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Refined Schur Method for Robust Pole Assignment with
Repeated Poles

Zhen-Chen Guo, Jiang Qian, Yun-feng Cai and Shu-fang Xu

Abstract—Schur-type methods in [6] and [11] solve the robust pole
assignment problem by employing the departure from normality of the
closed-loop system matrix as the measure of robustness. They work well
generally when all poles to be assigned are simple. However,when some
poles are close or even repeated, the eigenvalues of the computed closed-
loop system matrix might be inaccurate. In this paper, we present a
refined Schur method, which is able to deal with the case when some or
all of the poles to be assigned are repeated. More importantly, the refined
Schur method can still be applied whenplace [14] and robpole [28]
fail to output a solution when the multiplicity of some repeated poles is
greater than the input freedom.

Index Terms—robust pole assignment, repeated poles, departure from
normality.
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I. I NTRODUCTION

T HE behavior of the state feedback control system in engineering
is essentially determined by the eigen-structure of the closed-

loop system matrix. Such observation ultimately evokes thearising
of the pole assignment problem, which can be mathematicallystated
as follows. Denote the dynamic state equation of the time invariant
linear system by

ẋ(t) = Ax(t) +Bu(t),

whereA ∈ R
n×n is the open-loop system matrix andB ∈ R

n×m

is the input matrix. In control theory, theState-Feedback Pole
Assignment Problem (SFPA) is to find a state feedback matrix
F ∈ R

m×n such that the eigenvalues of the closed-loop system
matrix Ac = A+BF , associated with the closed-loop system

ẋ(t) = Ax(t) +Bu(t) = (A+BF )x(t) = Acx(t),

are the given poles inL = {λ1, λ2, . . . , λn}, which is closed under
complex conjugate. Many valuable contributions have been made to
the SFPA. We refer readers to [3], [8], [12], [17]–[20], [23], [29],
[32] for details. It is well known that theSFPA is solvable for any
L if and only if (A,B) is controllable [31], [32]. Through the rest
of this paper,we will always assume that(A,B) is controllable.

Whenm > 1, the solution to theSFPA is generally not unique. It
then leads to the problem on how to explore the freedom ofF such
that the closed-loop system achieves some desirable properties. An
important engineering application is to find an appropriatesolution
F ∈ R

m×n to theSFPA such that the eigenvalues of the closed-loop
system matrixAc = A+ BF are as insensitive to perturbations on
Ac as possible, which is known as theState-Feedback Robust Pole
Assignment Problem (SFRPA).

To solve theSFRPA, it is imperative to choose an appropriate mea-
sure of robustness to characterize the “insensitivity” quantitatively.
Based on different measures, various methods [4]–[7], [9]–[11], [13]–
[16], [21], [22], [24]–[26], [28], [30], [32] are put forward. The most
attractive methods might be those given by Kautsky, Nichols, and
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Van Dooren [14], where the adopted measures are closely related
to the condition number of the eigenvectors matrix ofAc. Method
1 in [14] is implemented as the functionplace in the MATLAB
control system toolbox. Method0 in [14] may not converge, and then
Tits and Yang [28] posed a new approach upon it, which tends to
maximize the absolute value of the determinant of the eigenvectors
matrix of Ac and is implemented as the functionrobpole (from
SLICOT). Based on recurrent neural networks, a method recently
is put forward in [16], where many parameters need to be adjusted
in order to achieve fast convergence. Notice that these methods can
deal with both simple and repeated poles. However, they are iterative
methods and hence can be expensive. Moreover, in these methods,
the multiplicity of any repeated poleλ ∈ L must not exceed the input
freedomm. Otherwise, they will fail to give a solution. There exist
feasible methods ([22], [24]) when the multiplicity of somerepeated
pole exceeds the input freedomm. They also tend to minimize the
condition number of the eigenvectors matrix ofAc. In both methods,
the real Jordan canonical form of the closed-loop system matrix is
employed, and the size of each Jordan block of the repeated poles is
assumed to be known in prior, which is, however, generally hard to
obtain. Additionally, both methods could be numerical unstable since
the computation of the Jordan canonical form of a matrix is usually
suspected.

Another type of methods uses the departure from normality of
Ac as the measure of robustness. It is firstly proposed as theSCHUR

method in [6]. Some variations can also be found there. Recently, the
authors [11] made some improvements to the methods proposedin
[6], especially for placing complex conjugate poles, whichis referred
to as theSchur-rob method. All these Schur-type methods are
designed for the case when all poles to be assigned are simple. If
some poles are close or even repeated, these methods can still output a
solutionF , but the relative errors of the eigenvalues of the computed
closed-loop system matrixAc = A+BF , compared with the entries
in L, might be fairly large.

In this paper, we intend to propose a refined version of the
Schur-rob method [11] specifically for repeated poles. It is well
known that a defective eigenvalue, whose geometric multiplicity is
less than its algebraic multiplicity, is generally more sensitive to
perturbations than a semi-simple one, whose geometric and algebraic
multiplicities are identical. So in the present refined Schur method,
we manage to keep the geometric multiplicities of the repeated poles
as large as possible by constructing the real Schur form ofAc in
more special form, and then attempt to minimize the departure from
normality of Ac. The present refined Schur method can achieve
higher relative accuracy of the placed poles than those Schur-type
methods in [6], [11] for repeated poles. Moreover, it still works well
when methods in [14], [28] fail in the case where the multiplicity
of some poles is greater thanm. Numerical examples illustrate the
superiorities of our approach.

The rest of this paper is organized as follows. Section II displays
some useful preliminaries for solving theSFRPA. Our refined Schur
method to assign repeated poles is developed in Section III.Several
illustrative examples are presented in Section IV to illustrate the
performance of our method. Some concluding remarks are finally
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drawn in Section V.

II. PRELIMINARIES AND NOTATIONS

We first briefly review the parametric solutions to theSFPA [6],
[11] using the real Schur decomposition of the closed-loop system
matrix Ac = A+BF . Let

A+BF = XTX⊤ (1)

be the real Schur decomposition ofAc, where X ∈ R
n×n is

orthogonal andT ∈ R
n×n is upper quasi-triangular. Without

loss of generality, assume thatB is of full column rankand let
B = Q

[
R⊤ 0

]⊤
=

[
Q1 Q2

] [
R⊤ 0

]⊤
= Q1R be the QR

decomposition ofB, whereQ ∈ R
n×n is orthogonal,R ∈ R

m×m

is nonsingular upper triangular, andQ1 ∈ R
n×m. Then withX and

T satisfying

Q⊤
2 (AX −XT ) = 0, (2)

the parametric solutions to theSFPA can be given by

F = R−1Q⊤
1 (XTX⊤ − A).

Consequently, once the orthogonalX and the upper quasi-triangular
T satisfying (2) are obtained,F will be acquired immediately.

When solving theSFRPA, we employ the departure from normal-
ity of Ac as the measure of robustness, which can be specified as
([27])

∆F (Ac) =

√
√
√
√‖Ac‖2F −

n∑

j=1

|λj |2,

whereλj , j = 1, . . . , n, are the poles to be placed. As in [11], we
write T = D + N , whereD and N are the block diagonal part
and the strictly upper quasi-triangular part ofT , respectively. Let the

2× 2 diagonal blocks inD be of the form
[ Re(λ) δIm(λ)

− 1
δ
Im(λ) Re(λ)

]

with

Im(λ) 6= 0, 0 6= δ ∈ R. Then∆F (Ac) can be reformulated as

∆F (Ac) =

√
√
√
√‖N‖2F +

∑

Im(λ) 6=0

(δ − 1

δ
)2Im(λ)2, (3)

where the summation is over all2 × 2 diagonal blocks inD.
Hence, if some poles to be assigned are non-real, it is not only
the corresponding part inN that contributes to∆F (Ac), but also
that in D. Our method displayed in the next section is designed
to solve theSFRPA by finding some appropriateX and T , which
satisfy (2), such that the departure from normality ofAc, specified in
(3), is minimized. Acquiring an optimal solution tomin∆F (Ac) is
rather difficult. So instead of obtaining a global optimal solution, we
prefer to get a suboptimal one with lower computational costs. The
matricesX andT satisfying (2) are computed column by column via
solving a series of optimization problems. Specifically, corresponding
to a real poleλj (the j-th diagonal element inD), the objective
function to be minimized, associated with∆2

F (Ac), is ‖vj‖22, where
v̆j =

[
v⊤j 0

]⊤
with vj ∈ R

j−1 is the j-th column ofN ; while
corresponding to a pair of complex conjugate polesλj , λj+1 = λ̄j ,
it is

‖vj‖22 + ‖vj+1‖22 + Im(λj)
2(δ − 1

δ
)2, (4)

where v̆j+k =
[
v⊤j+k 0

]⊤
with vj+k ∈ R

q, q ≤ j, are the(j +

k)-th columns ofN for k = 0, 1, and

[
Re(λj) δIm(λj)

− 1
δ
Im(λj) Re(λj)

]

is the

corresponding2× 2 diagonal block inD.
The following two lemmas are needed when assigning complex

conjugate poles.

Lemma II.1. Let A,B ∈ R
n×n be symmetric, then there exist

a diagonal matrixΘ = diag(θ1, θ2, . . . , θn) with θj ≥ 0 (j =
1, 2, . . . , n) and an orthogonal matrixU ∈ R

2n×2n, whosej-th col-

umnuj and (n+j)-th columnun+j satisfyun+j =

[
−In

In

]

uj ,

such that
[
A B
B −A

]

= U diag(Θ,−Θ)U⊤. (5)

Furthermore, it holds that

[
B −A
−A −B

]

= U

[
0 −Θ

−Θ 0

]

U⊤.

Lemma II.1 can be verified directly by utilizing properties of
Hamiltonian matrices, and we skip the proof here.

Lemma II.2. (Jacobi Orthogonal Transformation [11]) Assume that
x, y ∈ R

n are linearly independent, then there exists an orthogonal
matrix Q ∈ R

2×2, such thatx̃⊤ỹ = 0 with
[
x̃ ỹ

]
=

[
x y

]
Q.

Actually, the 2 × 2 orthogonal matrixQ in Lemma II.2 can be
obtained as follows. Let̺ 1 = ‖x‖22, ̺2 = ‖y‖22, γ = x⊤y, τ =
̺2−̺1

2γ
and definet as

t =

{
1/(τ +

√
1 + τ 2), if τ ≥ 0,

−1/(−τ +
√
1 + τ 2), if τ < 0.

Then the requiredQ is Q =

[
c s
−s c

]

, wherec = 1/
√
1 + t2 and

s = tc.
Throughout this paper, we denote the space spanned by the

columns of a matrixM by R(M), the null space byN (M), and
the set of eigenvalues ofM by λ(M). The MATLAB expression,
which specifies the submatrix with the colon notation, will be used
when necessary, that is,M(k : l, s : t) refers to the submatrix of
M formed by rowsk to l and columnss to t. We denoteX =
[
x1 x2 · · · xn

]
and Xj =

[
x1 · · · xj

]
. Write the strictly

upper quasi-triangular partN of T asN =
[
v̆1 v̆2 · · · v̆n

]
. For

simplicity, we also denoteT (1 : j, 1 : j) by Tj .

III. R EFINED SCHUR METHOD FOR REPEATED POLES

The method in [11] can dispose both simple and repeated poles.
However, the repeated eigenvalues of the computedAc, compared
with the entries inL, might be inaccurate. So this paper is specifically
dedicated to repeated poles, both real and non-real. As pointed out
in the Introduction part, a semi-simple eigenvalue is less sensitive to
perturbations than a defective one. Thus when solving theSFRPA,
we would keep the geometric multiplicities of repeated poles, as
eigenvalues ofAc, as large as possible, which is actualized by setting
special structure in the upper quasi-triangular matrixT in (1).

Analogously to [6], [11], we computeX and T satisfying (2)
column by column, minimizing corresponding functions associated
with ∆2

F (Ac) for real poles or complex conjugate poles. We start with
the first poleλ1, which is assumed to be repeated with multiplicity
a1(> 1), that is, it appears exactlya1 times inL.

A. Assigning repeated polesλ1

The strategies vary depending on whetherλ1 is real or non-real.
1) λ1 is real: As an eigenvalue ofAc = A + BF , denote its

geometric multiplicity byg1. It then follows thatg1 ≤ m ([14]).
If a1 ≤ m, the methods in [14], [28] can be applied, assigning
λ1 as a semi-simple eigenvalue. Otherwise, that isa1 > m, those
methods will fail. In our refined Schur method, ifa1 ≤ m, λ1 can
also be placed as a semi-simple eigenvalue ofAc with g1 = a1; if
a1 > m, λ1 can still be assigned withg1 = m. Notice that geometric
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multiplicity issues are not involved in those Schur-type methods in
[6], [11].

Comparing the firsta1 columns of (2) brings

Q⊤
2 AXa1 = Q⊤

2 Xa1Ta1 , (6)

whereXa1 = X(:, 1 : a1) satisfyingX⊤
a1
Xa1 = Ia1 and Ta1 =

T (1 : a1, 1 : a1) with λ(Ta1) = {λ1, . . . , λ1
︸ ︷︷ ︸

a1

} are to be determined.

More specifically, to maximize the geometric multiplicityg1, we take
Ta1 in the special form of

n1 n2 · · · nl

Ta1 =








D11(λ1) ∗ · · · ∗
D22(λ1) · · · ∗

. . .
...

Dll(λ1)








n1

n2

...
nl

(7)

with Dkk(λ1) = λ1Ink
, k = 1, . . . , l, n1 + · · · + nl = a1. The

integersnk, k = 1, . . . , l, are also to be specified. Once suchXa1

and Ta1 satisfying (6) are found, the geometric multiplicity ofλ1

will be no less thanmax{nk : k = 1, . . . , l}. So we shall make
thesenk as large as possible. In the following, we show how to set
thesen1, . . . , nl and obtain the corresponding columns ofXa1 and
Ta1 meanwhile.

SinceD11(λ1) = λ1In1 , by equalling the firstn1 columns in both
sides of the equation in (6) and noticing the orthonormal requirements
on columns ofX, it shows that the firstn1 columns ofX should
satisfy

M1

[
x1 · · · xn1

]
= 0,

[
x1 · · · xn1

]⊤ [
x1 · · · xn1

]
= In1 ,

(8)

where

M1 = Q⊤
2 (A− λ1In). (9)

Here,M1 is of full row rank by the controllability of the matrix pencil
(A,B), which implies thatdim(N (M1)) = m. Let the columns of
S ∈ R

n×m be an orthonormal basis ofN (M1). We then display how
to determinen1 and find correspondingXn1 =

[
x1 · · · xn1

]
by

distinguishing two different situations.
a) Situation I — a1 ≤ m : In this situation, we set

n1 = a1. Then by selectingx1, x2, . . . , xa1 ∈ R(S) with
[
x1 x2 · · · xa1

]⊤ [
x1 x2 · · · xa1

]
= Ia1 , we have al-

ready assigned allλ1 and then proceed to the next pole as described
in the next subsection — Subsection III-B. It is worthwhile to point
out that with such choice, the geometric multiplicityg1 of λ1 is just
a1, that is,λ1 is a semi-simple eigenvalue ofAc.

b) Situation II —a1 > m : In this situation, we can at most
choosem orthonormal vectors fromN (M1). So we setn1 = m, and
then chooseXn1 = SZ with Z ∈ R

m×m being some orthogonal
matrix.

Now assume that we have already obtainedXq =
[
x1 · · · xq

]

andTq = T (1 : q, 1 : q) with

n1 n2 · · · nk−1

Tq =








D11(λ1) ∗ · · · ∗
D22(λ1) · · · ∗

. . .
...

Dk−1,k−1(λ1)








n1

n2

...
nk−1

,

wherek > 1,
∑k−1

j=1 nj = q, n1 = m andDjj(λ1) = λ1Inj , j =
1, . . . , k− 1. We will show how to determinenk, the corresponding
columns ofX and the corresponding strictly block upper triangular
part T (1 : q, q + 1 : q + nk) in T .

From (6) and (7), the(q + 1)-th, . . ., (q + nk)-th columns ofX
andN must satisfy

[
x⊤
q+j v⊤q+j

]⊤ ∈ N (Mq,q), (10)

where v̆q+j , the (q + j)-th column ofN , is v̆q+j =
[
v⊤q+j 0

]⊤

with vq+j ∈ R
q for j = 1, . . . , nk, and

Mq,q =

[
Q⊤

2 (A− λ1In) −Q⊤
2 Xq

X⊤
q 0

]

. (11)

Suppose that the columns of

Sq,q =

[

S
(1)
q,q

S
(2)
q,q

]

with S(1)
q,q ∈ R

n×m, S(2)
q,q ∈ R

q×m, (12)

form an orthonormal basis ofN (Mq,q), wheredim(R(Sq,q)) = m

is guaranteed by Theorem 1 in Subsection III-C. LetS
(1)
q,q =

Uq,qΣq,qV
⊤
q,q = Uq,q

[
Σ1

q,q 0
0 0

]

V ⊤
q,q be the Singular Value De-

composition (SVD) ofS(1)
q,q with rank(S

(1)
q,q ) = rq and Σ1

q,q =
diag(σ1,q, · · · , σrq,q), σ1,q ≥ · · · ≥ σrq ,q > 0. Keep in mind
that a1 − q is the number of the poleλ1 to be assigned, andrq
is the rank ofS(1)

q,q , which is the maximum number of orthonormal
vectorsxq+j satisfying (10). We then need to distinguish whether
a1 − q ≤ rq or not these two cases to discuss how to determinenk

and get thosexq+j , vq+j , j = 1, . . . , nk. Note that ifrq = 0, there
does not exist nonzero vectorxq+j satisfying (10), and hence the
method will terminate. Fortunately, Theorem 1 in Subsection III-C
can assure thatrq is always nonzero.

• Case i: (a1 − q) ≤ rq. In this case, we can setnk = a1 − q,
that is, we can assign the remainingλ1 together. From (10), to
minimize the departure from normality in (3), it is natural to
solve the following optimization problem

min ‖
[
vq+1 vq+2 · · · va1

]
‖2F (13a)

s.t.







Mq,q

[
xq+1 xq+2 · · · xa1

vq+1 vq+2 · · · va1

]

= 0,
[
xq+1 · · · xa1

]⊤ [
xq+1 · · · xa1

]
= Ia1−q,

(13b)

for xq+1, . . . , xa1 andvq+1, . . . , va1 . By the definition ofSq,q

we know that there existsZ ∈ R
m×(a1−q) being of full column

rank, such that
[
xq+1 xq+2 · · · xa1

]
= S(1)

q,qZ,
[
vq+1 vq+2 · · · va1

]
= S(2)

q,qZ.
(14)

Hence, the optimization problem (13) is equivalent to

min
Z⊤S

(1)⊤
q,q S

(1)
q,qZ=Ia1−q

tr(Z⊤S(2)⊤
q,q S(2)

q,qZ). (15)

Let Ẑ = V ⊤
q,qZ with Ẑ =

[
Ẑ⊤

1 Ẑ⊤
2

]⊤
, Ẑ1 ∈ R

rq×(a1−q).

Using S
(1)⊤
q,q S

(1)
q,q + S

(2)⊤
q,q S

(2)
q,q = Im, then the problem (15) is

equivalent to
min

Ẑ⊤

1 Σ12
q,q Ẑ1=Ia1−q

tr(Ẑ⊤Ẑ). (16)

Write Z̃1 = Σ1
q,qẐ1, then (16) equals to

min
Z̃⊤

1 Z̃1=Ia1−q

tr(Z̃⊤
1 (Σ1

q,q)
−2

Z̃1), (17)

with Ẑ2 = 0. Obviously, the minimum value
∑a1−q

j=1
1

σ2
j,q

of

(17) is obtained wheñZ1 =
[
e1 · · · ea1−q

]
, suggesting that

(15) achieves its minimum when

Z = Vq,q

[
e1 · · · ea1−q

]
diag(

1

σ1,q
, . . . ,

1

σa1−q,q

).
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Once suchZ is obtained,xq+1, . . . , xa1 andvq+1, . . . , va1 can
be computed by (14). We may then updateXq andTq as

Xa1 =
[
Xq xq+1 xq+2 · · · xa1

]
∈ R

n×a1 ,

Ta1 =





Tq vq+1 vq+2 · · · va1

λ1Ia1−q



 ∈ R
a1×a1 ,

(18)

and proceed with the next poleλ2.

• Case ii: (a1 − q) > rq. In this case, we can choose at most
rq orthonormalxq+j , j ≥ 1. So we setnk = rq and let

[
xq+1 · · · xq+rq

]
= Uq,q( : , 1 : rq),

[
vq+1 · · · vq+rq

]
= S(2)

q,qVq,q( : , 1 : rq)(Σ
1
q,q)

−1
.

It can be easily verified that suchxq+j , vq+j , j = 1, . . . , rq,
satisfy (10). It is worthwhile to point out that in this case we
do not need to solve an optimization problem similar to (13)
in Case i, because the value of the objective function now is a
constant when the constraints are satisfied. We can then update
Xq andTq as

Xq+nk
= Xq+rq

=
[
Xq xq+1 xq+2 · · · xq+rq

]
∈ R

n×(q+rq),

Tq+nk
= Tq+rq

=





Tq vq+1 · · · vq+rq

λ1Irq



 ∈ R
(q+rq)×(q+rq).

(19)

In this case, someλ1 are still unassigned. We can then pursue
a similar process either inCase i or Case ii until all λ1 are
placed.

Eventually,Ta1 being of the form (7) would be acquired. And this
procedure is summarized in Algorithm 1.

Algorithm 1 Assigning realλ1

Input:
A,Q2, λ1 ∈ R anda1 (the multiplicity of λ1).

Output:
OrthogonalXa1 and upper triangularTa1 .

1: Find S ∈ R
n×m, whose columns are an orthonormal basis of

N (M1) defined in (9).
2: if a1 ≤ m then
3: SetXa1 = SZ with Z ∈ R

m×a1 satisfyingZ⊤Z = Ia1 and
Ta1 = λ1Ia1 .

4: else
5: SetXa1(:, 1 : m) = S, Ta1(1 : m, 1 : m) = λ1Im, q = m;
6: while q < a1 do

7: Find S =

[
S1

S2

]

with S1 ∈ R
n×m, S2 ∈ R

q×m, whose

columns are an orthonormal basis ofN (Mq,q) in (11);
8: if (a1 − q) ≤ rank(S1) then
9: Solve the optimization problem (13);

10: UpdateXa1(:, 1 : q) and Ta1(1 : q, 1 : q) by (18), set
q = a1.

11: else
12: UpdateXa1(:, 1 : q) and Ta1(1 : q, 1 : q) by (19), set

q = q + rank(S1).
13: end if
14: end while
15: end if

2) λ1 is non-real: Let λ1 = α1 + iβ1, whereα1, β1 ∈ R and
β1 6= 0. As the eigenvalue ofAc, its algebraic multiplicity is denoted
by a1. Thenλ̄1 = α1−iβ1 is also an eigenvalue ofAc with algebraic
multiplicity a1. We are to assign alla1 complex conjugate pairs
{λ1, λ̄1} in turn, where the complex conjugate polesλ1 and λ̄1 are
placed simultaneously.

Comparing the first2a1 columns of (2) and recalling thatX is
orthogonal, one can show thatT2a1 andX2a1 must satisfy

Q⊤
2 AX2a1 −Q⊤

2 X2a1T2a1 = 0, X⊤
2a1

X2a1 = I2a1 , (20)

with λ(T2a1) = {λ1, . . . , λ1
︸ ︷︷ ︸

a1

, λ̄1, . . . , λ̄1
︸ ︷︷ ︸

a1

}. There is a classical

strategy in [11] to getT2a1 and X2a1 satisfying (20). Here, the
substantial refinement on the strategy in [11] is taking the geometric
multiplicities of λ1 and λ̄1 into account. That is, we would choose
T2a1 in a more special form:

2n1 2n2 · · · 2nl

T2a1 =








D11(λ1) ∗ · · · ∗
D22(λ1) · · · ∗

. . .
...

Dll(λ1)








2n1

2n2

...
2nl

,

(21)

whereDkk(λ1) = diag(D(δ1,k(λ1)), . . . , D(δnk,k(λ1))) with

D(δp,k(λ1))

=

[

Re(λ1) δp,k(λ1)Im(λ1)
− 1

δp,k(λ1)
Im(λ1) Re(λ1)

]

, 0 6= δp,k(λ1) ∈ R

(22)

for p = 1, . . . , nk, k = 1, . . . , l, and
∑l

k=1 nk = a1. With such
special form ofT2a1 , the geometric multiplicityg1 of λ1 ( andλ̄1), as
a repeated eigenvalue ofAc, is no less thanmax{nk : k = 1, . . . , l}.

Similarly to the case whenλ1 is real, we then tend to choose
max{nk : k = 1, . . . , l} as large as possible while computingT2a1

and X2a1 satisfying (20). However, the placing procedure for the
case whenλ1 is real can not be easily extended to this non-real case.
The reason is that for the repeated and non-real poles, it is not only
those columns inN that contribute to∆F (Ac), but also thoseδp,k
in the diagonal blocksD(δp,k(λ1)) in D, which may differ in each
2 × 2 blocks ofD. Let us take the first2n1 columns ofX andT
as an illustration. Assume thatn1 is known (Indeed,n1 is also a
parameter to be determined. We will discuss how to setn1 later.),
then to find the first2n1 columns ofX and T simultaneously, we
need to solve the following optimization problem originated from
minimizing ∆F (Ac) defined in (3):

min
δ1,1(λ1),...,δn1,1(λ1)

β2
1((δ1,1(λ1)− 1

δ1,1(λ1)
)2 + · · · (23a)

+ (δn1,1(λ1)− 1

δn1,1(λ1)
)2) (23b)

s.t. Q⊤
2 (AX2n1 −X2n1D11(λ1)) = 0, (23c)

X⊤
2n1

X2n1 = I2n1 . (23d)

The above optimization problem is fairly difficult to solve.The
associate optimization problems corresponding to otherDkk(λ1),
k > 1 are even more ticklish to solve. Be aware that in the case
considered in the above part whenλ1 is real, thoseδp,1(λ1) vanish,
and we only need to find the columns ofX and T satisfying the
two constraints. Hence, rather than acquiring the columns of X and
T corresponding to eachDkk(λ1) straightway, we shall compute
those associated withD(δp,k(λ1)), p = 1, . . . , nk, k = 1, . . . , l,
alternately. That is, in each step, we only compute two more columns
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of X andT corresponding toD(δp,k(λ1)). Bear in mind that those
n1, . . . , nl are also to be determined in the assigning process such
thatmax{nk : k = 1, . . . , l} is as large as possible.

We start with the first two columns ofX andT . Comparing the
first two columns of (20), we have

Q⊤
2 A

[
x1 x2

]
= Q⊤

2

[
x1 x2

]
[

α1 δ1,1(λ1)β1

− 1
δ1,1(λ1)

β1 α1

]

,

(24)

x⊤
1 x2 = 0, ‖x1‖2 = ‖x2‖2 = 1. (25)

Note that the corresponding strictly upper quasi-triangular part in
T vanishes here, and the corresponding objective function (4) now
becomesβ2

1(δ1,1(λ1) − 1
δ1,1(λ1)

)2. Apparently, it achieves its mini-
mum value0 at δ1,1(λ1) = 1. We then show how to findx1 andx2

satisfying (24) and (25) withδ1,1(λ1) = 1. Similarly as in [11], it is
equivalent to findx1 andx2 such that

Q⊤
2 (A− λ1In)(x1 + ix2) = 0 (26)

with (25) holding.
It holds that dim(N (Q⊤

2 (A − λ1In))) = m since (A,B) is
controllable. Assume that the columns ofS ∈ C

n×m form an
orthonormal basis ofN (Q⊤

2 (A − λ1In)). Define S1 = Re(S),
S2 = Im(S). Then (26) implies thatx1+ix2 = (S1+iS2)(y1+iy2)
for somey1, y2 ∈ R

m, or equivalently

x1 = S1y1 − S2y2, x2 = S1y2 + S2y1. (27)

If we can choosey1 andy2 to satisfyx⊤
1 x2+x⊤

2 x1 = 0 andx⊤
1 x1−

x⊤
2 x2 = 0, then the normalizedx1 andx2 will satisfy (25) and (26).

Direct calculations show that

x⊤
1 x2 + x⊤

2 x1 =
[
y⊤
1 y⊤

2

]
H1

[
y⊤
1 y⊤

2

]⊤
,

x⊤
1 x1 − x⊤

2 x2 =
[
y⊤
1 y⊤

2

]
H2

[
y⊤
1 y⊤

2

]⊤
,

(28)

with

H1 =

[
S⊤
1 S2 + S⊤

2 S1 S⊤
1 S1 − S⊤

2 S2

S⊤
1 S1 − S⊤

2 S2 −(S⊤
1 S2 + S⊤

2 S1)

]

,

H2 =

[
S⊤
1 S1 − S⊤

2 S2 −(S⊤
1 S2 + S⊤

2 S1)

−(S⊤
1 S2 + S⊤

2 S1) S⊤
2 S2 − S⊤

1 S1

]

.

Since S∗S = Im, it can be easily verified thatS⊤
1 S2 = S⊤

2 S1

and S⊤
1 S1 + S⊤

2 S2 = Im. If S⊤
1 S2 = 0 and S⊤

1 S1 = 1
2
Im, then

x⊤
1 x2 = 0 and ‖x1‖2 = ‖x2‖2 for any y1 ∈ R

m and y2 ∈ R
m

due to (28). In this case, we may arbitrarily choosey1 andy2 with
‖y1‖2 = ‖y2‖2 = 1, then x1 and x2 computed by (27) satisfy
(25) and (26) as required. IfS⊤

1 S2 6= 0 or S⊤
1 S1 6= 1

2
Im, then

rank(H1) ≥ 1. Now by Lemma II.1, assume that

H1 = U diag(Θ,−Θ)U⊤, H2 = U

[
0 −Θ

−Θ 0

]

U⊤,

whereU is orthogonal whosej-th columnuj and(m+j)-th column

um+j satisfy um+j =

[
−Im

Im

]

uj , j = 1, . . . ,m, and Θ =

diag(θ1, θ2, . . . , θm) with θj ≥ 0, j = 1, . . . ,m and θ1 > 0. Then
with
[
y⊤
1 y⊤

2

]⊤
= U

[
µ 1 0 · · · 0 −µ 1 0 · · · 0

]⊤
,

(29)

whereµ =
√

θ2/θ1, one can show thatx1 andx2 computed by (27)
satisfyx⊤

1 x2 = 0 and‖x1‖2 = ‖x2‖2. Thus the normalizedx1 and
x2, i.e. x1 , x1/‖x1‖2, x2 , x2/‖x2‖2, are the vectors desired.
Overall, we can obtainX2 =

[
x1 x2

]
and T2 = D(δ1,1(λ1)) =

D0(λ1) ,

[
α1 β1

−β1 α1

]

in either case.

Now assume that the first2q (1 ≤ q < a1) columns ofX andT
have already been obtained with

Q⊤
2 AX2q = Q⊤

2 X2qT2q , X⊤
2qX2q = I2q, (30)

we are to find the subsequent(2q + 1)-th and(2q + 2)-th columns
of X andT . HereT2q is of the form similar as (21):

T2q

=

2n1 · · · 2nk−1 2nk







D11(λ1) · · · ∗ ∗
. . .

...
...

Dk−1,k−1(λ1) ∗
Dkk(λ1)








2n1

...
2nk−1

2nk

,

(31)

whereD11(λ1), . . . , Dkk(λ1) are block diagonal with2×2 matrices
being of the form (22) as the diagonal blocks andn1+ · · ·+nk = q.
Notice thatn1, . . . , nk−1 have already been determined, whilenk

might still be updated when computing the(2q+1)-th and(2q+2)-
th columns ofX andT . More specifically, denote

Tp =






D11(λ1) · · · ∗
. . .

...
Dk−1,k−1(λ1)






with p = 2n1 + · · · + 2nk−1 and letDkk(λ1)=diag(D(δ1,k(λ1)),
. . ., D(δj,k(λ1))), then the resultedT2q+2 could be in the form of

T2q+2 =









Tp ∗ v2q+1 v2q+2

Dkk(λ1) 0

D(δj+1,k(λ1))









,

v2q+1, v2q+2 ∈ R
p,

(32)

or in the form of

T2q+2 =





T2q v2q+1 v2q+2

D(δ1,k+1(λ1))



 , v2q+1, v2q+2 ∈ R
2q .

(33)

If T2q+2 is in the form of (32),nk will be increased by1, meaning
thatnk would be updated asnk , nk + 1; while if T2q+2 is in the
form of (33),nk is fixed andnk+1 is initially set to be 1. Taking the
geometric multiplicityg1 of λ1 (and λ̄1) into account, we incline to
makenk as large as possible, suggesting that we would preferT2q+2

in the form of (32) whenever possible.

We now turn to show how to determine whether (32) is possible
and how to find the(2q + 1)-th and(2q + 2)-th columns ofX and
T accordingly. Provided thatT2q+2 is in the form of (32), then by
comparing the(2q+1)-th and(2q+2)-th columns of (20) and noting
thatX is orthogonal, we have







Q⊤
2 (A

[
x2q+1 x2q+2

]
−Xp

[
v2q+1 v2q+2

]

−
[
x2q+1 x2q+2

]
D(δj+1,k(λ1))) = 0,

X⊤
2q

[
x2q+1 x2q+2

]
= 0,

[
x2q+1 x2q+2

]⊤ [
x2q+1 x2q+2

]
= I2.

(34)

Our goal now is to minimize (4) subject to (34). By writing
δj+1,k(λ1) = δ2

δ1
with 0 6= δ1 ∈ R and δ2 ∈ R, it follows from
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[11] that the restriction (34) is equivalent to






M2q,p

[
x̃2q+1 + ix̃2q+2

ṽ2q+1 + iṽ2q+2

]

= 0,
[
x̃2q+1 x̃2q+2

]⊤ [
x̃2q+1 x̃2q+2

]
= diag(1/δ21 , 1/δ

2
2),

x2q+1 = δ1x̃2q+1, x2q+2 = δ2x̃2q+2,
v2q+1 = δ1ṽ2q+1, v2q+2 = δ2ṽ2q+2,

(35)

where

M2q,p =

[
Q⊤

2 (A− λ1In) −Q⊤
2 Xp

X⊤
2q 0

]

. (36)

Let the columns of

S2q,p =

[

S
(1)
2q,p

S
(2)
2q,p

]

n
p

be an orthonormal basis ofN (M2q,p). We shall distinguish three
cases upondim(R(S

(1)
2q,p)) to reveal the assigning process, i.e., to

computex2q+1, x2q+2, v2q+1 andv2q+2 such that (4) is optimized.

• Case iii: dim(R(S
(1)
2q,p)) ≥ 2. Let S(1)

2q,p = U2q,pΣ2q,pV
∗
2q,p

be the SVD ofS(1)
2q,p with σ1, σ2 being the first two largest

singular values ofS(1)
2q,p and let x̃1 = Re(U2q,pe1), ỹ1 =

Im(U2q,pe1). If x̃⊤
1 ỹ1 = 0 and ‖x̃1‖2 = ‖ỹ1‖2 =

√
2

2
, we

take

x2q+1 =
√
2x̃1, v2q+1 =

√
2Re(S(2)

2q,pV2q,pe1/σ1),

x2q+2 =
√
2ỹ1, v2q+2 =

√
2Im(S

(2)
2q,pV2q,pe1/σ1).

With such choice, (34) is satisfied withδj+1,k(λ1) = 1, which
results in the third term in the function defined in (4) vanishing
and the first two terms achieving2 1−σ2

1

σ2
1

, a value that is a compa-
rable multiple (less that2) of its minimum (Please refer to [11]
for details.). Otherwise, that is̃x⊤

1 ỹ1 6= 0 or ‖x̃1‖2 6= ‖ỹ1‖2,
the suboptimal technique for assigning complex conjugate poles
in [11] is applied. Specifically, denotẽx2 = Re(U2q,pe2), ỹ2 =
Im(U2q,pe2) and defineX̃2q,p =

[
x̃1 x̃2

]
, Ỹ2q,p =

[
ỹ1 ỹ2

]
,

w1 = S
(2)
2q,pV2q,pe1/σ1, w2 = S

(2)
2q,pV2q,pe2/σ2, then we set

x2q+1 =
[
X̃2q,p −Ỹ2q,p

] [
γ1 γ2 ζ1 ζ2

]⊤
,

x2q+2 =
[
Ỹ2q,p X̃2q,p

] [
γ1 γ2 ζ1 ζ2

]⊤
,

v2q+1 = [Re(w1) Re(w2) −Im(w1) −Im(w2) ]
[
γ1 γ2 ζ1 ζ2

]⊤
,

v2q+2 = [ Im(w1) Im(w2) Re(w1) Re(w2) ]
[
γ1 γ2 ζ1 ζ2

]⊤
,

where
[
γ1 γ2 ζ1 ζ2

]⊤ ∈ R
4 is to be chosen such that the

function defined in (4) is optimized in some sense. We refer
readers to [11] for more details on this suboptimal technique.
Overall, the resultedT2q+2 will be in the form of (32) in this
case.

• Case iv: dim(R(S
(1)
2q,p)) = 1 and Re(u), Im(u) are

linearly independent. Here u is the left singular vec-
tor of S

(1)
2q,p corresponding to its unique nonzero singular

value σ1. In this case, suppose thatS(1)
2q,p ∈ R

n×r, and
let V2q,p ∈ R

r×r be the right singular vectors matrix
of S

(1)
2q,p. Define N1(M2q,p) = {

[
u⊤ w⊤]⊤ : w =

S
(2)
2q,pV2q,p

[
1
σ1

η2 · · · ηr
]⊤

, η2, . . . , ηr ∈ C}, then in
the sense of nonzero scaling,N1(M2q,p) is the unique subset
of N (M2q,p) satisfying z ∈ C

n, w ∈ C
p, z 6= 0 with

[
z⊤ w⊤]⊤ ∈ N (M2q,p). Write u = Re(u) + iIm(u) ∈ C

n,
w = Re(w) + iIm(w) ∈ C

p, then we have that Re(u), Im(u),

Re(w) and Im(w) satisfy






Q⊤
2 (A

[
Re(u) Im(u)

]
−Xp

[
Re(w) Im(w)

]

−
[
Re(u) Im(u)

]
D0(λ1)) = 0,

X⊤
2q

[
Re(u) Im(u)

]
= 0,

and‖w‖22 =
1−σ2

1

σ2
1

+ |η2|2 + . . .+ |ηr|2.

Since Re(u) and Im(u) are linearly independent, we shall
pursue the Jacobi orthogonal transformation in Lemma II.2 on

them, i.e.,
[
x̃2q+1 x̃2q+2

]
=

[
Re(u) Im(u)

]
[
c s
−s c

]

, and

set x2q+1, x2q+2 be the normalized vectors of̃x2q+1, x̃2q+2,
respectively. Accordingly,v2q+1, v2q+2 are defined as

[
v2q+1 v2q+2

]

=
[
Re(w) Im(w)

]
[
c s
−s c

][ 1
‖x̃2q+1‖2

1
‖x̃2q+2‖2

]

.
(37)

It is worthwhile to stress again that now we havev̆2q+s =
[
v⊤2q+s 0

]⊤
, v2q+s ∈ R

p for s = 1, 2. Be aware thatw
is unknown here since those valuesη2, . . . , ηr ∈ C have not
been specified. Notice thatD(δj+1,k(λ1)) has already been
determined withδj+1,k(λ1) =

‖x̃2q+1‖2
‖x̃2q+2‖2 , so we are to choose

appropriateη2, . . . , ηr to minimize ‖v2q+1‖22 + ‖v2q+2‖22, the
first two terms of the function defined in (4).
Define S

(2)
2q,pV2q,p =

[
w1 W

]
with w1 ∈ C

p,
Y1 =

[
Re(W ) −Im(W )

]
, Y2 =

[
Im(W ) Re(W )

]
, and

Re(y) + iIm(y) = y =
[
η2 · · · ηr

]⊤
, then with some

simple computations, we have

‖v2q+1‖22 + ‖v2q+2‖22
=
[
Re(y)⊤ Im(y)⊤

]
H

[
Re(y)⊤ Im(y)⊤

]⊤

+ g⊤
[
Re(y)⊤ Im(y)⊤

]⊤
+ ζ,

(38)

where

H =
1

‖x̃2q+1‖22
(cY1 − sY2)

⊤(cY1 − sY2)

+
1

‖x̃2q+2‖22
(sY1 + cY2)

⊤(sY1 + cY2),

g =
2

σ1

(
c2

‖x̃2q+1‖22
+

s2

‖x̃2q+2‖22

)

Y ⊤
1 Re(w1)

+
2

σ1

(
s2

‖x̃2q+1‖22
+

c2

‖x̃2q+2‖22

)

Y ⊤
2 Im(w1)

+
2cs

σ1

(
1

‖x̃2q+2‖22
− 1

‖x̃2q+1‖22

)

(Y ⊤
2 Re(w1) + Y ⊤

1 Im(w1)),

ζ =

(
c2

‖x̃2q+1‖22
+

s2

‖x̃2q+2‖22

) ‖Re(w1)‖22
σ2
1

+

(
s2

‖x̃2q+1‖22
+

c2

‖x̃2q+2‖22

) ‖Im(w1)‖22
σ2
1

+
2cs

σ2
1

(
1

‖x̃2q+2‖22
− 1

‖x̃2q+1‖22

)

Re(w1)
⊤Im(w1).

Apparently,H is symmetric semipositive definite. We can fur-
ther show thatH is nonsingular, that is, it is positive definite.
Indeed, assume thatf ∈ R

2r−2 satisfiesHf = 0, which is then
equivalent toY1f = Y2f = 0 by the definition ofH . Using the
definitions ofY1, Y2 andW , we have

Y ⊤
1 Y1 + Y ⊤

2 Y2 = I2(r−1). (39)

So it must hold thatf = 0, which implies thatH is symmetric
positive definite. Consequently, the minimizer of (38) can be
given by

[
Re(y)⊤ Im(y)⊤

]⊤
= −1

2
H−1g.
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Accordingly, v2q+1 andv2q+2 can be computed by (37). In all,
in this case, the size ofDkk(λ1) in T2q is increased by2, and
T2q+2 being of the form of (32) will be obtained.

• Case v: dim(R(S
(1)
2q,p)) = 1 and Re(u), Im (u) are linearly

dependent, ordim(R(S
(1)
2q,p)) = 0. In this case, we cannot

find x2q+1, x2q+2 and v2q+1, v2q+2 ∈ R
p satisfying (34),

meaning thatT2q+2 cannot be chosen in the form of (32).
Instead, we setT2q+2 in the form of (33) to continue the
assigning process, which leads to:







Q⊤
2 (A

[
x2q+1 x2q+2

]
−X2q

[
v2q+1 v2q+2

]

−
[
x2q+1 x2q+2

]
D(δ1,k+1(λ1))) = 0,

X⊤
2q

[
x2q+1 x2q+2

]
= 0,

[
x2q+1 x2q+2

]⊤ [
x2q+1 x2q+2

]
= I2,

(40)

with v2q+1, v2q+2 ∈ R
2q . Denoteδ1,k+1(λ1) = δ2

δ1
with 0 6=

δ1 ∈ R andδ2 ∈ R, then (40) is equivalent to some constraints
similar to those in (35), where the essential difference here is
that the parameterp in (35) is replaced by2q. More specifically,
the matrixM2q,p in (36) now turns toM2q,2q , where the(1, 2)
block is−Q⊤

2 X2q presently, instead of−Q⊤
2 Xp. Bear in mind

that now we havev2q+1 ∈ R
2q and v2q+2 ∈ R

2q , indicating
that the2× 2 block T (2q+1 : 2q+2, 2q+1 : 2q+2) locates
in the (k + 1)-th diagonal blockDk+1,k+1(λ1) of T2a1 . Now,
we are to computex2q+1, x2q+2, v2q+1 and v2q+2 satisfying
some nonlinear constraints such that the corresponding objective
function specified as (4) is optimized.
The forthcoming Theorem 2 in Subsection III-C demonstrates
that dim(N (M2q,2q)) = m and there exists

[
z⊤ w⊤]⊤ ∈

N (M2q,2q) with z ∈ R
n, w ∈ R

2q such thatz 6= 0 and Re(z)
and Im(z) are linearly independent, meaning that we can always
find x2q+1, x2q+2, v2q+1 andv2q+2 to satisfy (40).

Suppose that the columns ofS2q,2q =
[

S
(1)⊤

2q,2q S
(2)⊤

2q,2q

]⊤
with

S
(1)
2q,2q ∈ C

n×m, S(2)
2q,2q ∈ C

2q×m, form an orthonormal basis
of N (M2q,2q) and letS(1)

2q,2q = U2q,2qΣ2q,2qV
∗
2q,2q be the SVD

of S(1)
2q,2q , with the singular values in decreasing order. Different

placing strategies based onrank(S(1)
2q,2q) will be employed to

acquire the(2q + 1)-th and(2q + 2)-th columns ofX andT .
Notice that Theorem 2 ensures thatrank(S

(1)
2q,2q) ≥ 1.

If rank(S
(1)
2q,2q) = 1, thenS(1)

2q,2q has only one nonzero singular
valueσ1 with u = U2q,2qe1 being its corresponding left singular
vector. Theorem 2 assures that Re(u) and Im(u) must be linearly
independent. Then the assigning procedure is similar as that in
Case iv. While rank(S

(1)
2q,2q) > 1, the assigning procedure is

similar as that inCase iii.
Accordingly, in either situation, we can compute
x2q+1, x2q+2, v2q+1, v2q+2 with T2q+2 in the form of
(33). Moreover, in this case,nk is fixed, andnk+1 is initially
set to be 1.

The above placing process can be proceeded with until all{λ1, λ̄1}
have been assigned. From the assigning process, we can see that if
T2q = D11(λ1) in (31), M2q,p defined in (36) would be

M2q,0 =

[
Q⊤

2 (A− λ1In)
X⊤

2q

]

,

whererank(M2q,0) ≤ (n−m)+2q. Thus provided thatq ≤ ⌊m
2
⌋−1,

we havedim(N (M2q,0)) ≥ 2, which will lead the resulted(2q+2)×
(2q+2) leading principal submatrixT2q+2 of T in the form of (32),
i.e., T2q+2 = diag(T2q, D(δq+1,1(λ1))), suggesting that the size of
the first diagonal block inT2a1 is increased by2. Consequently, in the
case ofa1 ≤ ⌊m

2
⌋, bothλ1 and λ̄1 can be placed withg1 = a1, that

is, they are assigned as semi-simple eigenvalues ofAc = A+BF .

The procedure assigning{λ1, λ̄1} is summarized in the following
Algorithm 2.

Algorithm 2 Assigning complex conjugate{λ1, λ̄1}
Input:

A,Q2, λ1 ∈ C with Im(λ1) 6= 0 anda1 (the multiplicity of λ1).
Output:

OrthogonalX2a1 and upper quasi-triangularT2a1 .
1: Find S = S1 + iS2, whose columns form an orthonormal basis

of N (Q⊤
2 (A− λ1In)).

2: if S⊤
1 S2 = 0 andS⊤

1 S1 = 1
2
Im then

3: Set y1, y2 ∈ R
m be any vectors with‖y1‖2 = ‖y2‖2 = 1;

computex1, x2 by (27) and setT2 = D0(λ1).
4: else
5: Computex1, x2 by (27) with y1, y2 ∈ R

m defined as in (29);
normalizex1, x2 and setT2 = D0(λ1).

6: end if
7: Setj = 2, k = 0.
8: while j < 2a1 do
9: Find

Sj,k =

[

S
(1)
j,k

S
(2)
j,k

]

n
k

,

whose columns form an orthonormal basis of the null space

of Mj,k =

[
Q⊤

2 (A− λ1In) −Q⊤
2 Xk

X⊤
j 0

]

; compute the SVD

of S(1)
j,k = Uj,kΣj,kV

∗
j,k.

10: if rank(S
(1)
j,k ) ≥ 2 then

11: Compute the(j + 1)-th and (j + 2)-th columns ofX2a1

andT2a1 as inCase iii; set j = j + 2.
12: else if rank(S(1)

j,k ) = 1 and Re(Uj,ke1) and Im(Uj,ke1) are
linearly independentthen

13: Compute the(j + 1)-th and (j + 2)-th columns ofX2a1

andT2a1 as inCase iv; set j = j + 2.
14: else
15: Find

Sj,j =

[

S
(1)
j,j

S
(2)
j,j

]

n
j

,

whose columns form an orthonormal basis of the null space

of Mj,j =

[
Q⊤

2 (A− λ1In) −Q⊤
2 Xj

X⊤
j 0

]

; compute the(j+

1)-th and(j +2)-th columns ofX2a1 andT2a1 as inCase
v; setk = j and j = j + 2.

16: end if
17: end while

B. Assigning repeated polesλj+1 (j ≥ 1)

Suppose that the polesλ1, . . . , λj have been assigned. Here the set
{λ1, . . . , λj} is closed under complex conjugate. That is, we have
already obtainedXr0 =

[
x1 x2 · · · xr0

]
∈ R

n×r0 and the
r0 × r0 leading principal submatrixTr0 of T satisfying

Q⊤
2 (AXr0 −Xr0Tr0) = 0, X⊤

r0Xr0 = Ir0 ,

where r0 =
∑j

k=1 ak with a1, . . . , aj being the multiplicities of
λ1, . . . , λj , respectively, and

λ(Tr0) = {λ1, . . . , λ1
︸ ︷︷ ︸

a1

, . . . , λj , . . . , λj
︸ ︷︷ ︸

aj

} ⊂ L.

Then we are to assignλj+1 with multiplicity aj+1. Here we assume
aj+1 > 1. Similarly, we will again distinguish into two different
cases whenλj+1 is real or non-real.
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1) λj+1 is real: To make the geometric multiplicity ofλj+1 as
large as possible, we takeT (r0 +1 : r0 + aj+1, r0 +1 : r0 + aj+1),
the block diagonal part inT corresponding toλj+1, in the special
form of

T (r0 + 1 : r0 + aj+1, r0 + 1 : r0 + aj+1)

=

n1 n2 · · · nl







D11(λj+1) ∗ · · · ∗
D22(λj+1) · · · ∗

. . .
...

Dll(λj+1)








n1

n2

...
nl

,

(41)

whereDkk(λj+1) = λj+1Ink
, k = 1, . . . , l, and

∑l

k=1 nk = aj+1.
With this form, the geometric multiplicity ofλj+1 will be no less
thanmax{nk : k = 1, . . . , l}. Theoretically, ifn1 = aj+1, λj+1

achieves its maximum geometric multiplicity and serves as asemi-
simple eigenvalue ofAc, which is the most desirable. However,n1

can not be chosen to be equal toaj+1 in some cases.
The assigning process of obtaining the columns ofX and T

corresponding to the first diagonal blockD11(λj+1) in (41) is as
below. By noting the form ofT (r0+1 : r0+aj+1, r0+1 : r0+aj+1)
in (41), then comparing the(r0+1)-th to the(r0+n1)-th columns of
(2) shows that the corresponding columns ofX andT must satisfy
[
x⊤
r0+k v⊤r0+k

]⊤ ∈ N (Mr0,r0) for 1 ≤ k ≤ n1, where

Mr0,r0 =

[
Q⊤

2 (A− λj+1In) −Q⊤
2 Xr0

X⊤
r0

0

]

, (42)

and v̆r0+k =
[
v⊤r0+k 0

]⊤
, vr0+k ∈ R

r0 for 1 ≤ k ≤ n1. Let the
columns of

Sr0,r0 =

[

S
(1)
r0,r0

S
(2)
r0,r0

]

n
r0

(43)

be an orthonormal basis ofN (Mr0,r0). Write rr0 = rank(S
(1)
r0,r0),

which indicates that we can select at mostrr0 linearly independent
vectors fromR(S

(1)
r0,r0). That is,n1 cannot exceedrr0 . Similarly as

the previous subsection — Subsection III-A1,rr0 must be nonzero to
assure that the assigning procedure would not interrupt. The related
results are summarized in Theorem 1 in Subsection III-C. In the
following, two different cases will be disposed separately.

• Case i:aj+1 ≤ rr0 . In this case, we setn1 = aj+1. With this
choice,λj+1 will act as a semi-simple eigenvalue ofAc. Then
to get a small departure from normality ofAc, it is natural to
consider the following optimization problem:

min ‖
[
vr0+1 vr0+2 . . . vr0+aj+1

]
‖2F (44a)

s.t.







Mr0,r0

[
xr0+1 · · · xr0+aj+1

vr0+1 · · · vr0+aj+1

]

= 0,

[
xr0+1 · · · xr0+aj+1

]⊤
[
xr0+1 · · · xr0+aj+1

]
= Iaj+1 .

(44b)

Apparently, it can be solved by the same method that solves (13).
Once the solution is obtained,Xr0 andTr0 will be updated as

Xr0+aj+1

=
[
Xr0 xr0+1 . . . xr0+aj+1

]
∈ R

n×(r0+aj+1),

Tr0+aj+1

=





Tr0 vr0+1 · · · vr0+aj+1

λj+1Iaj+1



 ∈ R
(r0+aj+1)×(r0+aj+1),

(45)

where Tr0+aj+1 is the (r0 + aj+1) × (r0 + aj+1) leading
principal submatrix ofT .

• Case ii: aj+1 > rr0 . In this case, the maximum possible
value ofn1 is rr0 , and we then setn1 = rr0 . Similarly to Case
ii in Subsection III-A1, letS(1)

r0,r0 = Ur0,r0Σr0,r0V
⊤
r0,r0 be the

SVD of S(1)
r0,r0 with σ1,r0 , . . . , σrr0 ,r0 being its singular values,

then we take
[
xr0+1 · · · xr0+rr0

]
= Ur0,r0

[
e1 · · · err0

]
,

[
vr0+1 . . . vr0+rr0

]

=S(2)
r0,r0Vr0,r0

[
e1 . . . err0

]
diag(

1

σ1,r0

, . . . ,
1

σrr0 ,r0

),

and updateXr0 andTr0 as

Xr0+n1 = Xr0+rr0

=
[
Xr0 xr0+1 · · · xr0+rr0

]
∈ R

n×(r0+rr0 ),

Tr0+n1 = Tr0+rr0

=





Tr0 vr0+1 · · · vr0+rr0

λj+1Irr0



 ∈ R
(r0+rr0 )×(r0+rr0 ).

(46)

Hence, ifaj+1 ≤ rr0 , all λj+1 have been assigned, and we can
continue withλj+2; while in the case ofaj+1 > rr0 , we still need to
perform a similar procedure asCase iandCase ii until all λj+1 are
assigned. Ultimately, we would acquire the(r0+aj+1)×(r0+aj+1)
leading principal submatrix ofT being of the form

Tr0+aj+1

=








Tr0 ∗ · · · ∗
λj+1In1 · · · ∗

. . .
...

λj+1Inl







∈ R

(r0+aj+1)×(r0+aj+1),

where
∑l

k=1 nk = aj+1. Furthermore, the geometric multiplicity
gj+1 of λj+1 satisfiesmax{nk : k = 1, . . . , l} ≤ gj+1 ≤ m. We
synthesize the assigning process ofλj+1 in Algorithm 3.

2) λj+1 is non-real: Let λj+1 = αj+1+iβj+1 with αj+1, βj+1 ∈
R andβj+1 6= 0. In this part, we shall sketch the process of assigning
all complex conjugate pairs{λj+1, λ̄j+1}. Denote the algebraic
multiplicity and geometric multiplicity ofλj+1 (and λ̄j+1) by aj+1

and gj+1, respectively. To make the geometric multiplicitygj+1 as
large as possible, similarly asT2a1 in Subsection III-A2, we take
T (r0 + 1 : r0 + 2aj+1, r0 + 1 : r0 + 2aj+1) in the special form of

T (r0 + 1 : r0 + 2aj+1, r0 + 1 : r0 + 2aj+1)

=

2n1 2n2 · · · 2nl







D11(λj+1) ∗ · · · ∗
D22(λj+1) · · · ∗

. . .
...

Dll(λj+1)








2n1

2n2

...
2nl

,

(47)

where Dkk(λj+1) = diag(D(δ1,k(λj+1)), . . . , D(δnk,k(λj+1)))
with

D(δp,k(λj+1))

=

[

Re(λj+1) δp,k(λj+1)Im(λj+1)
− 1

δp,k(λj+1)
Im(λj+1) Re(λj+1)

]

,
(48)
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Algorithm 3 Assigning realλj+1

Input:
A,Q2, Xr0 , Tr0 , λj+1 ∈ R andaj+1 (the multiplicity of λj+1).

Output:
OrthogonalXr0+aj+1 and upper quasi-triangularTr0+aj+1 .

1: Setq = 0.
2: while q < aj+1 do
3: Find

S =

[
S1

S2

]
n
r0 + q

,

whose columns form an orthonormal basis ofN (Mr0+q,r0+q),
where

Mr0+q,r0+q =

[
Q⊤

2 (A− λj+1In) −Q⊤
2 Xr0+q

X⊤
r0+q 0

]

;

4: if (aj+1 − q) ≤ rank(S1) then
5: Solve the optimization problem (44) withr0 replaced by

(r0 + q) andaj+1 by (aj+1 − q);
6: UpdateXr0+q andTr0+q similarly as (45), setq = aj+1.
7: else
8: UpdateXr0+q and Tr0+q similarly as (46), setq = q +

rank(S1).
9: end if

10: end while

0 6= δp,k(λj+1) ∈ R, p = 1, . . . , nk, k = 1, . . . , l, and
∑l

k=1 nk =
aj+1. Apparently, as eigenvalues ofAc, the geometric multiplicity
gj+1 of λj+1 (and λ̄j+1) is no less thanmax{nk : k = 1, . . . , l}.

Similarly as that in Subsection III-A2, we shall place one complex
conjugate pair{λj+1, λ̄j+1} at a time, obtaining two columns ofT
andX corresponding to the2×2 matrixD(δp,k(λj+1)) concurrently.

Firstly, we dispose the issue that how to obtain the(r0+1)-th and
(r0+2)-th columns ofX andT . Notice thatT (r0+1 : r0+2, r0+1 :
r0+2) = D(δ1,1(λj+1)). Defineδ1,1(λj+1) =

δ2
δ1

with 0 6= δ1 ∈ R

andδ2 ∈ R, then it follows from [11] that

Mr0,r0

[ 1
δ1
xr0+1 + i 1

δ2
xr0+2

1
δ1
vr0+1 + i 1

δ2
vr0+2

]

= 0, (49)

where the definition ofMr0,r0 is analogous to that specified in (42)
and v̆r0+k =

[
v⊤r0+k 0

]⊤
, vr0+k ∈ R

r0 for k = 1, 2. And the in-
trinsical changing onMr0,r0 is that nowλj+1 ∈ C with Im(λj+1) 6=
0. Accordingly, to get properxr0+1, xr0+2, vr0+1, vr0+2, δ1 andδ2,
we need to minimize the function defined in (4) subject to the two
constraints (49) and

[
xr0+1 xr0+2

]⊤ [
xr0+1 xr0+2

]
= I2.

Theorem 2 in the forthcoming Subsection III-C shows that
dim(N (Mr0,r0)) = m and there exists

[
z⊤ w⊤]⊤ ∈ N (Mr0,r0)

with 0 6= z ∈ C
n, w ∈ C

r0 and Re(z), Im(z) being linearly inde-

pendent. DefineSr0,r0 =
[

S
(1)⊤

r0,r0 S
(2)⊤

r0,r0

]⊤
with S

(1)
r0,r0 ∈ C

n×m,

S
(2)
r0,r0 ∈ C

r0×m, whose columns form an orthonormal basis of
N (Mr0,r0), the placing process will be realized through addressing
two distinct cases uponrank(S(1)

r0,r0). For convenience, we denote the
left and right singular vectors ofS(1)

r0,r0 , corresponding to its largest
singular valueσ1, by u andv, respectively.

If rank(S(1)
r0,r0) ≥ 2, a similar placing process as that inCase iii in

Subsection III-A2 will be implemented. That is, if Re(u)⊤Im(u) = 0

and ‖Re(u)‖2 = ‖Im(u)‖2 =
√

2
2

, we setxr0+1 =
√
2Re(u),

xr0+2 =
√
2Im(u), and vr0+1 =

√
2Re(S(2)

r0,r0v/σ1), vr0+2 =√
2Im(S

(2)
r0,r0v/σ1). Otherwise, the complex conjugate pair placing

strategy in [11] would be applied. Whenrank(S(1)
r0,r0) = 1, Theorem

2 in the following subsection would guarantee that Re(u) and

Im(u) are linearly independent. We then apply the Jacobi orthogonal
transformation in Lemma II.2 to orthogonalize Re(u) and Im(u), and
then normalize the resulted vectors asxr0+1 andxr0+2. Furthermore,
vr0+1 and vr0+2 will be obtained by minimizing some function
defined similarly as that in (38). The process resembles thatin Case
iv in Subsection III-A2, and we omit details here.

Now assume that we have obtained2q ( 1 ≤ q < aj+1) columns
of X and T corresponding to{λj+1, λ̄j+1}, we then proceed to
compute the(r0+2q+1)-th and(r0+2q+2)-th columns ofX andT ,
which virtually are associated with the diagonal blockT (r0+2q+1 :
r0 + 2q + 2, r0 + 2q + 1 : r0 + 2q + 2) in T . The whole procedure
is similar to what we do to get the(2q + 1)-th and (2q + 2)-th
columns ofX andT in Subsection III-A2, and we just give a concise
presentation.

Assume that

Tr0+2q =










Tr0 ∗ · · · ∗

D11(λj+1) · · · ∗
. . .

...
Dtt(λj+1)










,

whereDkk(λj+1) ∈ R
2nk×2nk , k = 1, . . . , t, andT (r0 + 2q − 1 :

r0 + 2q, r0 + 2q − 1 : r0 + 2q) = D(δs,t(λj+1)), indicating that
T (r0 + 2q − 1 : r0 + 2q, r0 + 2q − 1 : r0 + 2q) is the s-th 2 × 2
diagonal block inDtt(λj+1). Denotep = r0 + 2n1 + · · ·+ 2nt−1.
Then likeT2q+2 in Subsection III-A2,Tr0+2q+2 could be in the form
of

Tr0+2q+2 =









Tp ∗ vr0+2q+1 vr0+2q+2

Dtt(λj+1) 0

D(δs+1,t(λj+1))









,

vr0+2q+1, vr0+2q+2 ∈ R
p,

(50)

or

Tr0+2q+2 =





Tr0+2q vr0+2q+1 vr0+2q+2

D(δ1,t+1(λj+1))



 ,

vr0+2q+1, vr0+2q+2 ∈ R
r0+2q.

And to get a largegj+1, we incline toTr0+2q+2 being of the form
in (50), which suggests that we need to regard the null space of
Mr0+2q,p, where

Mr0+2q,p =

[
Q⊤

2 (A− λj+1In) −Q⊤
2 Xp

X⊤
r0+2q 0

]

. (51)

Suppose that the columns of

Sr0+2q,p =

[

S
(1)
r0+2q,p

S
(2)
r0+2q,p

]

n
p

form an orthonormal basis ofN (Mr0+2q,p). Then the assigning
procedure is similar as that in Subsection III-A2, which is accom-
plished by distinguishing three different cases:rank(S

(1)
r0+2q,p) ≥ 2,

rank(S
(1)
r0+2q,p) = 1 and Re(u) and Im(u) are linearly independent

with u being the left singular vector ofS(1)
r0+2q,p corresponding to its

only nonzero singular value, and otherwise.
Guaranteed by Theorem 2 below, we can proceed with the above

assigning procedure till all columns ofX and T corresponding to
{λj+1, λ̄j+1} are acquired, which eventually yieldsT (r0 +1 : r0 +
2aj+1, r0 + 1 : r0 + 2aj+1) being of the special form specified
in (47). And we recapitulate the assigning process of the repeated
complex poles{λj+1, λ̄j+1} in Algorithm 4.
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Algorithm 4 Assigning complex conjugate{λj+1, λ̄j+1}
Input:

A, Q2, Xr0 , Tr0 , λj+1 ∈ C with Im(λj+1) 6= 0 andaj+1 (the
multiplicity of λj+1).

Output:
OrthogonalXr0+2aj+1 and upper quasi-triangularTr0+2aj+1 .

1: Set l = k = r0.
2: while l < r0 + 2aj+1 do
3: Find

Sl,k =

[

S
(1)
l,k

S
(2)
l,k

]

n
k

,

whose columns form an orthonormal basis of the null space of

Ml,k =

[
Q⊤

2 (A− λj+1In) −Q⊤
2 Xk

X⊤
l 0

]

; compute the SVD

of S(1)
l,k = Ul,kΣl,kV

∗
l,k.

4: if rank(S
(1)
l,k ) ≥ 2 then

5: Compute the(l+1)-th and(l+2)-th columns ofXr0+2aj+1

andTr0+2aj+1 as inCase iii in Subsection III-A2; setl =
l + 2;

6: else if rank(S
(1)
l,k ) = 1 and Re(Ul,ke1), Im(Ul,ke1) are

linearly independentthen
7: Compute the(l+1)-th and(l+2)-th columns ofXr0+2aj+1

andTr0+2aj+1 as inCase iv in Subsection III-A2; setl =
l + 2;

8: else
9: Find

Sl,l =

[

S
(1)
l,l

S
(2)
l,l

]

n
l

,

whose columns form an orthonormal basis of the null

space ofMl,l =

[
Q⊤

2 (A− λj+1In) −Q⊤
2 Xl

X⊤
l 0

]

; compute

the (l + 1)-th and (l + 2)-th columns ofXr0+2aj+1 and
Tr0+2aj+1 as inCase vin Subsection III-A2; setk = l and
l = l + 2.

10: end if
11: end while

C. Theoretical support

While assigning repeated real poles, the assigning procedure de-
scribed in Subsections III-A1 and III-B1 can be carried on only if
the ranks ofS(1)

q,q in (12) andS(1)
r0,r0 in (43) are nonzero, which is

guaranteed by the following theorem.

Theorem 1. Assume that(A,B) is controllable. Suppose that the
poles λ1, . . . , λj ∈ L, with multiplicities a1, . . . , aj , respectively,
have been assigned. Letx1, . . . , xr be the corresponding columns of
X obtained from the assigning process in former subsections,where
r =

∑j

k=1 ak. Assume thatλ ∈ R is distinct fromλ1, . . . , λj ,
and has been assignedq times with the corresponding columns
xr+1, . . . , xr+q (r + q < n) in X being obtained. DenoteXr+q =
[
x1 · · · xr+q

]
and

Mr+q,r+q =

[
Q⊤

2 (A− λIn) −Q⊤
2 Xr+q

X⊤
r+q 0

]

.

Let the columns of

S =

[
S1

S2

]
n
r + q

be an orthonormal basis ofN (Mr+q,r+q). Thendim(R(S)) = m
andS1 6= 0.

Proof: The conclusiondim(N (Mr+q,r+q)) = m is just that
Mr+q,r+q is of full row rank. Assume thatu ∈ R

n−m andv ∈ R
r+q

satisfy
[
u⊤ v⊤

]
Mr+q,r+q = 0, that is,

u⊤Q⊤
2 (A− λIn) + v⊤X⊤

r+q = 0, (52a)

u⊤Q⊤
2 Xr+q = 0. (52b)

Post-multiplyingXr+q on both sides of (52a) gives

u⊤Q⊤
2 (A− λIn)Xr+q + v⊤ = 0. (53)

SubstitutingQ⊤
2 AXr+q = Q⊤

2 Xr+qTr+q into (53) leads tov =
0 and u⊤Q⊤

2 (A − λIn) = 0 by (52b). Thusu = 0 since
(A,B) is controllable. SoMr+q,r+q is of full row rank, and hence
dim(N (Mr+q,r+q)) = m.

Now we are to proveS1 6= 0. It holds obviously if(r + q) < m.
We now consider the case when(r+ q) ≥ m. Assume thatS1 = 0,
thenrank(S2) = m andQ⊤

2 Xr+qS2 = 0. Hence there must exist a
nonsingular matrixW ∈ R

m×m such that

Xr+qS2 = BW. (54)

SinceQ⊤
2 AXr+q = Q⊤

2 Xr+qTr+q with Tr+q being the(r + q) ×
(r+q) leading principal submatrix ofT , so there must exist a matrix
K ∈ R

m×(r+q) such that

AXr+q = Xr+qTr+q +BK. (55)

Post-multiplying S2 on both sides of (55) and substituting (54)
into it give ABW = Xr+qTr+qS2 + BKS2. Noticing thatW is
nonsingular, so

AB = Xr+qTr+qS2W
−1 +Xr+qS2W

−1KS2W
−1.

DenoteG1 = Tr+qS2W
−1 + S2W

−1KS2W
−1, then it can be

simply verified by induction thatAkB = Xr+qGk with Gk =
Tr+qGk−1 + S2W

−1KGk−1. And this eventually leads to
[
B AB · · · An−1B

]
= Xr+qL

for some L ∈ R
(r+q)×mn, which implies that

rank(
[
B AB · · · An−1B

]
) ≤ (r+ q) < n, contradicting with

the controllability of(A,B). HenceS1 6= 0.

While assigning non-real repeated poles, continuing the assigning
process is based on the facts that the matrixMj,j , appearing in Step
15 in Algorithm 2, satisfies thatdim(N (Mj,j)) = m and there exists
[
z⊤ w⊤]⊤ ∈ N (Mj,j) with z ∈ R

n, w ∈ R
j , such thatz 6= 0 and

Re(z) and Im(z) are linearly independent. This also applies to Step
9 in Algorithm 4. The following Theorem then ensures that these
processes can be continued.

Theorem 2. Assume that (A,B) is controllable. Let
{λ1, . . . , λj} ⊂ L be a self-conjugate subset witha1, . . . , aj being
the multiplicities of λ1, . . . , λj , respectively, and letx1, . . . , xr

be the associate columns ofX obtained from the assigning
process in previous subsections, wherer =

∑j

k=1 ak. Assume that
λ = α+ iβ ∈ C (β 6= 0) is some pole distinct fromλ1, . . . , λj , and
xr+1, xr+2, . . ., xr+2q−1, xr+2q (r + 2q < n) are the columns of
X corresponding to complex conjugate paris{λ, λ̄}. Define

Mr+2q,r+2q =

[
Q⊤

2 (A− λIn) −Q⊤
2 Xr+2q

X⊤
r+2q 0

]

,

and let the columns of

S =

[
S1

S2

]
n
r + 2q

be an orthonormal basis ofN (Mr+2q,r+2q), then we have
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(1) dim(R(S)) = m;
(2) S1 6= 0;
(3) there exist0 6= z = Re(z) + iIm(z) ∈ C

n and w ∈ C
r+2q

with Re(z) and Im(z) being linearly independent, such that
[
z⊤ w⊤]⊤ ∈ R(S).

Proof: We can prove the(1), (2) results by the method proving
Theorem 1, and we skip the proof process here.

Regarding(3), if dim(N (Q⊤
2 Xr+2q)) < (m−1), then there exist

two vectors
[
z⊤1 w⊤

1

]⊤
,
[
z⊤2 w⊤

2

]⊤ ∈ R(S) with 0 6= z1 ∈
C

n, 0 6= z2 ∈ C
n, and z1, z2 being linearly independent. Let

[
z⊤ w⊤]⊤ = (ξ1 + iη1)

[
z⊤1 w⊤

1

]⊤
+ (ξ2 + iη2)

[
z⊤2 w⊤

2

]⊤
,

ξ1, ξ2, η1, η2 ∈ R, then we can always find suitableξ1, ξ2, η1, η2
such that the real part and the imaginary part of the resulted
z are linearly independent. Ifdim(N (Q⊤

2 Xr+2q)) = (m − 1),
assume thatw1, . . . , wm−1 ∈ C

r+2q form an orthonormal basis
of N (Q⊤

2 Xr+2q) and 0 6= z = (1 + iζ)y, y ∈ R
n, w ∈ C

r+2q

satisfy
[
z⊤ w⊤]⊤ ∈ R(S) with ‖z‖22 + ‖w‖22 = 1. Obviously,

it holds thatQ⊤
2 (A − αIn)y + βζQ⊤

2 y = Q⊤
2 Xr+2qRe(w) and

ζQ⊤
2 (A − αIn)y − βQ⊤

2 y = Q⊤
2 Xr+2qIm(w). Thus there exist

u, v ∈ R
m such that
{

(A− αIn)y + βζy −Xr+2qRe(w) = Bu,
ζ(A− αIn)y − βy −Xr+2q Im(w) = Bv.

(56)

It follows from (56) that

β(1 + ζ2)y +Xr+2q(Im(w)− ζRe(w))

=ζBu−Bv, (57a)

(1 + ζ2)(A− αIn)y −Xr+2q(ζIm(w) + Re(w))

=Bu+ ζBv. (57b)

SinceQ⊤
2 Xr+2q

[
w1 · · · wm−1

]
= 0, hence

Xr+2q

[
w1 · · · wm−1

]
= BG (58)

for someG ∈ R
m×(m−1) with rank(G) = m − 1. And it follows

from Q⊤
2 AXr+2q = Q⊤

2 Xr+2qTr+2q that

AXr+2q = Xr+2qTr+2q +BZ (59)

for someZ ∈ R
m×(r+2q). Now define

Y =





w1 · · · wm−1 Im(w)− ζRe(w)

0 β(1 + ζ2)



 ,

L =
[
G ζu− v

]
,

M =

[
Tr+2q

1
1+ζ2

(ζIm(w) + Re(w))

0 α

]

,

E =
[

Z 1
1+ζ2

(u+ ζv)
]

.

Noting (57a), (57b), (58) and (59), then the following equations
[
Xr+2q y

]
Y = BL,

A
[
Xr+2q y

]
=

[
Xr+2q y

]
M +BE

(60)

hold, whereL is nonsingular since
[
Xr+2q y

]
is of full col-

umn rank. Then (60) shows thatAB =
[
Xr+2q y

]
H1 with

H1 = MY L−1 + Y L−1EY L−1. Hence by induction, we will
get that Al+1B =

[
Xr+2q y

]
Hl+1, where Hl+1 = MHl +

Y L−1EHl with l ≥ 1. Eventually,
[
B AB · · · An−1B

]
=

[
Xr+2q y

] [
Y L−1 H1 · · · Hn−1

]
, suggesting that

rank(
[
B AB · · · An−1B

]
) < n.

This contradicts with the assumption that(A,B) is controllable. Thus
we have proved(3).

D. Algorithm

The framework of our algorithm referred to as “Schur-multi”
is given in this subsection. We assume that repeated real poles appear
together inL, while repeated complex conjugate poles appear in pairs,
that is, they appear as{λ, λ̄}, . . . , {λ, λ̄}

︸ ︷︷ ︸

a

in L adjacently, wherea is

the counting time (the algebraic multiplicity) ofλ (and λ̄) in L. The
Schur-multi algorithm below combines techniques designed for
simple poles in [11] and techniques for repeated poles in this paper.
Again, we denote the multiplicity ofλj ∈ L by aj .

Algorithm 5 Framework of our Schur-multi algorithm.

Input:
A,B andL = {λ1, . . . , λn}.

Output:
The feedback matrixF .

1: Compute the QR decomposition ofB = Q
[
R⊤ 0

]⊤
=

[
Q1 Q2

] [
R⊤ 0

]⊤
= Q1R.

2: if a1 = 1 then
3: Compute the initial columns ofX and T by Schur-rob

[11]; set j = 1 for λ1 ∈ R and j = 2 for λ1 ∈ C.
4: else if λ1 ∈ R then
5: ComputeXa1 andTa1 by Algorithm 1; setj = a1.
6: else
7: ComputeX2a1 andT2a1 by Algorithm 2; setj = 2a1.
8: end if
9: while j < n do

10: if aj+1 = 1 then
11: Compute the corresponding columns ofX and T by

Schur-rob [11]; setj = j+1 for λj+1 ∈ R andj = j+2
for λj+1 ∈ C.

12: else if λj+1 ∈ R then
13: ComputeXj+aj+1 and Tj+aj+1 by Algorithm 3; setj =

j + aj+1.
14: else
15: ComputeXj+2aj+1 andTj+2aj+1 by Algorithm 4; setj =

j + 2aj+1.
16: end if
17: end while
18: ComputeF by F = R−1Q⊤

1 (XnTnX
⊤
n − A).

IV. N UMERICAL EXAMPLES

In this section, we illustrate the performance of our
Schur-multi method by comparing with the MATLAB functions
place [14], robpole [28] and theSchur-rob method [11] on
some examples.

Similarly to [11], we define

precs =

⌈

max
1≤j≤n

(log(|λj − λ̂j

λj

|))
⌉

to characterize the precision of the assigned poles, whereλ̂j , j =
1, . . . , n, are the computed eigenvalues of the obtained closed-loop
system matrixAc = A + BF . Actually, precs is the ceiling value
of the exponent of the maximum relative error ofλ̂j (j = 1, . . . , n),
relative to the entries inL. Obviously, smallerprecs would imply
more accurately computed poles. Regarding the robustness of the
closed-loop system, different measures are used in these methods
for solving the SFRPA. We will compare three measures for all
methods. Specifically, assume that the spectral decomposition and
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the real Schur decomposition ofAc = A+BF respectively are

A+BF = XΛX−1, A+BF = UTU⊤,

whereΛ is diagonal,T is upper quasi-triangular andU is orthog-
onal. Then the measures adopted inplace and robpole are
closely related to the condition number of the eigenvectorsmatrix
X, i.e. κF (X) = ‖X‖F ‖X−1‖F , while Schur-rob and our
Schur-multi aim to minimize the departure from normality of
Ac (denoted by“dep.”). We also display the Frobenius norm of the
feedback matrixF (denoted by“‖F‖F ”), which is also regarded
as a measure of robustness in some literature. In addition, the
CPU time for all methods is also presented. Whenrobpole is
applied, the maximum number of sweep is set to be the default
value5 for all examples. All calculations are carried out by running
MATLAB R2012a, with machine epsilonǫ ≈ 2.2 × 10−16, on an
Intel R©CoreTM i3, dual core, 2.27 GHz machine, with2.00 GB RAM.

The first illustrative set includes CARE examples1.6, 2.9 #1[1]
and DARE example1.12 [2], in which some poles are repeated and
real. Additional, in the following TABLE I and TABLE II, we will
useα(k) to representα× 10k for space saving.

Example IV.1. The three examples in this test set come from the
SLICOT CARE/DARE benchmark collections [1], [2]. The numerical
results on precision and robustness for these four algorithms are
exhibited in TABLE I. Concerning the CARE example2.9 #1,
compared withSchur-rob, our Schur-multi does not make
improvement on“precs”. The reason might be that some poles are
rather close to the imaginary axis. This is a weakness of the Schur-
type methods. Note that we do not list the“precs” values for the
DARE example1.12 since some algorithms could not achieve any
relative accuracy for certain assigned poles. And in TABLE II, we
display the differences between the placed poles and the eigenvalues
of the computedAc obtained from distinct methods. The “exact
poles” column gives the exact values of the poles to be assigned.
TABLE II shows that ourSchur-multi produces the best result
on this example.

All test sets in the following two examples are randomly generated
by the “randn” command in MATLAB, whereL contains some
repeated poles (real or non-real).

Example IV.2. This example consists of two test sets. The first
test set, which is to illustrate the performance of all methods when
repeated poles are all real, contains70 random examples, wheren
varies from 3 to 13 increased by 2, andm is set to be2, ⌊n

2
⌋, n− 1

for eachn. For each fixed(n,m), the greatest multiplicityamax

of all real poles increases from1 to m in increment of 1. All
examples are generated as follows. We first randomly generate a
nonsingular matrixY ∈ R

n×n andB ∈ R
n×m, F ∈ R

m×n by the
MATLAB function randn and the assigned polesL = {randn ×
ones(1, amax),randn(1, n−amax)}, then setA = Y ΛY −1−BF ,
where the diagonal elements of the diagonal matrixΛ are those in
L. TakingA,B andL as the input, we apply the methodsplace,
robpole, Schur-rob and Schur-multi to these examples,
where the poles are assigned in ascendant order.

For concision, we only list results forn = 13. Results for other
examples are quite similar. Specifically, Fig. 1 to Fig. 4 show the
three measures of robustness and the precision of the computed poles
by all four methods, and Fig. 5 plots the ratios of the CPU time
costs ofplace, robpole andSchur-rob with respect to that of
Schur-multi. In each figure, the three subfigures correspond to
m = 2, 6 and12, respectively. Thex-axis representsamax, and the
values in they-axis are mean values over50 trials for a certain triple
(13, m, amax).

On these examples, our method is comparable withplace

and robpole, but with much less time cost. Comparing with
Schur-rob, Schur-multi does improve the relative accuracy
of the assigned poles when some poles to be assigned are repeated
and real.

The second test set consists of82 random examples, which is to
demonstrate the performance of all methods when non-real repeated
poles are contained inL. Here, we taken varying from 7 to 19
with an increment of2, andm is set to be3, ⌊n

2
⌋, n − 1 for each

n. For fixed (n,m), the largest multiplicityamax of all complex
poles increases from2 to min{⌊n

2
⌋,m}. All examples are generated

as follows. First, we randomly generate the placed polesL =
{randn(1, n − 2amax), λ × ones(1, amax), λ̄ × ones(1, amax)}
with λ = randn + i × randn, and three matricesY ∈ R

n×n,
B ∈ R

n×m, F ∈ R
m×n using the MATLAB function randn.

Compute the QR decomposition ofY as Y = QY RY , and we
reset the diagonal and subdiagonal entries ofRY such that it is
upper quasi-triangular with its eigenvalues being those inL. Then
set A = QY RY Q⊤

Y − BF . Thereafter, the algorithmsplace,
robpole, Schur-rob and Schur-multi are applied on all
examples withA,B andL taken as the input.

Fig. 6 to Fig. 10 exhibit the numerical results ondep., ‖F‖F ,
andκF (X), precs and the CPU time ratio forn = 19, respectively,
where thex-axis and they-axis own the some meanings as those in
the first test set. Each figure includes three subfigures, where the first
one displays the results form = 3, the second form = 9 and the
third for m = 18. Note that for the CPU time, we still adopt the time
cost ofSchur-multi as the standard of comparison, and present
the ratios ofplace, robpole andSchur-rob to it.

All figures show that whenamax is no more than⌊m+1
2

⌋, then
compared withrobpole, our approach produces comparable results
on the robustness and the precision of the assigned poles, but with
much less time consumption. However, if there exists at least one
complex pole with its multiplicity being larger than⌊m+1

2
⌋, the

closed-loop system matrix obtained bySchur-multi can not be
diagonalized and it would not be as robust as that computed by
robpole. Notice that for ourSchur-multi method, there are
sharp jumps in Fig. 6 and Fig. 7 form = 9, 18 cases, where
amax = ⌊m+1

2
⌋. And the explanation for those jumps is:⌊m+1

2
⌋

actually is a threshold that distinguishes if the repeated non-real pole
acts as a semi-simple eigenvalue or not, hence those repeated complex
poles, whose multiplicities equal to⌊m+1

2
⌋, would be more sensitive

to perturbations; and such behavior eventually reflects indep. and
‖F‖F . In addition, compared withSchur-rob, Schur-multi
does make some improvements on the precision of the assigned
repeated complex conjugate poles. The undisplayed resultsfor other
differentn show similar behavior.

It is well known that place and robpole can not solve
the SFRPA if the multiplicity of some pole is greater thanm,
while Schur-rob and our Schur-multi can still work. The
following randomly generated examples are to reveal the behavior
of Schur-rob and Schur-multi on examples in which the
multiplicity of some repeated pole might be greater thanm.

Example IV.3. This example also consists of two test sets. The first
test set, where the repeated poles are all real, is comprisedof 270
random examples withn increasing from7 to 27 in increment of4,
andm being2, ⌊n

2
⌋, n− 1 for eachn. For fixed(n,m), the greatest

multiplicity of the assigned repeated real polesamax varies from2 to
n−1. All examples are generated as below. We first randomly gener-
ate the assigned polesL = {randn×ones(1, amax),randn(1, n−
amax)} andY ∈ R

n×n, B ∈ R
n×m, F ∈ R

m×n by the MATLAB
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TABLE I: Numerical results for four algorithms on CARE/DAREexamples

CARE example 1.6 CARE example 2.9 #1 DARE example 1.12
precs dep. κF (X) ‖F‖F precs dep. κF (X) ‖F‖F dep. κF (X) ‖F‖F

place -11 1.5(6) 1.7(15) 2.2(3) -11 2.9(6) 8.5(4) 2.8(1) 4.3(7) 9.2(292) 4.3(7)
robpole -13 7.5(5) 2.2(7) 2.2(2) -12 2.9(6) 8.9(4) 2.8(1) 3.9(12) 1.3(308) 3.9(12)
Schur-rob -8 1.1(5) 9.0(7) 1.2(2) -9 7.3(6) 2.0(6) 2.9(1) 9.8(0) 5.6(292) 6.5(0)

Schur-multi -11 2.6(5) 1.3(7) 4.5(2) -9 2.6(6) 1.2(6) 2.8(1) 9.1(0) 3.2(295) 5.5(0)

TABLE II: Accuracy of the assigned poles for DARE example1.12

λj − λ̂j

num. exact poles place robpole Schur-rob Schur-multi

1 8.1(-1) -3.3(-16) -3.3(-16) -3.3(-16) -3.3(-16)
2 5.8(-1) -2.5(-7) 3.6(-5) -1.4(-12) 2.3(-13)
3 1.1(-3) 8.4(-4) 2.9(-4) -1.5(-4) -6.4(-5)
4 0 -3.4(-17) -3.4(-17) -3.4(-17) -3.4(-17)
5 0 -5.2(-17) -5.2(-17) -5.2(-17) -5.2(-17)
6 7.6(-1)+i×1.4(-1) 1.9(-7)-i×1.2(-7) -4.6(-5)-i×3.7(-6) -7.1(-13)-i×1.3(-13) 6.2(-13)+i×4.8(-13)
7 7.6(-1)-i×1.4(-1) 1.9(-7)+i×1.2(-7) -4.6(-5)+i×3.7(-6) -7.1(-13)+i×1.3(-13) 6.2(-13)-i×4.8(-13)
8 6.4(-1)+i×2.3(-1) -2.5(-8)-i×3.1(-8) -4.0(-5)-i×1.6(-5) 9.3(-13)-i×1.1(-12) -6.4(-13)+i×3.5(-13)
9 6.4(-1)-i×2.3(-1) -2.5(-8)+i×3.1(-8) -4.0(-5)+i×1.6(-5) 9.3(-13)+i×1.1(-12) -6.4(-13)-i×3.5(-13)
10 -9.0(-4)+i×6.6(-4) -8.3(-4)+i×6.6(-4) -9.0(-4)+i×6.6(-4) 1.2(-4)-i×8.8(-5) 5.2(-5)-i×3.9(-5)
11 -9.0(-4)-i×6.6(-4) 2.0(-3)-i×6.6(-4) 4.0(-4)-i×6.6(-4) 1.2(-4)+i×8.8(-5) 5.2(-5)+i×3.9(-5)
12 3.5(-4)+i×1.1(-3) 7.1(-4)-i×1.2(-4) -8.1(-1)+i×1.1(-3) -4.7(-5)-i×1.4(-4) -2.1(-5)-i×6.1(-5)
13 3.5(-4)-i×1.1(-3) 7.1(-4)+i×1.2(-4) 3.5(-4)-i×1.1(-3) -4.7(-5)+i×1.4(-4) -2.1(-5)+i×6.1(-5)
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function randn. Then we compute the QR decomposition ofY as
Y = QY RY , reset the diagonal elements of the upper triangular
matrixRY be those inL, and setA = QY RY Q⊤

Y −BF . TakingA,B
andL as the input, we then applySchur-rob andSchur-multi
to all generated examples. The poles inL are also assigned in
ascendant order. Note that when applyingplace and robpole

on these examples, they fail to give results for some examples. For

instance, whenm = 2 and amax > 2 = m, they fail to output
solutions.

Both algorithms produce fairly similardep. and ‖F‖F , and we
omit the interrelated results here. The numerical results on κF (X)
and precs with respect toamax for n = 19 are displayed in
Fig. 11 and Fig. 12, respectively, where thex-axis andy-axis own
the same meanings as those in Example IV.2. In each figure, thethree
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Fig. 7:‖F‖F (Example IV.2 with non-real
repeated poles)
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Fig. 8: κF (X) (Example IV.2 with non-
real repeated poles)
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Fig. 9: precs (Example IV.2 with non-real repeated
poles)
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Fig. 10: CPU time ratio (Example IV.2 with non-real
repeated poles)

subfigures correspond tom = 2, 9 and18, respectively.
From Fig. 11 and Fig. 12, we know that the condition numbers

of the eigenvectors matrices obtained bySchur-multi are smaller
than those bySchur-rob, and the eigenvalues ofAc computed
by Schur-multi are more accurate than those bySchur-rob.
The differences become more significant whenamax is no greater
than m. If amax is greater thanm, that is, some eigenvalues
of Ac are defective, the precision of the poles diminishes. For
other (n,m, amax), κF (X) and precs show quite similar variation
tendency.

It is shown in Subsection III-A1 that if the repeated real pole with
multiplicity amax is assigned as the initialλ1, then its geometric
multiplicity is theoreticallymin{m,amax}. However, if it is not
assigned foremost, we cannot prove such result in theory. Wethen
compute the geometric multiplicity (denoted as“gmulti”) of the
repeated real pole by using the SVD of(Ac − λIn), whereAc is
the computed closed-loop system matrix andλ ∈ L. Note that in our
experiments, the poles are assigned in ascendant order. That is, the
repeated real pole may not be the first one to be placed. However, the
numerical results forn = 19 listed in TABLE III show thatgmulti

obtained bySchur-multi always equals tomin{m,amax}. The
unshown results for other different(n,m, amax) behave similarly.

All numerical examples in the second test set are designed to
illustrate the behavior of both Schur-type approaches whenL contains
some repeated complex conjugate poles with their multiplicities
exceedingm. There are193 random illustrative examples in this
test set, withn increasing from7 to 25 in an increment of2, and
m taking 3, ⌊n

2
⌋, n − 1 for eachn. With (n,m) fixed, the largest

multiplicity of the assigned complex poles varies from2 to ⌊n
2
⌋.

All these examples are generated in the same way as those in the
second test set in Example IV.2. RegardingA,B andL as the input,
Schur-rob andSchur-multi are then applied to each example.

Here, we just exhibit the numerical results forn = 25. Numerical

results ondep., ‖F‖F and κF (X) for both algorithms are shown
in Fig. 13 to Fig. 15, and Fig. 16 displays the relative accuracy
precs of the assigned poles. Each figure includes three subfigures,
corresponding tom = 3, 12 and 24, respectively. Thex-axis and
y-axis own the same meanings as those in Example IV.2. From these
figures we can see thatSchur-multi produces slightly worse,
but comparabledep. and‖F‖F asSchur-rob, while κF (X) and
precs produced bySchur-multi are much better than those by
Schur-rob. Numerical results for othern behave similarly.

When the largest multiplicity of the repeated non-real poles is
larger than⌊m+1

2
⌋, for the computedAc by Schur-multi, there

exist defective complex conjugate eigenvalues. Consequently, the
relative accuracy of the placed repeated complex conjugatepoles
would be not that high. To show the geometric multiplicity (denoted
as “gmulti”) of non-real repeated eigenvalues ofAc visually, just
as what we do in the first test set, we shall compute it by using
the SVD of (Ac − λIn), where Ac is the computed closed-loop
system matrix andλ ∈ L with Im(λ) 6= 0. Typically, relevant results
for n = 25 are displayed in TABLE IV, which shows thatgmulti

obtained fromSchur-multi equals to the smaller value between
its corresponding algebraic multiplicity and⌊m+1

2
⌋. The unshown

results for other different(n,m, amax) are quite similar.

V. CONCLUSION

Based on theSchur-rob method [11], a refined approach is
proposed to solve theSFRPA, specifically when some poles to
be assigned are repeated. In the proposedSchur-multi method,
we treat the geometric multiplicities of the repeated polesas the
precedential consideration, and then try to minimize the departure
from normality of the closed-loop system matrixAc. Numerical
results show that theSchur-multi method does outperform the
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Fig. 11: κF (X) (Example IV.3 with real
repeated poles)
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Fig. 12: precs (Example IV.3 with real
repeated poles)
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Fig. 13:dep. (Example IV.3 with non-real
repeated poles)

TABLE III: Geometric multiplicity over50 trials (real repeated poles)

gmulti for n = 19

m = 2 m = ⌊n
2
⌋ m = n− 1

amax Schur-rob Schur-multi Schur-rob Schur-multi Schur-rob Schur-multi

2 1.04 2.00 1.44 2.00 1.96 2.00
3 1.06 2.00 2.10 3.00 2.80 3.00
4 1.04 2.00 2.44 4.00 3.86 4.00
5 1.06 2.00 2.22 5.00 4.98 5.00
6 1.06 2.00 2.90 6.00 5.90 6.00
7 1.08 2.00 4.24 7.00 6.88 7.00
8 1.06 2.00 4.28 8.00 7.92 8.00
9 1.08 2.00 4.42 9.00 8.92 9.00
10 1.02 2.00 5.06 9.00 9.86 10.00
11 1.16 2.00 4.98 9.00 10.84 11.00
12 1.10 2.00 5.54 9.00 11.90 12.00
13 1.14 2.00 5.60 9.00 12.84 13.00
14 1.14 2.00 6.66 9.00 13.70 14.00
15 1.20 2.00 6.62 9.00 14.76 15.00
16 1.28 2.00 7.78 9.00 15.66 16.00
17 1.30 2.00 8.20 9.00 16.66 17.00
18 1.44 2.00 8.46 9.00 17.32 18.00
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Fig. 14: ‖F‖F (Example IV.3 with non-
real repeated poles)
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Fig. 15:κF (X) (Example IV.3 with non-
real repeated poles)
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Fig. 16: precs (Example IV.3 with non-
real repeated poles)

Schur-rob method for examples with repeated poles. Moreover,
our Schur-multi method can still produce fairly good results
whenplace androbpole fail for examples where the multiplicity
of the repeated pole is greater thanm.
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