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Abstract. This paper is concerned with the stability analysis of a lossless Euler-Bernoulli
beam that carries a tip payload which is coupled to a nonlinear dynamic feedback system.

This setup comprises nonlinear dynamic boundary controllers satisfying the nonlinear KYP

lemma as well as the interaction with a nonlinear passive environment. Global-in-time well-
posedness and asymptotic stability is rigorously proven for the resulting closed-loop PDE–

ODE system. The analysis is based on semigroup theory for the corresponding first order

evolution problem. For the large-time analysis, precompactness of the trajectories is shown
by deriving uniform-in-time bounds on the solution and its time derivatives.

1. Introduction

Let us consider a linear homogeneous Euler-Bernoulli beam, clamped at one end and with
tip mass at the other free end. The state of the beam at time t is described by its transverse
deflection u(t, x) from the zero-state, where x ∈ [0, L] is the longitudinal coordinate of the
beam, see Figure 1. The well known PDE for the motion of the beam reads as

ρutt(t, x) + ΛuIV(t, x) = 0, (1)

with the mass per unit length ρ and the flexural rigidity Λ. The boundary conditions for the
clamped end at x = 0 are given by

u(t, 0) = u′(t, 0) = 0, (2)

and for the free end at x = L, we have

Ju′tt(t, L) + Λu′′(t, L) = −τe (3a)

Mutt(t, L)− Λu′′′(t, L) = −fe, (3b)

where J and M denote the mass moment of inertia and the mass of the tip mass, respectively,
and −τe and −fe describe the external torque and force acting on the tip mass. Here and in
the following, the notation ut is used for the derivative with respect to the time variable t, and
u′ for the x-derivative.

In literature, there exists a number of contributions dealing with the design of boundary
controllers to stabilize this type of system. To mention but a few, in [1] the asymptotic stability
was shown using semigroup formulation and applying the La Salle Invariance principle. To
obtain stronger, exponential stability, frequency domain criteria [2], Riesz basis property [3],
[4] or energy multiplier methods [5], [6] were employed. In contrast to these works, which are
mainly based on linear static and dynamic boundary controllers, this paper is concerned with
the interaction of the Euler-Bernoulli beam (1) - (3) with a finite-dimensional nonlinear dynamic
system. In particular, it is assumed that this system generates a reaction torque τe = τe,1 + τe,2
and a reaction force fe = fe,1 + fe,2, respectively. The reaction torque and force is composed
of the response of a nonlinear spring-damper system

τe,1 = d1(u′t(t, L)) + k1(u′(t, L)) (4a)

fe,1 = d2(ut(t, L)) + k2(u(t, L)) (4b)
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and the response of a finite-dimensional nonlinear system with state zj ∈ Rnj , j = 1, 2,

(z1)t = a1(z1) + b1(z1)u′t(t, L) (5a)

τe,2 = c1(z1) (5b)

and

(z2)t = a2(z2) + b2(z2)ut(t, L) (6a)

fe,2 = c2(z2), (6b)

which constitutes a strictly passive map from the time derivative of the tip angle u′t(t, L) to
the reaction torque τe,2 and from the velocity of the tip position ut(t, L) to the reaction force
fe,2, respectively. The functions aj , bj , cj , dj , and kj , j = 1, 2 as well as their mathematical
properties will be specified in detail in the next section.

The motivation for the setup (1) - (6) is as follows: In literature, when designing a boundary
controller for the system (1) - (3), it is usually assumed that the external torque τe and force
fe directly serve as control inputs. In this case, it is well known that the system (1) - (3)
can be stabilized (even exponentially) by a simple (strictly) positive linear static feedback, see,
e.g., [7], [8]. However, in real practical applications the external torque τe and force fe must be
generated by some (electromagnetic, hydraulic or pneumatic) actuators whose dynamics cannot
be neglected in general. In contrast to the usual approach in literature, it is therefore assumed
in this work that these actuators are not ideally controlled, meaning that they are not serving
as ideal torque and force sources, respectively, but that they are controlled in such a way that
the subordinate closed-loop systems of the actuators comprising the actuator dynamics and
a corresponding feedback controller constitute finite-dimensional passive dynamical systems
according to (5) and (6). In summary, the system (1) - (6) may be interpreted as a feedback
interconnected system with the lossless Euler Bernoulli beam (1) - (3) in the forward path
and the passive spring-damper system (4) as well as the strictly passive system (5), (6) in
the feedback path, see Figure 2. It is well known that the feedback interconnection of passive
systems preserves the passivity, see, e.g., [9]. This fact is often exploited in the controller design,
see, e.g., [10], [11], for the finite-dimensional case. However, in the infinite-dimensional case
the analysis is typically confined to linear systems, see, e.g., [7], [12], [13], or very recently [14].
Thus, with this work we want to take a first step towards an extension of the state of the art
to the nonlinear case by still considering a linear PDE but allowing for a nonlinear ODE at the
boundary.

x L

u(t, x) u(t, L)

u′(t, L)
M,J

fe

τe

1

Figure 1. Euler-Bernoulli beam with tip mass.

The goal of this paper is to prove the global-in-time wellposedness and, most of all, the
asymptotic stability of the feedback interconnected system (1) - (6) according to Figure 2. For
both aspects, we have to deviate from the strategy employed in the analogous linear model (in-
troduced and analyzed in [12, 15]): In the linear case, the generator of the evolution semigroup
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Figure 2. Interconnection of the Euler-Bernoulli beam system to a passive
spring-damper system and a strictly passive system in the feedback path.

is dissipative, which readily yields large-time solutions. The nonlinear semigroup for (1) - (6)
is not dissipative (in the sense of [16]). Hence, standard semigroup theory will first only yield
local-in-time solutions, and the construction of an appropriate Lyapunov functional for (1) -
(6) then shows their global existence.

Asymptotic stability of the linear counterpart model is based on the precompactness of the
trajectories, which can be obtained from the compactness of the resolvent for the generator. For
nonlinear evolution equations there exist different criteria for the precompactness of trajectories:
They all split the generator of the nonlinear semigroup into the sum of a linear part L and a
nonlinear part N . In [17] A has to be maximal dissipative, and N has to be integrable along
the solutions. See [18] for an application of this result, and also Section 6 in this article
below. Another approach is due to [19], where only local integrability of N along trajectories
is needed, however, the semigroup generated by L needs to be compact. Finally, in [20] it is
shown that the trajectories are precompact if the nonlinearity N is compact, and the semigroup
generated by L is exponentially stable. Furthermore, we refer to [21] for further results regarding
precompactness of trajectories. Unfortunately, none of the above results apply to the problem
discussed in this paper, except for the special case kj = 0 discussed in Section 6. The reason
for this is that the semigroup generated by the linear part is neither exponentially stable nor
compact, and the nonlinearity N is generally not integrable along solutions. Hence, for (1) - (6),
we shall follow a different strategy, which was devised for a simpler system in [22] (it consists
of a beam with a nonlinear spring and damper at the free end). For the precompactness of the
trajectories of (1) - (6), we shall here prove uniform C1–bounds (w.r.t. time) on the solution,
combined with compact Sobolev embeddings.

Note that the beam in (1) - (6) (and in its linear counterpart) is undamped. Damping of
the complete feedback system is only introduced via the damper of (4) and the strictly passive
systems (5), (6). This motivates that the linear model from [15] is asymptotically stable, but
not exponentially stable. Hence, exponential stability also cannot be expected for our nonlinear
system (1) - (6). Of course, exponential stability could be enforced by including damping terms
into (1) (either a viscous damping of the form +αut or a Kelvin-Voigt damping of the form
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+αuIV
t ). While viscous damping would lead to a simple extension of the subsequent analy-

sis, the higher order derivatives in the Kelvin-Voigt damping would require a rather different
mathematical setup. Hence, we shall not elaborate on such dampings here.

This paper is organized as follows: In Section 2, the technical assumptions made for the
coefficients and functions of the system (1) - (6) are specified, and in Section 3 the problem
is formulated as a first order evolution equation. Using semigroup theory we prove in Section
4 that it has a unique global-in-time solution. In Section 5, the possible ω–limit set of this
evolution is derived and analyzed. For proving the asymptotic stability of (1) - (6), we have to
distinguish between two cases. For linear functions kj , it is shown in Section 6 that asymptotic
stability can be achieved for all mild solutions. For nonlinear kj , it is much more involved to
prove precompactness of the trajectories. In this case, asymptotic stability of classical solutions
is shown in Section 7.

2. Preliminaries

In the following sections, we will give a rigorous mathematical analysis of the feedback inter-
connected system (1) - (6) according to Figure 2. For this, the assumptions on the parameters
and functions appearing in (1) - (6) have to be specified. First of all, let us assume that the
mass per unit length ρ, the flexural rigidity Λ, the mass moment of inertia J , and the mass
M of the tip mass are constant and positive. For the spring-damper system (4) we make the
following assumptions for j = 1, 2:

(A1) There holds dj ∈ C2(R;R) (i.e. the space of two times continuously differentiable
functions, see [23]), and1

dj(0) = 0, (7a)

d′j(s)s ≥ 0, ∀s ∈ R, (7b)

d′j(0) > 0. (7c)

Note that this implies dj(s)s > 0 for all s 6= 0.
(A2) We require kj ∈ C2(R;R), with k′j(0) > 0 and

Vkj (s) :=

∫ s

0

kj(σ) dσ > 0, ∀s ∈ R \ {0}. (8)

Based on the assumptions (A1) - (A2), it can be easily shown that the spring-damper system (4)
is strictly passive from the inputs u′t(t, L) and ut(t, L) to the outputs τe,1 and fe,1, respectively,
with the positive definite storage functions Vkj , j = 1, 2, according to (8).

As a further consequence, we find uniquely determined constants Dj ,Kj > 0 and functions
δj , κj ∈ C2(R;R) with δj(s) = O(s2) and κj(s) = O(s2) for s→ 0 such that

dj(s) = Djs+ δj(s), ∀s ∈ R, (9)

kj(s) = Kjs+ κj(s), ∀s ∈ R. (10)

Hence, Djs is the linearization of dj(s), and Kjs is the linearization of kj(s) around s = 0.

(A3) Furthermore, we assume that there there exist (storage) functions Vj ∈ C2(Rnj ;R),
for j = 1, 2, such that for all zj ∈ Rnj :

Vj(0) = 0, Vj(zj) > 0, (zj 6= 0), (11)

∇Vj(zj) · aj(zj) < 0, (zj 6= 0), (12)

∇Vj(zj) · bj(zj) = cj(zj). (13)

1Here, d′j and k′j denote the derivative with respect to the variable s.
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According to the Kalman-Yakubovich-Popov (KYP) lemma for nonlinear systems with affine
input, see Lemma 4.4 in [24], this implies the strict passivity of the systems (5) and (6).

For the mathematical analysis we furthermore require for j = 1, 2:

(A4) Assume there holds 2

lim
|zj |→∞

Vj(zj) =∞, (14)

Pj := Hess(Vj)(0) > 0. (15)

(A5) aj , bj ∈ C2(Rnj ;Rnj ) and

aj(0) = 0, (16a)

detAj 6= 0, (16b)

where Aj = Jaj (0) is the Jacobian of aj at zj = 0.

(A6) cj ∈ C2(Rnj ;R), and

cj(0) = 0.

The assumptions (A3) - (A6) have the following implications, for j = 1, 2:

• There exists a unique regular matrix Aj ∈ Rnj×nj and a function αj ∈ C2(Rnj ;Rnj )
such that for all zj ∈ Rnj

aj(zj) = Ajzj + αj(zj), (17a)

|αj(zj)| = O(|zj |2) as zj → 0, (17b)

hence Ajzj is the linearization of aj(zj) around the origin. By using the first order
Taylor expansion of ∇Vj around the origin we conclude from (12) and (11) that

z>j (PjAj)zj ≤ 0, ∀zj ∈ Rnj , (18)

and from (15) and (16) we find

|∇Vj(zj) · aj(zj)| ≥ C|zj |2 as zj → 0, (19)

for some positive constant C.
• There exists a unique vector Bj ∈ Rnj and a function βj ∈ C2(Rnj ;Rnj ) such that for

all zj ∈ Rnj

bj(zj) = Bj + βj(zj), (20a)

|βj(zj)| = O(|zj |) as zj → 0. (20b)

• There exists a unique vector Cj ∈ Rnj and a function γj ∈ C2(Rnj ;R) such that for all
zj ∈ Rnj

cj(zj) = Cj · zj + γj(zj), (21a)

|γj(zj)| = O(|zj |2) as zj → 0. (21b)

Note that (13) implies

PjBj = Cj . (21c)

To illustrate that the above assumptions may be satisfied we just mention the linear model
from [12, 15] with αj = βj = γj = δj = κj = 0. There (and in many nonlinear perturbations of
it) assumptions (A1) - (A6) hold.

2Note that condition (14) can be relaxed, see Remark 4.10.
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Remark 2.1. For this paper it would even be possible to only make the weaker assumptions
aj , bj ∈W 2,∞

loc (Rnj ;Rnj ), cj ∈W 2,∞
loc (Rnj ;R) and dj , kj ∈W 2,∞

loc (R;R), for j = 1, 2. Here, W 2,∞
loc

is the space of all C1-functions whose first order derivatives are locally Lipschitz continuous
functions (cf. [23]). In particular, the local behavior of the functions αj , βj , γj , δj and κj
around the origin also stays the same, which can be seen by using the integral form of the
remainder in the respective Taylor expansions.

For the rest of this paper the conditions (A1) - (A6) on the system (1) - (6) are tacitly always
assumed to hold.

3. Formulation as an Evolution Equation

System (1) - (6) is reformulated as an evolution equation in the Hilbert space

H = {y = [u, v, z1, z2, ξ, ψ]> : u ∈ H̃2
0 (0, L), v ∈ L2(0, L), zj ∈ Rnj , ξ, ψ ∈ R},

where for n ≥ 2

H̃n
0 (0, L) := {f ∈ Hn(0, L) : f(0) = f ′(0) = 0}.

Note that we impose the function value and its first derivative only at the left boundary,
i.e. x = 0. Hence, H̃n

0 differs from the standard Sobolev spaces Hn and Hn
0 . We refer to [23] for

the Lebesgue space L2(I) and the Sobolev spaces Hn(I) on some interval I. The inner product
is defined by

〈y, ỹ〉H = Λ

∫ L

0

u′′ũ′′ dx+ ρ

∫ L

0

vṽ dx+
1

J
ξξ̃ +

1

M
ψψ̃

+K1u
′(L)ũ′(L) +K2u(L)ũ(L) + z>1 P1z̃1 + z>2 P2z̃2,

(22)

where the positive definite matrices Pj , for j = 1, 2, are due to (15). For the following, the
operator

A :


u
v
z1

z2

ξ
ψ

 7→


v
−Λ
ρ u

IV

a1(z1) + 1
J b1(z1)ξ

a2(z2) + 1
M b2(z2)ψ

−Λu′′(L)− [c1(z1) + d1( ξJ ) + k1(u′(L))]

Λu′′′(L)− [c2(z2) + d2( ψM ) + k2(u(L))]


is introduced on the domain

D(A) = {y ∈ H : u ∈ H̃4
0 (0, L), v ∈ H̃2

0 (0, L), (23)

ξ = Jv′(L), ψ = Mv(L)}.

Based on the formulation of the coefficient functions, the operator A is decomposed into a linear
and a nonlinear part:

Linear part: The linear part is denoted by L, which is the linearization of A around the
origin:

L :


u
v
z1

z2

ξ
ψ

 7→


v
−Λ
ρ u

IV

A1z1 + 1
JB1ξ

A2z2 + 1
MB2ψ

−Λu′′(L)− [C1z1 + 1
JD1ξ +K1u

′(L)]
Λu′′′(L)− [C2z2 + 1

MD2ψ +K2u(L)]

 ,

and the domain is D(L) = D(A).
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Nonlinear part: The nonlinear part N is defined as the following continuous operator on
all of H:

N :


u
v
z1

z2

ξ
ψ

 7→


0
0

α1(z1) + 1
J β1(z1)ξ

α2(z2) + 1
M β2(z2)ψ

−γ1(z1)− δ1( ξJ )− κ1(u′(L))

−γ2(z2)− δ2( ψM )− κ2(u(L))

 .

On D(A) there holds A = L+N .

Theorem 3.1. The linear operator L with domain D(L) generates a C0-semigroup of contrac-
tions in H, denoted by (etL)t≥0.

Proof. This result has been shown for the same operator in Section 4.2 of [12]. For convenience
of the reader we briefly sketch the main steps of the proof. A brief calculation yields for
y ∈ D(L), using (18):

〈Ly, y〉H =z>1 (P1A1)z1 + z>2 (P2A2)z2

−D1|v′(L)|2 −D2|v(L)|2 ≤ 0.

Hence the operator L is dissipative in H with respect to the inner product (22). Furthermore,
the inverse L−1 exists and is bounded (even compact). Now the statement immediately follows
from the Lumer-Phillips theorem. �

Remark 3.2. Since L is the infinitesimal generator of a C0-semigroup of contractions, L is
dissipative and ran(λ − L) = H for all λ > 0. In particular ran(I − L) = H. So L is hyper-
dissipative according to Definition 2.1 in [16]. And Theorem 2.2 in [16] shows that L is maximal
dissipative, i.e. L is not contained in a strictly larger dissipative operator (in the sense of graphs).
This property is needed for the proof of Theorem 6.3.

4. Existence of Solutions

We are interested in solutions of the following initial value problem in H:

yt(t) = Ay(t) = Ly(t) +N y(t), (24a)

y(0) = y0 ∈ H. (24b)

Any (mild) solution y(t) ∈ C([0, T ];H), for T > 0, is known to satisfy Duhamel’s formula:

y(t) = etLy0 +

∫ t

0

e(t−s)LN y(s) ds, 0 ≤ t < T. (25)

Proposition 4.1. For every y0 ∈ H, there exists some maximal 0 < Tmax(y0) ≤ ∞ such that
(24) has a unique mild solution y(t) on [0, Tmax(y0)). If y0 ∈ D(A), the corresponding mild
solution y(t) is a classical solution. If Tmax(y0) <∞, then limt↗Tmax(y0) ‖y(t)‖H =∞.

Proof. By assumption, the functions αj , βj , γj , δj and κj are continuously differentiable and
locally lipschitz continuous, so the nonlinear map N : H → H has the same properties. Fur-
thermore, L is the generator of a C0-semigroup, see Theorem 3.1. Now we may apply Theo-
rem 6.1.4 in [25] to the autonomous problem (24), which yields the existence of a unique mild
solution on the maximal time interval [0, Tmax(y0)). If Tmax(y0) < ∞, then a blowup of y(t)
occurs. Moreover, Theorem 6.1.5 in [25] implies that for y0 ∈ D(A), any mild solution is a
classical solution. �
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Next we introduce the functional H : H → R, given by

H(y) :=
1

2

∫ L

0

(
Λ|u′′|2 + ρ|v|2

)
dx+

|ξ|2

2J
+
|ψ|2

2M

+

∫ u′(L)

0

k1(s) ds︸ ︷︷ ︸
Vk1

(u′(L))

+

∫ u(L)

0

k2(s) ds︸ ︷︷ ︸
Vk2

(u(L))

+ V1(z1) + V2(z2).

Note that the first integral term in H(y) corresponds to the strain energy and kinetic energy of
the Euler-Bernoulli beam, the next two summands are the translational and rotational part of
the kinetic energy of the tip mass, Vkj , for j = 1, 2, is the potential energy stored in the nonlinear
spring elements, see (4) and (8), and Vj , for j = 1, 2, are the non-negative storage functions
of the strictly passive systems (5) and (6), respectively. Obviously H(y) ≥ 0 for all y ∈ H.
Note that H(y) is exactly the sum of the storage functions of the lossless Euler-Bernoulli beam
(1) - (3), the nonlinear spring-damper systems (4) and the strictly passive nonlinear dynamic
feedback systems (5) and (6), cf. Figure 2. In the following, it will be shown that H qualifies
as a Lyapunov function for the system (24).

Lemma 4.2. The function H is continuous in H.

Proof. The continuity of the terms in H except for the kj-terms is immediate. Due to the
continuous embedding H2(0, L) ↪→ C1([0, L]) the continuity of the remaining kj-terms follows
as well. �

Lemma 4.3. Due to assumption (14) we have for any sequence {yn}n∈N ⊂ H:
sup
n∈N

H(yn) <∞ ⇔ sup
n∈N
‖yn‖H <∞.

Proof. It suffices to notice that {Vj(zj,n)}n∈N is unbounded iff {zj,n}n∈N is unbounded. �

We now define the generalized time derivative along the mild solution y(t) of (24), i.e. for
any initial value y0 ∈ H:

Ḣ(y0) := lim sup
t↘0

H(y(t))−H(y0)

t
,

which may take the value −∞.

Lemma 4.4. For y0 ∈ D(A) we have Ḣ(y0) = d+

dt H(y(t))|t=0 ≤ 0, i.e. H is non-increasing

along classical solutions. Here, d+

dt denotes the right derivative.

Proof. For y0 ∈ D(A) the corresponding solution y(t) of (24) is classical, and therefore has a
continuous right derivative on [0, Tmax(y0)). So we can directly compute

Ḣ(y0) =
d+

dt
H(y(t))

∣∣
t=0

= a1(z1) · ∇V1(z1) + a2(z2) · ∇V2(z2)− d1(v′(L))v′(L)− d2(v(L))v(L).

Thereby we have used (13). The non-positivity of the generalized time derivative of the storage
function H can be directly concluded from (12) and (7). Clearly, this is also a consequence
of the passivity property of the feedback interconnected system according to Figure 2. This
concludes the proof. �

Corollary 4.5. For y0 ∈ D(A) the corresponding classical solution y(t) of (24) is global, i.e. it
exists for all t ∈ [0,∞).

Proof. According to Lemma 4.4, H is non-increasing along y(t). Thus, according to Lemma 4.3
no blowup occurs in y(t), and we have according to Proposition 4.1 that Tmax(y0) =∞. �
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Since N is locally Lipschitz continuous and D(A) ⊂ H is dense, we can apply Proposi-
tion 4.3.7 (ii) in [26] for the approximation of mild (non-classical) solutions:

Proposition 4.6. Let y0 ∈ H and {y0,n}n∈N ⊂ D(A) be such that y0,n → y0 in H. Denote
by yn(t) the global classical solution of (24) to the initial value y0,n and by y(t) the mild
solution corresponding to the initial value y0. Then yn(t) → y(t) in C([0, T ];H) for any T ∈
(0, Tmax(y0)).

Theorem 4.7. For any y0 ∈ H the corresponding solution y(t) of the initial value problem
(24) is global in time. Furthermore, t 7→ H(y(t)) is non-increasing on R+ and y(t) is uniformly
bounded in H on [0,∞).

Proof. Consider y0 ∈ H and a sequence {y0,n} ⊂ D(A) with y0,n → y0 in H. Due to the
convergence yn(t)→ y(t) for all t ∈ [0, Tmax(y0)) shown in Proposition 4.6 and the continuity of
H, we get H(yn(t))→ H(y(t)) for all 0 ≤ t < Tmax(y0). Since H is non-increasing along every
yn(t), this implies also that t 7→ H(y(t)) is non-increasing on [0, Tmax(y0)). Thus, according to
Lemma 4.3 no blowup of y(t) can occur at t = Tmax(y0). So, according to Proposition 4.1 the
solution is global in time. Uniform boundedness of y(t) now follows from Lemma 4.3. �

Corollary 4.8. The function H is a Lyapunov function for the initial value problem (24).

Remark 4.9. Since all mild solutions are global, Proposition 4.6 holds for any T ∈ (0,∞).

For every y0 ∈ H and the corresponding mild solution y(t) we define S(t)y0 := y(t) for all
t ≥ 0. The family S ≡ (S(t))t≥0 is a strongly continuous semigroup of nonlinear (bounded,
continuous) operators in H, cf. Theorem 9.3.2 in [26].

Remark 4.10. Since (14) is only needed to show that no blowup of the solution occurs, we
may replace it by the weaker assumption

lim
|zj |→∞

Vj(zj) > H(y0), (14’)

depending on the initial condition y0 for the problem (24). Thereby we argue as follows:
According to Theorem 4.7 the function t 7→ H(y(t)) is non-increasing (this is independent of
(14)), which ensures that no blowup can occur in any component of y(t) except for zj . If now
z1(t) or z2(t) would blowup, we would get limt→∞H(y(t)) > H(y0) according to (14’). So
H(y(t)) could not be non-increasing, which is a contradiction. So (14’) is sufficient to show
that no blowup occurs and that the solution is global in time.

5. ω-limit Set

In the following, S is the strongly continuous (nonlinear) semigroup generated by A on H,
defined at the end of the previous section. In this section, we investigate possible ω-limit sets of
S. However, non-emptiness of the ω-limit sets will only be discussed in the subsequent sections.
For y0 ∈ H we define the trajectory γ(y0) by

γ(y0) :=
⋃
t≥0

S(t)y0.

Definition 5.1 (ω-limit set). Given the semigroup S, the ω-limit set for y0 ∈ H is denoted by
ω(y0), and is the following set:

ω(y0) := {y ∈ H : ∃{tn}n∈N ⊂ R+, lim
n→∞

tn = +∞∧ lim
n→∞

S(tn)y0 = y}.

It is possible that ω(y0) = ∅.

According to Proposition 9.1.7 in [26] we have:

Lemma 5.2. For y0 ∈ H the set ω(y0) is S-invariant, i.e. S(t)ω(y0) ⊆ ω(y0) for all t ≥ 0.
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Let us consider now some fixed y0 ∈ H. According to the results of Section 4, the function
t 7→ H(S(t)y0) is non-increasing, and bounded from below by 0. Therefore, the following limit
exists:

H(y0) := lim
t→∞

H(S(t)y0) ≥ 0. (26)

Lemma 5.3. Suppose ω(y0) 6= ∅. Then there holds

∀y ∈ ω(y0) : H(y) = H(y0).

In particular, Ḣ(y) = 0 for all y ∈ ω(y0).

Proof. For every y ∈ ω(y0) there exists a sequence {tn} ⊂ R+ such that S(tn)y0 → y. Since
H is continuous, cf. Section 4, this implies that H(y) = limn→∞H(S(tn)y0). Due to (26) the
right hand side equals H(y0), and the result follows. �

We can use this lemma to identify the possible ω-limit sets by investigating trajectories along
which the Lyapunov function H is constant.

Lemma 5.4. Let y ∈ H such that H(S(t)y) = H(y) for all t ≥ 0, i.e. H is constant along γ(y).
Then γ(y) ⊂ {y ∈ H : y = [u, v, 0, 0, 0, 0]>}.

Proof. First, let y ∈ D(A). We know from Lemma 4.4 and the corresponding proof that for all
t ≥ 0

d

dt
H(S(t)y) = a1(z1) · ∇V1(z1) + a2(z2) · ∇V2(z2) (27)

− d1(v′(L))v′(L)− d2(v(L))v(L),

where we omitted the dependence on t on the right hand side, i.e. [u, v, z1, z2, Jv
′(L),Mv(L)]> ≡

S(t)y. Now (27) is required to be zero, and according to (12) and (7) this holds iff ξ = ψ =
z1 = z2 = 0.

Now let y ∈ H \ D(A). Then there is a sequence {yn}n∈N ⊂ D(A) such that yn → y as
n → ∞. According to Remark 4.9 we have S(t)yn → S(t)y uniformly on [0, T ] for any T > 0.
Therefore, we have also for the components

zj,n(t)→ zj(t), in C([0, T ];Rnj ), (28)

Mvn(t, L)→ ψ(t), in C([0, T ];R), (29)

Jv′n(t, L)→ ξ(t), in C([0, T ];R). (30)

Together with (27) this implies { d

dt
H(S(t)yn)

}
n∈N

is a Cauchy sequence in C([0, T ];R). Since H is locally Lipschitz continuous in H, we also have
that {H(S(t)yn)}n∈N is a Cauchy sequence in C([0, T ];R), so altogether {H(S(t)yn)}n∈N is a
Cauchy sequence in C1([0, T ];R). So there exists a unique h(t) ∈ C1([0, T ];R) such that

H(S(t)yn)→ h(t) in C1([0, T ];R). (31)

On the other hand we know that limn→∞H(S(t)yn) = H(S(t)y) = H(y) for every t ≥ 0, and
hence h(t) ≡ H(y). Together with (31) this implies d

dtH(S(t)yn) → 0 uniformly on [0, T ]. By
using (27) for every yn this now yields that in (28) - (30) we obtain the limits zj(t) = ξ(t) =
ψ(t) = 0. So S(t)y has to be of the form S(t)y = [u(t), v(t), 0, 0, 0, 0]>. �

Before we prove that the ω-limit set consists only of the zero solution, we need the following
technical lemma:
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Lemma 5.5. Let S be the nonlinear semigroup generated by A. For every y0 ∈ H and for all
t > 0 there holds: ∫ t

0

S(s)y0 ds ∈ D(A), (32)

and

S(t)y0 − y0 = L
∫ t

0

S(s)y0 ds+

∫ t

0

NS(s)y0 ds. (33)

For the proof we only need the fact that L generates a C0-semigroup, and that N is dif-
ferentiable and locally Lipschitz continuous. Hence, the above result still holds true for more
general operators L and N , which satisfy the mentioned properties. The proof of Lemma 5.5
is analogous to the proof of Lemma 5.4 in [22], see also [27] for a general version of this lemma.

Theorem 5.6. Let ∅ 6= Ω ⊂ H be an S-invariant set such that H|Ω is constant. Then Ω = {0}.
In particular, for any y0 ∈ H either ω(y0) = ∅ or ω(y0) = {0}.

Proof. Take a fixed y0 ∈ Ω, and let y(t) be the corresponding mild solution of (24). Clearly,
γ(y0) ⊂ Ω, and according to Lemma 5.4 y(t) is of the form y(t) = [u(t), v(t), 0, 0, 0, 0]>.

Step 1 (linear system for u(t), v(t)): First we note that, according to (32), there holds for all
t ≥ 0:

0 =

∫ t

0

ψ(s) ds = M

∫ t

0

v(s, L) ds = M(u(t, L)− u0(L)),

0 =

∫ t

0

ξ(s) ds = J
(∫ t

0

v(s, x) ds
)′∣∣∣

x=L

= J(u′(t, L)− u′0(L)).

Thus u(t, L) and u′(t, L) are constant in time. According to (33) the (projected) mild solu-
tion yp(t) = [u(t), v(t)]> satisfies the following system (i.e. the first, second, fifth, and sixth
component of (33)):

u(t)− u0 =

∫ t

0

v(s, x) ds, (34a)

v(t)− v0 = −Λ

ρ

(∫ t

0

u(s, x) ds
)IV

(34b)

0 = Λ
(∫ t

0

u(s, x) ds
)′′∣∣∣

x=L
(34c)

+K1

(∫ t

0

u(s, x) ds
)′∣∣∣

x=L
+

∫ t

0

κ1(u′(s, L)) ds,

0 = −Λ
(∫ t

0

u(s, x) ds
)′′′∣∣∣

x=L
(34d)

+K2

(∫ t

0

u(s, x) ds
)∣∣∣
x=L

+

∫ t

0

κ2(u(s, L)) ds.

Mild solutions satisfy u ∈ C(R+; H̃2
0 (0, L)). Hence, we can interchange the integration and

differentiation in the last term of (34c). Using the fact that u′(t, L) is constant, we have (for
u′0(L) 6= 0): ∫ t

0

κ1(u′(s, L)) ds = tκ1(u′0(L))

=
κ1(u′0(L))

u′0(L)

(∫ t

0

u(s, x) ds
)′∣∣∣

x=L
.
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Next we define the constants (since κj(0) = 0):

K̃1 := K1 +
κ1(u′0(L))

u′0(L)
, if u′0(L) 6= 0, else K̃1 := K1,

K̃2 := K2 +
κ2(u0(L))

u0(L)
, if u0(L) 6= 0, else K̃2 := K2.

(35)

With this we may rewrite (34) as

u(t)− u0 =

∫ t

0

v(s) ds, (36a)

v(t)− v0 = −Λ

ρ

(∫ t

0

u(s) ds
)IV

(36b)

0 = Λ
(∫ t

0

u(s, x) ds
)′′∣∣∣

x=L
+ K̃1

(∫ t

0

u(s, x) ds
)′∣∣∣

x=L
, (36c)

0 = −Λ
(∫ t

0

u(s, x) ds
)′′′∣∣∣

x=L
+ K̃2

∫ t

0

u(s, x) ds
∣∣∣
x=L

, (36d)

making this system linear. Thus, the projected vector yp(t) = [u(t), v(t)]> is the unique mild
solution of

(yp)t = Lpyp, (37a)

yp(0) = [u0, v0]>, (37b)

with the operator

Lp :

[
u
v

]
7→
[

v
−Λ
ρ u

IV

]
.

The equations (36c) and (36d) are incorporated into the domain D(Lp). For further details on
the operator Lp in the space Hp see the Appendix.

Step 2 (proof of u(t, L) = u′(t, L) = 0): We now investigate solutions of the projected prob-

lem (37) with the additional property that u(t, L) and u′(t, L) are constant in time. Since the
semigroup etLp is unitary in Hp, we know in particular that ‖v(t)‖L2 ≤ C = 1√

ρ‖yp(0)‖Hp for

all t ≥ 0 (cf. (69)). Applying the norm to (36b) this yields

sup
t≥0

∥∥∥(∫ t

0

u(s) ds
)IV∥∥∥

L2(0,L)
<∞. (38)

Next we apply the following Gagliardo-Nirenberg inequalities (cf. [28]), which guarantee the
existence of a C > 0 such that there holds for all t ≥ 0:∥∥∥∫ t

0

u(s) ds
∥∥∥
L∞(0,L)

≤ C
∥∥∥(∫ t

0

u(s) ds
)IV∥∥∥ 1

8

L2(0,L)
·
∥∥∥∫ t

0

u(s) ds
∥∥∥ 7

8

L2(0,L)
,∥∥∥∫ t

0

u′(s) ds
∥∥∥
L∞(0,L)

≤ C
∥∥∥(∫ t

0

u(s) ds
)IV∥∥∥ 3

8

L2(0,L)
·
∥∥∥∫ t

0

u(s) ds
∥∥∥ 5

8

L2(0,L)
.

(39)

The first factor on the right hand side in both inequalities is uniformly bounded (with re-
spect to t) due to (38). For the second factor we observe that, according to Theorem 4.7,

t 7→ ‖u(t)‖L2(0,L) is uniformly bounded, and therefore t 7→ ‖
∫ t

0
u(s) ds‖L2(0,L) grows at most

linearly. Hence, (39) implies that t 7→ ‖
∫ t

0
u(s, L) ds‖L∞(0,L) grows at most like t

7
8 and

t 7→ ‖
∫ t

0
u′(s, L) ds‖L∞(0,L) at most like t

5
8 as t→∞. But this contradicts the fact that u(t, L)

and u′(t, L) are constant, unless u0(L) = u′0(L) = 0. This shows that u(t, L) = u′(t, L) = 0 for
all t ≥ 0.
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Step 3 (Holmgren’s Theorem): By iterated t-integration we shall now construct C4-solutions

of (37a), for which we can apply the Holmgren Uniqueness Theorem [29, Section 3.5]. So we

define y1(t) ≡ [u1(t), v1(t)]> :=
∫ t

0
yp(s) ds + L−1

p [u0, v0]>. Due to Theorem 1.2.4 in [25] and
Lemma A.1 we have y1(t) ∈ D(Lp) for all t ≥ 0. So y1 is a classical solution of (37a) to the
initial condition y1(0) = L−1

p [u0, v0]>. Furthermore, because of u(t, L) = u′(t, L) = 0, again
u1(t, L), u′1(t, L) are constant in time. Completely analogous to the previous step we can show
again that u1(t, L) = u′1(t, L) = 0.

Next we shall construct solutions of higher regularity. We iterate the previous step and define

recursively yn(t) ≡ [un(t), vn(t)]> :=
∫ t

0
yn−1(s) ds+L−np [u0, v0]>, which solves (37a) classically

with the initial condition yn(0) = L−np [u0, v0]>. Again we have un(t, L) = u′n(t, L) = 0.
Furthermore, by definition we have on the one hand Lpyn(t) = yn−1(t). And on the other hand

Lp[un, vn]> = [vn,−Λ/ρ uIV
n ]>, so we can show inductively that yn ∈ C(R+; H̃2n+2

0 (0, L) ×
H̃2n

0 (0, L)). Now we consider the solution un for n ≥ 2. It satisfies the following partial
differential equation with boundary conditions:

(un)tt = −Λ

ρ
uIV
n , (40a)

[un(0, x), (un)t(0, x)]> = L−np [u0, v0]>, (40b)

un(t, 0) = u′n(t, 0) = 0, (40c)

un(t, L) = . . . = u′′′n (t, L) = 0. (40d)

By using (40a), un ∈ C(R+; H̃2n+2
0 (0, L)), and the fact that (un)t = vn ∈ C(R+; H̃2n

0 (0, L)),
we obtain the following properties for the mixed fourth order space-time derivatives of un:

uIV
n ∈ C(R+; H̃2n−2

0 (0, L)),

(un)′′′t ∈ C(R+; H̃2n−3
0 (0, L)),

(un)′′tt = −Λ

ρ
uVI
n ∈ C(R+; H̃2n−4

0 (0, L)),

(un)′ttt = −Λ

ρ
vVn ∈ C(R+; H̃2n−5

0 (0, L)),

(un)tttt =
Λ2

ρ2
uVIII
n ∈ C(R+; H̃2n−6

0 (0, L)).

So for n ≥ 4, all mixed derivatives of un of order four lie in C(R+; H̃2
0 (0, L)) ⊂ C(R+ × [0, L]).

Thus un(t, x) is a C4-solution of (40).
Now we can apply the Holmgren Uniqueness Theorem [29, Section 3.5] on the strip R+ ×

(0, L). Due to (40d) all partial derivatives up to order 3 of u4 vanish on the line R+ × {L}.
Therefore, Holmgren’s Uniqueness Theorem implies that u4 = 0 has to hold everywhere in this
strip. (See also the proof of Lemma 3 in [1] for a similar result – but without a detailed proof.)
Therefore L−4

p [u0, v0]> = 0 has to hold, and since L−1
p is injective, this yields [u0, v0]> = 0.

Since yp(t) = etLp [u0, v0]>, we conclude that u(t) = v(t) = 0 for all t ≥ 0, and hence Ω = {0}.
For the final statement of the theorem, let ω(y0) 6= ∅. Then, by Lemma 5.2 ω(y0) is S-

invariant, and by Lemma 5.3 H is constant on ω(y0). Hence, by the first statement of Theo-
rem 5.6, ω(y0) = {0}. �

As a consequence we obtain convergence to zero for trajectories with ω(y0) 6= ∅:

Corollary 5.7. If ω(y0) 6= ∅ for some y0 ∈ H, then

lim
t→∞

‖S(t)y0‖H = 0.
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Proof. If ω(y0) 6= ∅ then there exists a sequence {tn}n∈N with tn → ∞ such that
limn→∞ S(tn)y0 = 0. Due to the continuity of the Lyapunov function H this implies that

lim
n→∞

H(S(tn)y0) = 0.

But since t 7→ H(S(t)y0) is non-increasing, this implies that even

lim
t→∞

H(S(t)y0) = 0.

Due to the continuity of H this implies that ‖S(t)y0‖H → 0 as t→∞. �

6. Asymptotic Stability – Linear kj

In the case where the kj are linear we are able to show precompactness for all trajectories,
even for the mild, non-classical solutions. This will yield that the ω-limit set ω(y0) is always
non-empty, and hence the asymptotic stability of the nonlinear semigroup will follow.

Lemma 6.1. Let y0 ∈ H, and y(t) be the corresponding mild solution of (24). For j = 1, 2 let
κj = 0. Then N y(t) ∈ L1(R+;H).

Proof. First, let us assume that y0 ∈ D(A), so y(t) is a classical solution. We know from
Theorem 4.7 that H(y(t)) is non-increasing. By integrating (27) with respect to time we obtain

H(y(T ))−H(y0) =

∫ T

0

[
− d1

(
ξ

J

)
ξ

J
− d2

(
ψ

M

)
ψ

M

+ a1(z1) · ∇V1(z1) + a2(z2) · ∇V2(z2)
]

dt =: IT (y0),

(41)

where all terms on the right hand side include elements of the vector y(t), thus depend on t. If
we let T →∞, we know that H(y(T ))→ H(y0), i.e. the limit exists and the integral I∞(y0) is
finite.

Now we consider y0 ∈ H, and y(t) is the corresponding mild solution of (24). Let {y0,n}n∈N ⊂
D(A) be a sequence with y0,n → y0. According to Proposition 4.6 and Remark 4.9 the cor-
responding classical solutions yn(t) converge to y(t) in C([0, T ];H) for all T > 0. Therefore
IT (y0,n)→ IT (y0), cf. (41). Due to continuity ofH, alsoH(yn(T ))−H(y0,n)→ H(y(T ))−H(y0)
as n → ∞. Thus, (41) also holds for mild solutions for any T > 0. Since H(y(T )) → H(y0) ∈
[0, H(y0)] as T →∞, the integral I∞(y0) is finite.

Now we know that for any (mild) solution y(t) the integral I∞(y0) from (41) is finite. Since
all the terms in the integrand of (41) are non-positive, we conclude together with (19) and (7)
that

zj(t), ψ(t), ξ(t) ∈ L2(R+). (42)

Under the assumptions we made in Section 2 for the functions occurring in the nonlinear
operator N , the properties (42) immediately imply N y(t) ∈ L1(R+;H). �

Remark 6.2. To obtain N y(t) ∈ L1(R+;H) in the above proof, we used in (41) that the
nonlinear damping functions dj include a non-vanishing linear part (i.e. Dj > 0). The same
assumption will also be needed in Step 3 of the proof of Lemma 7.2 below. However, in the
nonlinear spring-damper system of [22], a locally quadratic growth of the damper law was
sufficient. From a practical point of view, this is not restrictive at all.

We note that (41) does not give any control on u(t, L) and u′(t, L) (in the sense of (42)).
Hence, the linearity assumption κj = 0 was crucial for the above proof.

Theorem 6.3. Let κj = 0 for j = 1, 2. For any y0 ∈ H there holds limt→∞ S(t)y0 = 0, i.e. the
semigroup S is asymptotically stable.
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Proof. Our aim is to apply a version of Theorem 4 in [17]. It states that if L is a linear, maximal
dissipative operator with (λ−L)−1 is compact for some λ > 0, and f ∈ L1(R+;H), then every
mild solution of the Cauchy problem ẏ(t) = Ly(t) + f(t) has a precompact trajectory.

According to Remark 3.2 the linear part L of A is a maximal dissipative operator on H.
As seen in the proof of Theorem 3.1, L−1 exists and is compact. Since L generates a C0-
semigroup of contractions, (λ − L)−1 exists and is compact for all λ > 0. Finally, according
to Lemma 6.1 we know that N y(t) ∈ L1(R+;H) for y(t) := S(t)y0. Due to these facts, we
can apply Theorem 4 in [17] with f(t) := N y(t). This shows that the ω-limit set ω(y0) is
non-empty. Thus, due to Corollary 5.7 and Theorem 5.6, we conclude ω(y0) = {0} and that
the entire solution y(t) converges to zero. �

7. Asymptotic Stability – Nonlinear kj

According to Corollary 5.7, any trajectory with a non-empty ω-limit set already is asymp-
totically stable. Thus, in order to complete the discussion we show in this section that (at
least) any classical trajectory possesses a non-empty ω-limit. We do this by proving that every
classical trajectory is precompact. To this end we follow a strategy introduced in [22]. We
begin with the following preparatory result (which would be obvious for linear semigroups):

Lemma 7.1. Let y(t) be a (mild) solution of (24) and let y0 ∈ D(A2) := {y ∈ D(A) : Ay ∈
D(A)}. Then y ∈ C2([0,∞);H) and yt(t) ∈ D(A) for all t > 0.

Proof. If we already knew that y ∈ C2([0,∞);H), it would follow that ỹ := yt satisfies

ỹt = Lỹ +



0
0

α′1(z1)z̃1 + 1
J [β′1(z1)z̃1ξ + β1(z1)ξ̃]

α′2(z2)z̃2 + 1
M [β′2(z2)z̃2ψ + β2(z2)ψ̃]

−γ′1(z1)z̃1 − 1
J δ
′
1

(
ξ
J

)
ξ̃ − κ′1(u′(L))ũ′(L)

−γ′2(z2)z̃2 − 1
M δ′2

(
ψ
M

)
ψ̃ − κ′2(u(L))ũ(L)


. (43)

However, at this point we only know that y(t) ∈ C1([0,∞);H), see Proposition 4.1. Motivated
by (43) we define the following functions for this fixed y(t) = [u, v, z1, z2, ξ, ψ]>(t):

G1(t, Z) := α′1(z1)ζ1 +
1

J
[β′1(z1)ζ1ξ + β1(z1)Ξ],

G2(t, Z) := α′2(z2)ζ2 +
1

M
[β′2(z2)ζ2ψ + β2(z2)Ψ],

G3(t, Z) := −γ′1(z1)ζ1 −
1

J
δ′1

( ξ
J

)
Ξ− κ′1(u′(L))U ′(L),

G4(t, Z) := −γ′2(z2)ζ2 −
1

M
δ′2

( ψ
M

)
Ψ− κ′2(u(L))U(L),

where Z := [U, V, ζ1, ζ2,Ξ,Ψ]> ∈ H. Since y(t) is a classical solution, it follows from the
regularity assumptions of the coefficients that t 7→ Gj(t, Z) lies in C1 for all j = 1, . . . , 4. As a

consequence the operator Ñ : [0, T ]×H → H defined by

Ñ (t, Z) := [0, 0, G1(t, Z), G2(t, Z), G3(t, Z), G4(t, Z)]>,

is Lipschitz continuous for any fixed T > 0, and linear in Z ∈ H. Now the linear, non-
autonomous initial value problem

Zt = LZ + Ñ (t, Z), (44a)

Z(0) = Z0 ∈ H, (44b)
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is considered. According to Theorem 6.1.2 in [25] there exists a unique global mild solution
Z(t) of (44) for every Z0 ∈ H. If Z0 ∈ D(L) this solution is classical, see Theorem 6.1.5 in [25].

Our next aim is to show that for the classical solution y(t) fixed in the beginning, the
(continuous) function yt(t) is indeed a mild solution of (44) for Z0 = Ay0: Since y(t) satisfies
the Duhamel formula (25) and is differentiable, we obtain after differentiating with respect to t

yt(t) = etLLy0 +
d

dt

∫ t

0

e(t−s)LN y(s) ds. (45)

According to the proof of Corollary 4.2.5 in [25] the following statement holds true

d

dt

∫ t

0

e(t−s)LN y(s) ds = etLN y0 +

∫ t

0

e(t−s)L d

ds
N y(s) ds. (46)

Inserting (46) in (45) yields that yt(t) fulfills the Duhamel formula for (44). As a consequence
yt(t) is the unique mild solution of (44) to the initial condition Z0 = Ay0. Moreover, we know
that this mild solution Z(t) = yt(t) is a classical solution of (44) if Ay0 ∈ D(A), i.e. y0 ∈ D(A2).
Hence yt ∈ C1(R+;H) and y ∈ C2(R+;H). �

Lemma 7.2. The trajectory γ(y0) is precompact in H for y0 ∈ D(A2). Moreover, there exists
a constant C > 0 such that

‖yt(t)‖H ≤ C, ∀t ≥ 0, (47)

where C depends continuously on ‖y0‖H and ‖yt(0)‖H.

Proof. In order to prove precompactness of the trajectory, it suffices to show that

sup
t>0
‖Ay(t)‖H <∞,

due to the compact embeddings H4(0, L) ↪→↪→ H2(0, L) ↪→↪→ L2(0, L). However, this is
equivalent to showing that yt is uniformly bounded inH, since yt = Ay. Again, this is equivalent
to

H(yt) =
ρ

2

∫ L

0

u2
tt dx+

Λ

2

∫ L

0

(
u′′t
)2

dx+
J

2

(
u′tt(L)

)2
+
M

2

(
utt(L)

)2
+

∫ u′
t(L)

0

k1(s) ds+

∫ ut(L)

0

k2(s) ds+ V1((z1)t) + V2((z2)t)

being uniformly bounded. Since y(t) is a classical solution, we have the following equalities

ut(L) =
ψ

M
, u′t(L) =

ξ

J
.

According to Theorem 4.7 those terms are always uniformly bounded. Moreover, due to regu-
larity of the functions aj , bj and Theorem 4.7 we see from (5a) and (6a) that (zj)t ∈ L∞(R+)
for j = 1, 2. Therefore, the boundedness of H(yt) is equivalent to the boundedness of the
functional

H̃(yt) :=
ρ

2

∫ L

0

u2
tt dx+

Λ

2

∫ L

0

(
u′′t
)2

dx+
J

2

(
u′tt(L)

)2
+
M

2

(
utt(L)

)2
.

Hence, our aim is to derive a system of equations satisfied by yt(t), and then to show that H̃(yt)
is uniformly bounded.

Step 1 (Time derivative of the system): According to Lemma 7.1, y(t) ∈ C2([0,∞);H). Dif-

ferentiating (1) - (3) with respect to time hence shows that yt is the classical solution of the
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following system

ρuttt + ΛuIV
t = 0, (48a)

ut(t, 0) = u′t(t, 0) = 0, (48b)

Λu′′t (t, L) + Ju′ttt(t, L) + (τe)t(t) = 0, (48c)

−Λu′′′t (t, L) +Muttt(t, L) + (fe)t(t) = 0, (48d)

where

τe := c1(z1) + d1(u′t(L)) + k1(u′(L)),

fe := c2(z2) + d2(ut(L)) + k2(u(L)).
(49)

Therefore, from (49) it follows

(τe)t=∇c1(z1)·(z1)t+d
′
1(u′t(L))u′tt(L)+k′1(u′(L))u′t(L),

(fe)t=∇c2(z2)·(z2)t+d
′
2(ut(L))utt(L)+k′2(u(L))ut(L),

(50)

and from (5a) and (6a), we obtain

(z1)tt = [Ja1(z1) + u′t(L)Jb1(z1)](z1)t + b1(z1)u′tt(L), (51a)

(z2)tt = [Ja2(z2) + ut(L)Jb2(z2)](z2)t + b2(z2)utt(L), (51b)

where Jaj , Jbj denote the Jacobian matrices of the functions aj and bj , respectively. Note that

from Lemma 4.4 it follows that zj(.), ut(. , L) = ψ
M , u′t(. , L) = ξ

J ∈ L
2(R+) (cf. (42) for a similar

conclusion). Therefore (5a) and (6a) imply (zj)t ∈ L2(R+).

Step 2 (Time derivative of H̃(yt)): We obtain

d

dt
H̃(yt) = ρ

∫ L

0

utttutt dx+ Λ

∫ L

0

u′′ttu
′′
t dx

+ Ju′ttt(L)u′tt(L) +Muttt(L)utt(L)

= utt(L)
(
Muttt(L)− Λu′′′t (L)

)
+ u′tt(L)

(
Λu′′t (L) + Ju′ttt(L)

)
= −utt(L)

(
(z2)>t ∇c2(z2) + k′2(u(L))ut(L)

)
− u′tt(L)

(
(z1)>t ∇c1(z1) + k′1(u′(L))u′t(L)

)
− d′2(ut(L))

(
utt(L)

)2 − d′1(u′t(L))
(
u′tt(L)

)2
,

(52)

where we have performed partial integration in x twice, and then used (48) and (50). Integrating
(52) on the time interval [0, t], for some arbitrary t ∈ R+, we get with (7)

H̃(yt(t)) ≤ H̃(yt(0)) + I1(t) + I2(t), (53)

where

I1(t) := −
∫ t

0

u′tt(L)
(

(z1)>t ∇c1(z1) + k′1(u′(L))u′t(L)
)

ds,

I2(t) := −
∫ t

0

utt(L)
(

(z2)>t ∇c2(z2) + k′2(u(L))ut(L)
)

ds.
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Step 3 (Boundedness of I1 and I2): Next, we show uniform boundedness for each component
of I2 by using partial integration in time:

−
∫ t

0

utt(L)k′2(u(L))ut(L) ds = −1

2
(ut(t, L))

2
k′2(ut(t, L)) +

1

2
(ut(0, L))

2
k′2(ut(0, L))

+
1

2

∫ t

0

ut(L)3k′′2 (u(L)) ds ≤ C, ∀t ≥ 0.

Further, it holds that∫ t

0

utt(L)(z2)>t ∇c2(z2) ds = ut(t, L)(z2)t(t)
>∇c2(z2(t))− ut(0, L)(z2)t(0)>∇c2(z2(0))

−
∫ t

0

ut(L)
[
(z2)>t

[
Hess(c2)(z2)

]
(z2)t + (z2)>tt∇c2(z2)

]
ds.

Since c2 ∈ C2(Rn2 ;R) and z2(t) ∈ L∞(R+), it follows that∫ t

0

|ut(L)(z2)>t
[

Hess(c2)(z2)
]
(z2)t|ds ≤ C

∫ t

0

|(z2)t|2 ds,

and (with (51))∫ t

0

ut(L)(z2)>tt∇c2(z2) ds =

∫ t

0

ut(L)[Ja2(z2)(z2)t + ut(L)Jb2(z2)(z2)t]
>∇c2(z2) ds

+

∫ t

0

∇c2(z2)>b2(z2)utt(L)ut(L) ds

=

∫ t

0

ut(L)[Ja2(z2)(z2)t + ut(L)Jb2(z2)(z2)t]
>∇c2(z2) ds

+
1

2
∇c2(z2(t))>b2(z2(t))ut(t, L)2

− 1

2
∇c2(z2(0))>b2(z2(0))ut(0, L)2

− 1

2

∫ t

0

(
ut(L)2(z2)>t

·
[
Jb2(z2)>∇c2(z2) + Hess(c2)(z2)b2(z2)

])
ds

≤ C
∫ t

0

|ut(L)|2 + |(z2)t|2 ds

+
1

2
∇c2(z2(t))>b2(z2(t))ut(t, L)2

− 1

2
∇c2(z2(0))>b2(z2(0))ut(0, L)2.

For the estimate of the second integral we have used the uniform boundedness of (z2)t, see
the discussion before Step 1 of this proof. The uniform boundedness of I1 follows analogously.
Hence, H̃(yt(t)) is uniformly bounded in time. Furthermore, it can be seen that all the positive
constants C appearing in the above calculations depend continuously on the initial conditions.
This concludes the proof. �

In order to extend this result to all classical solutions, we need the following density argument.

Lemma 7.3. For any y ∈ D(A) there is a sequence {yn}n∈N in D(A2) such that limn→∞ yn = y
and limn→∞Ayn = Ay.
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Proof. Let an arbitrary y ∈ D(A) be fixed. Notice that it suffices to show that there exists a
sequence {yn}n∈N with yn = [un vn z1n z2n ξnψn]> in D(A2) such that limn→∞ yn = y in the
space H4(0, L)×H2(0, L)×Rn1 ×Rn2 ×R×R. The set D(A2) = {y ∈ D(A) : Ay ∈ D(A)} is
equivalent to

v ∈ H̃4
0 (0, L), (54)

u ∈ H̃6
0 (0, L) ∧ uIV(0) = uV(0) = 0, (55)

ξ = Jv′(L), (56)

ψ = Mv(L), (57)

ΛJ

ρ
uV(L) = Λu′′(L) +

[
c1(z1) + d1

( ξ
J

)
+ k1(u′(L))

]
, (58)

ΛM

ρ
uIV(L) = −Λu′′′(L) +

[
c2(z2) + d2

( ψ
M

)
+ k2(u(L))

]
. (59)

Since C̃∞0 (0, L) := {f ∈ C∞[0, L] : f (k)(0) = 0,∀k ∈ N0} is dense in H̃2
0 (0, L) (see Theorem 3.17

in [23]), there exists a sequence {vn}n∈N ⊂ C̃∞0 (0, L) such that limn→∞ vn = v in H2(0, L).
Also, vn satisfies (54), for all n ∈ N. Defining ξn := Jv′n(L) and ψn := Mvn(L) ensures that
yn satisfies (56) and (57). Moreover, the Sobolev embedding H2(0, L) ↪→ C1[0, L] implies that
limn→∞ ξn = ξ and limn→∞ ψn = ψ as well. Next, let z1n := z1 and z2n := z2 for all n ∈ N.

Finally, the sequence {un}n∈N ⊂ C∞[0, L] will be constructed such that un satisfies (55),
(58), and (59) for all n ∈ N, and limn→∞ un = u in H4(0, L). To this end we introduce an
auxiliary sequence of polynomial functions

hn(x) := h2,nx
2 + h3,nx

3 + h6,nx
6 + h7,nx

7 + h8,nx
8

+ h9,nx
9 + h10,nx

10 + h11,nx
11,

for all n ∈ N, where h2,n, . . . , h11,n ∈ R are to be determined. It immediately follows that

hn(0) = h′n(0) = hIV
n (0) = hV

n(0) = 0. (60)

Let h2,n = u′′(0)
2 and h3,n = u′′′(0)

6 , which is equivalent to

h′′n(0) = u′′(0), h′′′n (0) = u′′′(0). (61)

Further conditions are imposed on hn:

h(k)
n (L) = u(k)(L), k ∈ {0, 1, 2, 3}.

This can equivalently be written in terms of coefficients3:

r1 = h6,n + h7,nL+ h8,nL
2 + h9,nL

3 + h10,nL
4 + h11,nL

5, (62a)

r2 = 6h6,n + 7h7,nL+ 8h8,nL
2 + 9h9,nL

3 + 10h10,nL
4 + 11h11,nL

5, (62b)

r3 = 62h6,n + 72h7,nL+ 82h8,nL
2 + 92h9,nL

3 + 102h10,nL
4 + 112h11,nL

5 (62c)

r4 = 63h6,n + 73h7,nL+ 83h8,nL
2 + 93h9,nL

3 + 103h10,nL
4 + 113h11,nL

5, (62d)

with

r1 =
u(L)

L6
− u′′(0)

2L4
− u′′′(0)

6L3
, r2 =

u′(L)

L5
− u′′(0)

L4
− u′′′(0)

2L3
,

r3 =
u′′(L)

L4
− u′′(0)

L4
− u′′′(0)

L3
, r4 =

u′′′(L)

L3
− u′′′(0)

L3
.

3The coefficient kl (the Pochhammer symbol, see [30]) for k, l ∈ N, l ≤ k is defined by kl := k · (k−1) · · · (k−
l + 1).
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We further require that hn satisfies:

ΛM

ρ
hIV
n (L) = −Λu′′′(L) +

[
c2(z2) + d2

(ψn
M

)
+ k2(u(L))

]
=: r5, (63)

ΛJ

ρ
hV
n(L) = Λu′′(L) +

[
c1(z1) + d1

(ξn
J

)
+ k1(u′(L))

]
:= r6, (64)

where (63) and (64) are equivalent to:

r5
ρ

ΛML2
= 64h6,n + 74h7,nL+ 84h8,nL

2 + 94h9,nL
3 + 104h10,nL

4 + 114h11,nL
5, (65a)

r6
ρ

ΛJL
= 65h6,n + 75h7,nL+ 85h8,nL

2 + 95h9,nL
3 + 105h10,nL

4 + 112h11,nL
5. (65b)

Such hn exists and is unique, due to the fact that linear system (62) and (65) has strictly
positive determinant. Consequently, (60), (61), and (62) imply that u− hn ∈ H4

0 (0, L), for all
n ∈ N. Since C∞0 (0, L) is dense in H4

0 (0, L), there exists a sequence {ũn}n∈N ⊂ C∞0 (0, L) such
that ‖ũn − (u − hn)‖H4 < 1

n , ∀n ∈ N. Now defining un := ũn + hn, gives limn→∞ un = u in

H4(0, L). Obviously un satisfies (55) for all n ∈ N. Also, due to (63) and (64), un satisfies (58)
and (59), as well. Hence, the statement follows. �

Theorem 7.4. For all y0 ∈ D(A) the trajectory γ(y0) is precompact in H.

Proof. Let y0 ∈ D(A) be chosen arbitrarily, and let {yn0}n∈N ⊂ D(A2) be an approximating
sequence as in Lemma 7.3. Then there holds:

lim
n→∞

Ayn0 = Ay0. (66)

For an arbitrary T > 0, and by applying Proposition 4.6 it follows that the approximating
solutions yn(t) converge to y(t) in C([0, T ];H). Since yn(t) ∈ C1([0,∞);H) and solves (24) for
all n ∈ N, (66) yields

lim
n→∞

(yn)t(0) = Ay0 in H. (67)

Hence, (47) and (67) imply that there exists a constant C > 0 such that for all n ∈ N:

sup
t≥0
‖(yn)t(t)‖H ≤ C(‖y0‖H, ‖Ay0‖H),

where the constant C does not depend on n. From here it follows that (yn)t is bounded in
L∞(R+;H). Hence, the Banach-Alaoglu Theorem (see Theorem I.3.15 in [31]) implies that
there exists w ∈ L∞(R+;H) and a subsequence {ynk

}k∈N such that

(ynk
)t
∗
⇀ w in L∞(R+;H).

For arbitrary z ∈ H and t ≥ 0 there holds

lim
k→∞

∫ t

0

〈(ynk
)t(τ), z〉H dτ =

∫ t

0

〈w(τ), z〉H dτ,

which is equivalent to

lim
k→∞

〈ynk
(t)− ynk

(0), z〉H =
〈∫ t

0

w(τ) dτ, z
〉
H
.

Since limn→∞ yn(τ) = y(τ) (in H) for all τ ∈ [0,∞), it follows that

〈y(t)− y(0), z〉H =
〈∫ t

0

w(τ) dτ, z
〉
H
.

Since z ∈ H was arbitrary, we obtain

y(t)− y(0) =

∫ t

0

w(τ) dτ, ∀t ≥ 0. (68)
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Due to continuous differentiability of y, the time derivative of (68) can be taken, which yields
yt ≡ w. This implies yt ∈ L∞(R+;H), i.e. ‖yt(·)‖H is uniformly bounded, which proves the
theorem. �

Corollary 7.5. For any y0 ∈ D(A) there holds limt→∞ = S(t)y0 = 0.

8. Conclusions

In this paper, we provide a rigorous stability proof of a lossless Euler-Bernoulli beam with
tip mass which is feedback interconnected with a nonlinear spring-damper system and a strictly
passive nonlinear dynamical system. Such a configuration comes into play if the tip payload is
interacting with a nonlinear passive environment, if the (nonlinear) dynamics of the torque and
force actuators are also taken into account, or for a combination of these cases. It is well known
that the feedback interconnection of passive systems is passive with a storage function that is
the sum of the storage functions of all subsystems. In the finite-dimensional case, this property
is advantageously utilized for the controller design where the storage function usually qualifies
as an appropriate Lyapunov function candidate. For the infinite-dimensional system under
consideration, the passivity property still ensures that the storage functional is non-increasing
along classical solutions, however, it is well known that this does not directly entail asymptotic
stability. In fact, a crucial step in the stability analysis is to prove the precompactness of the
trajectories. For linear evolution problems this has been reported in many contributions in
the literature, but when considering nonlinearities this is much more involved. Under rather
mild conditions on the parameters and functions appearing in the resulting PDE–ODE model
representing the overall closed-loop system, global-in-time wellposedness is proven by means of
semigroup theory and the precompactness of the trajectories is shown by deriving uniform-in-
time bounds on the solution and its time derivatives. With this, asymptotic stability of classical
solutions can be guaranteed.

Appendix A. The Operator Lp
The system (36) is the mild formulation of the evolution problem (yp)t = Lpyp with yp =

[u, v]> ∈ Hp. Thereby Hp := H̃2
0 (0, L)× L2(0, L), and

Lp :

[
u
v

]
7→
[

v
−Λ
ρ u

IV

]
,

with the domain

D(Lp) =
{

[u, v]>∈ Hp : u ∈ H̃4
0 (0, L), v ∈ H̃2

0 (0, L),

Λu′′(L) + K̃1u
′(L) = 0,Λu′′′(L)− K̃2u(L) = 0

}
.

The space Hp is equipped with the following inner product:

〈yp, ỹp〉p := Λ

∫ L

0

u′′ũ′′ dx+ ρ

∫ L

0

vṽ dx

+ K̃1u
′(L)ũ′(L) + K̃2u(L)ũ(L).

(69)

The constants K̃1, K̃2 are defined in (35) and depend, at first glance, on the fixed y0 ∈ Ω
in the proof of Theorem 5.6. Hence, D(Ap) and the above inner product also depend on y0.
But this does not cause any problems. Anyhow, Step 2 in the proof of Theorem 5.6 shows that
u0(L) = u′0(L) = 0. Hence, K̃j = Kj .

We have the following results:

Lemma A.1. The operator L−1
p : Hp → D(Lp) exists and is a bijection. Furthermore, L−1

p is
compact in Hp.
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Proof. The proof is analogous to the proof of Theorem 3.1, see also Section 4.2 in [12]. �

Lemma A.2. The operator Lp is skew-adjoint.

Proof. First we show that Lp is skew-symmetric, i.e. for all y, ỹ ∈ D(Lp) there holds 〈Lpy, ỹ〉p =
−〈y,Lpỹ〉p:

〈Lpy, ỹ〉p = Λ

∫ L

0

v′′ũ′′ dx− Λ

∫ L

0

uIVṽ dx+ K̃1v
′(L)ũ′(L) + K̃2v(L)ũ(L)

= Λ
(∫ L

0

vũIV dx+ v′(L)ũ′′(L)− v(L)ũ′′′(L)

−
∫ L

0

u′′ṽ′′ dx− u′′′(L)ṽ(L) + u′′(L)ṽ′(L)
)

+ K̃1v
′(L)ũ′(L) + K̃2v(L)ũ(L).

Using the boundary conditions Λu′′(L) + K̃1u
′(L) = 0 and Λu′′′(L)− K̃2u(L) = 0 from D(Lp)

we obtain:

〈Lpy, ỹ〉p = Λ

∫ L

0

vũIV dx− K̃1v
′(L)ũ′(L)− K̃2v(L)ũ(L)

− Λ

∫ L

0

u′′ṽ′′ dx− K̃2u(L)ṽ(L)− K̃1u
′(L)ṽ′(L)

+ K̃1v
′(L)ũ′(L) + K̃2v(L)ũ(L)

= −〈y,Lpỹ〉p.

So Lp is skew-symmetric. Furthermore, due to Lemma A.1 we know that ranLp = Hp. So
we can apply the Corollary of Theorem VII.3.1 in [32], which proves the skew-adjointness of
Lp. �

Lemma A.3. Lp generates a C0-semigroup of unitary operators in Hp.

Proof. Since Lp is skew-adjoint, this follows from Stone’s theorem [33, Theorem II.3.24]. �
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