24T+ 2, that
AXT+2q = Xr+2qTr+2q + BZ (59)

for someZ € R™* (729 Now define

w1 W ‘ Im(w) — (Re(w) ]
Y = )
I 0 ‘ B(1+¢?)
L =[G (u-v],
 [Tring 1 (CIm(w) +Re(w))}
L 0 «@ 7
E =|Z #(u—b—(v)] )

Noting (57&), [[57b),[(88) and (F9), then the following edpras
[Xr124 y]Y = BL,
AlXry2g Y] = [Xrr2g

hold, where L is nonsingular since[X,;2, y] is of full col-

umn rank. Then[{80) shows thatB = [X,y2, y]H:1 with

Hq MYL™' + YL 'EYL~'. Hence by induction, we will
get that A'"'B = [X,j2q y] Hip1, where Hy = MH, +

y} M + BE (60)

YL 'EH, with [ > 1. Eventually, (B AB A"'B] =
[Xoq2q y] [YL™' Hi H, 1], suggesting that
rank[B  AB A"'B]) <n.

This contradicts with the assumption tijat, B) is controllable. Thus
we have proved3). [ ]

A,Band £ = {\1,..., A\ }.

S Wm-1 € C"*t29 form an orthonormal basis Output:

The feedback matri¢.
1: Compute the QR decomposition dB

(@ Q] [RT 0] =QiR
2: if a1 =1 then

= Q[RrRT O}T —

3:  Compute the initial columns o and 7" by Schur-rob
[11]; setj =1 for \y e R andj = 2 for X\, € C.

4: else if \; € R then

5. ComputeX,, andT,, by Algorithm[d; setj = a;.

6: else

7:  ComputeXs,, andTs,, by Algorithm[Z; setj = 2a;.

8: end if

9: while 5 < n do

10:  if aj41 =1 then

11 Compute the corresponding columns o&f and T by
Schur-rob [11]; setj = j+1 for \;;1 € Randj = j+2
for \j41 € C.

12:  else if\j4+1 € R then

13: Compute Xjta,,, andTjia.;,, by Algorithm [3; setj =
J+ajti.

14: else

15: ComputeX 24, , andTj a4, , by Algorithm[4; setj =
J+2a541.

16: end if

17: end while
18: ComputeF by F = R™'Q{ (X T X, — A).

IV. NUMERICAL EXAMPLES

In this section, we illustrate the performance of our
Schur-multi method by comparing with the MATLAB functions
place [14], robpole [28] and theSchur—rob method [T11] on
some examples.

Similarly to [11], we define

max (log(|

D)

precs = A= A
to characterize the precision of the assigned poles, wﬁwg’ =
1,...,n, are the computed eigenvalues of the obtained closed-loop
system matrixA. = A + BF'. Actually, precs is the ceiling value

of the exponent of the maximum relative error)of (j = 1,...,n),
relative to the entries irt. Obviously, smallemprecs would imply
more accurately computed poles. Regarding the robustresiseo
closed-loop system, different measures are used in theseodse

for solving the SFRPA. We will compare three measures for all
methods. Specifically, assume that the spectral decongosind



the real Schur decomposition ef. = A + BF respectively are

A+ BF = XAX 1, A+BF=UTU",

where A is diagonal,T is upper quasi-triangular antl is orthog-
onal. Then the measures adopted diace and robpole are
closely related to the condition number of the eigenvectoggrix
X, ie. kp(X) = || X|#||X |, while Schur-rob and our

12

On these examples, our method is comparable withace
and robpole, but with much less time cost. Comparing with
Schur—-rob, Schur-multi does improve the relative accuracy
of the assigned poles when some poles to be assigned argectpea
and real.

The second test set consists&¥ random examples, which is to
demonstrate the performance of all methods when non-reabted

Schur-multi aim to minimize the departure from normality ofpoles are contained if. Here, we taken varying from 7 to 19
A, (denoted by“dep.”). We also display the Frobenius norm of thewith an increment o2, andm is set to be3, | % ],n — 1 for each

feedback matrixF' (denoted by“||F'||»”), which is also regarded

n. For fixed (n,m), the largest multiplicitya.. of all complex

as a measure of robustness in some literature. In additiom, {oles increases fro@to min{| 3 |, m}. All examples are generated

CPU time for all methods is also presented. Whesbpole is

as follows. First, we randomly generate the placed pdles=

applied, the maximum number of sweep is set to be the defafitandn(l,7 — 2amaz), A X ones(1, amaz), A X ones(1, Gmaz)}
value5 for all examples. All calculations are carried out by rumninWith A = randn + i x randn, and three matricey” € R™*",

MATLAB R2012a, with machine epsiloa ~ 2.2 x 1076, on an
Intel®Core™i3, dual core, 2.27 GHz machine, with00 GB RAM.
The first illustrative set includes CARE examples, 2.9 #1[1]

B € R™™ F e R™™ using the MATLAB function randn.
Compute the QR decomposition &f asY = Qy Ry, and we
reset the diagonal and subdiagonal entriesRsf such that it is

and DARE examplel.12 [2], in which some poles are repeated and/iPper quasi-triangular with its eigenvalues being those.inrhen

real. Additional, in the following TABLE]l and TABLE]I, we Wi
usea(k) to representy x 10* for space saving.

set A = QyRyQy — BF. Thereafter, the algorithmglace,
robpole, Schur-rob and Schur-multi are applied on all
examples withA, B and £ taken as the input.

Example IV.1. The three examples in this test set come from the Fig. [@ to Fig.[I0 exhibit the numerical results dep., || F||r,

SLICOT CARE/DARE benchmark collectioris|[1[,I[2]. The nuricat
results on precision and robustness for these four algositlare
exhibited in TABLE[. Concerning the CARE examptz9 #1,
compared withSchur—rob, our Schur-multi does not make

andxr(X), precs and the CPU time ratio fon = 19, respectively,
where thez-axis and they-axis own the some meanings as those in
the first test set. Each figure includes three subfigures,enther first
one displays the results fon = 3, the second forn = 9 and the

improvement on‘precs”. The reason might be that some poles argjrq for 17, = 18. Note that for the CPU time, we still adopt the time

rather close to the imaginary axis. This is a weakness of tens
type methods. Note that we do not list thgrecs” values for the

cost of Schur-multi as the standard of comparison, and present
the ratios ofplace, robpole and Schur-rob to it.

DARE examplel.12 since some algorithms could not achieve any |l figures show that whemuq. is no more than L |, then

relative accuracy for certain assigned poles. And in TABIEne
display the differences between the placed poles and tleanafues
of the computedA. obtained from distinct methods. Thexact

compared withrobpole, our approach produces comparable results
on the robustness and the precision of the assigned polesyithu
much less time consumption. However, if there exists attleas

poles” column gives the exact values of the poles to be assigneébmmex pole with its multiplicity being larger thap™! |, the
TABLE [Mshows that ourschur-multi produces the best resu“closed-loop system matrix obtained Byhur-multi can not be

on this example.

All test sets in the following two examples are randomly geted
by the “randn” command in MATLAB, where£ contains some
repeated poles (real or non-real).

diagonalized and it would not be as robust as that computed by
robpole. Notice that for ourSchur-multi method, there are
sharp jumps in Fig[]6 and Fifl] 7 fan = 9, 18 cases, where
amaz = |42 ]. And the explanation for those jumps is™f |
actually is a threshold that distinguishes if the repeatatneal pole

Example IV.2. This example consists of two test sets. The firicts as a semi-simple eigenvalue or not, hence those rejpeatelex

test set, which is to illustrate the performance of all mdthavhen
repeated poles are all real, contairs random examples, whene
varies from 3 to 13 increased by 2, andis set to be2, [§],n -1
for eachn. For each fixed(n,m), the greatest multiplicityzmax
of all real poles increases from to m in increment of1. All

poles, whose multiplicities equal i{d"2—“j, would be more sensitive

to perturbations; and such behavior eventually reflectdep and

| F|l#. In addition, compared witlschur-rob, Schur-multi

does make some improvements on the precision of the assigned
repeated complex conjugate poles. The undisplayed refsultsher

examples are generated as follows. We first randomly genexat different n, show similar behavior.

nonsingular matrixt’ € R**™ and B € R**™, F € R™*" by the
MATLAB function randn and the assigned poles = {randn X
ones(1, amaz), randn(l, n—amaz)}, then setd = YAY '-BF,
where the diagonal elements of the diagonal matiare those in
£. Taking A, B and £ as the input, we apply the methodg ace,
robpole, Schur-rob and Schur-multi to these examples,
where the poles are assigned in ascendant order.

For concision, we only list results for = 13. Results for other
examples are quite similar. Specifically, Fig. 1 to Hi§. 4vshbe
three measures of robustness and the precision of the cethpates

It is well known that place and robpole can not solve
the SFRPA if the multiplicity of some pole is greater tham,
while Schur-rob and our Schur-multi can still work. The
following randomly generated examples are to reveal thealieh
of Schur-rob and Schur-multi on examples in which the
multiplicity of some repeated pole might be greater than

Example 1V.3. This example also consists of two test sets. The first
test set, where the repeated poles are all real, is composed0

by all four methods, and Fid.] 5 plots the ratios of the CPU timendom examples with increasing from7 to 27 in increment of4,

costs ofplace, robpole andSchur—-rob with respect to that of
Schur-multi. In each figure, the three subfigures correspond
m = 2,6 and 12, respectively. The:-axis represents,,.., and the
values in they-axis are mean values ov&0 trials for a certain triple
(13, m, amax).

andm being2, | ],n — 1 for eachn. For fixed(n, m), the greatest
taultiplicity of the assigned repeated real polgs.. varies from2 to

n— 1. All examples are generated as below. We first randomly gener
ate the assigned pol&s= {randnxones(1, @maz), randn(l,n—
amaz)} @aNdY € R™*", B € R"*™ F € R™*" by the MATLAB
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TABLE |: Numerical results for four algorithms on CARE/DAR&amples

CARE example 1.6 CARE example 2.9 #1 DARE example 1.12
precs dep. kp(X) ||F|lr | precs dep. kr(X) |F|r dep. kr(X)  ||IF|lr
place 11 15(6) L7(15) 2.2(3) 11 2.9(6) 85(8) 2.8(1) 43(7) 9.2(292) 4.3(7)
robpole 13 75(B) 22(7) 22(2)) -12  29(6) 89(4) 28(1) 3.9(12) 1.3(308) 3.9(12)
Schur-rob -8 11(5) 9.0(7) 12() -9 7.36) 2.0(6) 2.9(1)| 9.8(0) 5.6(292) 6.5(0)
Schur-multi | -11  2.6(5) 1.3(7) 45(2) -9 2.6(6) 1.2(6) 2.8(1)] 9.1(0) 3.2(295) 5.5(0)

TABLE II: Accuracy of the assigned poles for DARE examplé2

A — A
num. exact poles place robpole Schur-rob Schur-multi
1 8.1(-1) -3.3(-16) -3.3(-16) -3.3(-16) -3.3(-16)
2 5.8(-1) -2.5(-7) 3.6(-5) -1.4(-12) 2.3(-13)
3 1.1(-3) 8.4(-4) 2.9(-4) -1.5(-4) -6.4(-5)
4 0 -3.4(-17) -3.4(-17) -3.4(-17) -3.4(-17)
5 0 -5.2(-17) -5.2(-17) -5.2(-17) -5.2(-17)
6 7.6(-1)+ix1.4(-1) | 1.9(-7)-ix1.2(-7) | -4.6(-5)-ix3.7(-6) | -7.1(-13)-ix1.3(-13) | 6.2(-13)+ix4.8(-13)
7 7.6(-1)-ix1.4(-1) | 1.9(-7)+ix1.2(-7) | -4.6(-5)+ix3.7(-6) | -7.1(-13)+ix1.3(-13) | 6.2(-13)-ix4.8(-13)
8 6.4(-1)+ix2.3(-1) | -2.5(-8)-ix3.1(-8) | -4.0(-5)-ix1.6(-5) | 9.3(-13)-ix1.1(-12) | -6.4(-13)+ix3.5(-13)
9 6.4(-1)-ix2.3(-1) | -2.5(-8)+ix3.1(-8) | -4.0(-5)+ix1.6(-5) | 9.3(-13)+ix1.1(-12) | -6.4(-13)-ix3.5(-13)
10 | -9.0(-4)+ix6.6(-4) | -8.3(-4)+ix6.6(-4) | -9.0(-4)+ix6.6(-4) | 1.2(-4)-ix8.8(-5) 5.2(-5)-ix 3.9(-5)
11 | -9.0(-4)-ix6.6(-4) | 2.0(-3)-ix6.6(-4) | 4.0(-4)-ix6.6(-4) | 1.2(-4)+ix8.8(-5) 5.2(-5)+ix 3.9(-5)
12 | 35(-4)+ix1.1(-3) | 7.1(-4)-ix1.2(-4) | -8.1(-1)+ix1.1(-3) | -4.7(-5)-ix1.4(-4) -2.1(-5)-ix6.1(-5)
13 3.5(-4)-ix1.1(-3) | 7.1(-4)+ix1.2(-4) | 3.5(-4)-ix1.1(-3) | -4.7(-5)+ix1.4(-4) -2.1(-5)+ix6.1(-5)
\—n—place ~[>- robpole - @ Schur-rob -e-SChur—mum\ \—n—place - robpole - @ Schur-rob -e-smur—mum\ \—i—place ~P>- robpole @ Schur-rob - © - Schur-multi
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Qmar

Fig. 1: dep. (Example[IV:2 with real re-
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Fig. 4: precs (Example IV.2 with real repeated poles) Fig. 5: CPU time ratio (Example M2 with real repeated

function randn. Then we compute the QR decompositionofas

poles)

Y = Qv Ry, reset the diagonal elements of the upper triangulaolutions.

matrix Ry be those ir, and setd = Qy Ry Qy —BF. Taking A, B
and £ as the input, we then applchur-rob andSchur-multi
to all generated examples. The poles gnare also assigned in and precs with respect t0ama. for n
ascendant order. Note that when applyingjace and robpole
on these examples, they fail to give results for some exampler

instance, whenn = 2 and amqz > 2 = m, they fail to output

Both algorithms produce fairly similadep. and || F||», and we
omit the interrelated results here. The numerical results: p(X)

19 are displayed in

Fig.[11 and FigCIR, respectively, where theaxis andy-axis own
the same meanings as those in Exarfiple] 1V.2. In each figuréghitbe
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subfigures correspond ta = 2,9 and 18, respectively. results ondep., ||F||r and k¢ (X) for both algorithms are shown
From Fig.[11 and Fig—12, we know that the condition numbeiis Fig. [13 to Fig.[Ib, and Fid._16 displays the relative accura

of the eigenvectors matrices obtained$whur-multi are smaller precs of the assigned poles. Each figure includes three subfigures,

than those byschur-rob, and the eigenvalues ofl. computed corresponding tan = 3,12 and 24, respectively. Ther-axis and

by Schur-multi are more accurate than those bghur-rob. y-axis own the same meanings as those in Examplé IV.2. Frose the

The differences become more significant whep.. is no greater figures we can see thaichur-multi produces slightly worse,

than m. If ama. is greater thanm, that is, some eigenvaluesbut comparablelep. and || F'||r as Schur-rob, while x»(X) and

of A. are defective, the precision of the poles diminishes. Fgirecs produced byschur-multi are much better than those by

other (n, m, amae), k7 (X) andprecs show quite similar variation Schur-rob. Numerical results for othen behave similarly.

tendency. When the largest multiplicity of the repeated non-real poie

Itis shown in Subsection II-A1 that if the repeated realepwith  larger than| 5= |, for the computedd. by Schur-multi, there
multiplicity anmq. is assigned as the initial;, then its geometric exist defective complex conjugate eigenvalues. Conselyethe
multiplicity is theoretically min{m, ama.}. However, if it is not relative accuracy of the placed repeated complex conjupates
assigned foremost, we cannot prove such result in theoryth&e would be not that high. To show the geometric multiplicitgidted
compute the geometric multiplicity (denoted &8,..1¢:”) of the as “g,....;”) of non-real repeated eigenvalues 4f visually, just
repeated real pole by using the SVD @fl. — A\I,,), where A. is as what we do in the first test set, we shall compute it by using
the computed closed-loop system matrix and £. Note that in our the SVD of (A. — AI,,), where A, is the computed closed-loop
experiments, the poles are assigned in ascendant orderisTtihe system matrix anc € £ with Im(\) # 0. Typically, relevant results
repeated real pole may not be the first one to be placed. Hoyteee for n = 25 are displayed in TABLE_IY, which shows that,,.i::
numerical results fon = 19 listed in TABLE[I show thatg,..i:i  obtained fromschur-multi equals to the smaller value between
obtained byschur-multi always equals tanin{m,ama.}. The its corresponding algebraic multiplicity and” |. The unshown
unshown results for other differeiit, m, amq.) behave similarly.  results for other differentn, m, a.n..) are quite similar.

All numerical examples in the second test set are designed to
illustrate the behavior of both Schur-type approaches wheontains
some repeated complex conjugate poles with their mulitfdic
exceedingm. There arel93 random illustrative examples in this
test set, withn increasing from7 to 25 in an increment o2, and Based on theschur-rob method [11], a refined approach is
m taking 3, | % |,n — 1 for eachn. With (n,m) fixed, the largest proposed to solve th&FRPA, specifically when some poles to
multiplicity of the assigned complex poles varies framto |4 |. be assigned are repeated. In the proposedur-multi method,
All these examples are generated in the same way as those inwre treat the geometric multiplicities of the repeated palssthe
second test set in Examle IV.2. RegarditgB and £ as the input, precedential consideration, and then try to minimize thpadere
Schur—rob andSchur-multi are then applied to each examplefrom normality of the closed-loop system matrig.. Numerical

Here, we just exhibit the numerical results for= 25. Numerical results show that thechur-multi method does outperform the

V. CONCLUSION
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Fig. 11: kp(X) (Example[IV3 with real Fig. 12: precs (Example[IV3 with real Fig. 13:dep. (ExampledIV3 with non-real
repeated poles) repeated poles) repeated poles)

TABLE lll: Geometric multiplicity over50 trials (real repeated poles)

Imulti fOr n =19
m =2 m=[%] m=mn—1
Amazx Schur-rob Schur-multi Schur-rob Schur-multi Schur-rob Schur-multi
2 1.04 2.00 1.44 2.00 1.96 2.00
3 1.06 2.00 2.10 3.00 2.80 3.00
4 1.04 2.00 2.44 4.00 3.86 4.00
5 1.06 2.00 2.22 5.00 4.98 5.00
6 1.06 2.00 2.90 6.00 5.90 6.00
7 1.08 2.00 4.24 7.00 6.88 7.00
8 1.06 2.00 4.28 8.00 7.92 8.00
9 1.08 2.00 4.42 9.00 8.92 9.00
10 1.02 2.00 5.06 9.00 9.86 10.00
11 1.16 2.00 4.98 9.00 10.84 11.00
12 1.10 2.00 5.54 9.00 11.90 12.00
13 1.14 2.00 5.60 9.00 12.84 13.00
14 1.14 2.00 6.66 9.00 13.70 14.00
15 1.20 2.00 6.62 9.00 14.76 15.00
16 1.28 2.00 7.78 9.00 15.66 16.00
17 1.30 2.00 8.20 9.00 16.66 17.00
18 1.44 2.00 8.46 9.00 17.32 18.00
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Fig. 14: |F||r (Example[IV3 with non- Fig. 15: kr(X) (ExamplelIV3 with non-  Fig. 16: precs (Example[IV.3 with non-
real repeated poles) real repeated poles) real repeated poles)
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TABLE IV: Geometric multiplicity over50 trials (non-real repeated poles)

Gmulri fOr n =25
m =3 m = L%J m=mn—1
Amazx Schur-rob Schur-multi Schur-rob Schur-multi Schur-rob Schur-multi
2 1.00 2.00 1.00 2.00 1.00 2.00
3 1.00 2.00 1.00 3.00 2.00 3.00
4 1.00 2.00 1.00 4.00 3.00 4.00
5 1.00 2.00 1.00 5.00 4.00 5.00
6 1.00 2.00 1.00 6.00 5.00 6.00
7 1.00 2.00 1.00 6.00 6.00 7.00
8 1.00 2.00 1.06 6.00 7.00 8.00
9 1.00 2.00 2.04 6.00 8.00 9.00
10 1.00 2.00 3.08 6.00 9.00 10.00
11 1.00 2.00 4.04 6.00 10.00 11.00
12 1.00 2.00 5.16 6.00 11.00 12.00
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