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Complexity of Infimal Observable Superlanguages
Tomáš Masopust

Abstract—The infimal prefix-closed, controllable and observ-
able superlanguage plays an essential role in the relationship
between controllability, observability and co-observability – the
central notions of supervisory control theory. Existing algorithms
for its computation are exponential and it is not known whether
a polynomial algorithm exists. In this paper, we study the state

complexity of this language. State complexity of a language is
the number of states of the minimal DFA for the language. For
a language of state complexity n, we show that the upper-bound
state complexity on the infimal prefix-closed and observable
superlanguage is 2n + 1 and that this bound is asymptotically
tight. It proves that there is no algorithm computing a DFA of the
infimal prefix-closed and observable superlanguage in polynomial
time. Our construction further shows that such a DFA can be
computed in time O(2n). The construction involves NFAs and a
computation of the supremal prefix-closed sublanguage. We study
the computation of the supremal prefix-closed sublanguage and
show that there is no polynomial-time algorithm that computes
an NFA of the supremal prefix-closed sublanguage of a language
given as an NFA even if the language is unary.

Index Terms—Discrete event systems; Automata; Prefix-closed
language; Observable language; Complexity.

I. INTRODUCTION

C
ONTROLLABILITY and observability are the central

notions of supervisory control theory of discrete event

systems in the Ramadge-Wonham framework [1]–[3]. They

form the necessary and sufficient conditions for the existence

of a supervisor that achieves the desired control behavior of

a system. In decentralized supervisory control, where more

supervisors cooperate to control the system, every supervisor

observes and controls part of the system. The observation of a

supervisor is modeled by an observation mask or by a natural

projection. Cieslak et al. [1] and Rudie and Wonham [4] have

shown that controllability and co-observability are the central

notions in decentralized supervisory control.

A relationship between controllability, observability and co-

observability has been studied by Kumar and Shayman [5],

who have shown that the infimal prefix-closed, controllable

and observable superlanguage plays the essential role. Another

motivation and the importance of infimal superlanguages have

been discussed in the fundamental book on supervisory control

theory [6]. We have further illustrated its relevance to decen-

tralized supervisory control with communication [7] and to

coordination control [8]. We refer the reader to these papers

for more details and examples.

Infimal superlanguages are of a general interest in supervi-

sory control. There are examples in modular and decentralized

control showing evidence that supremal sublanguages do not

always suffice to achieve the best (optimal) solution and that
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the optimal solution may be achieved if infimal superlanguages

are involved. The examples show evidence that the combi-

nation of supremal sublanguages and infimal superlanguages

help achieve optimality if it is not achievable by supremal

sublanguages alone [7], [8]. Therefore our interest in infimal

prefix-closed, controllable and observable superlanguages.

Lafortune and Chen [9] have shown that the infimal prefix-

closed and controllable superlanguage can be computed from a

deterministic finite automaton (DFA) for the language in linear

time. Kumar and Shayman [5] have further shown that it is

sufficient to consider the computation of the infimal prefix-

closed and observable superlanguage of a language K over

Σ wrt the language Σ∗. Thus, we focus in this paper on the

infimal prefix-closed and observable superlanguage of K wrt

Σ∗ and study its state complexity.

State complexity of a language is the number of states of

the minimal DFA marking (accepting) the language. Since the

minimal DFA is unique (up to isomorphism), state complexity

is a complexity measure that is independent of the represen-

tation and computation of the language.

Our contribution: For a language K of state complexity

n, we show that the upper-bound on the state complexity of

the infimal prefix-closed and observable superlanguage of K
wrt the language Σ∗ is 2n+1. We further prove that this bound

is asymptotically tight by showing that the worst-case lower-

bound state complexity is at least 3
4 · 2n − 1 = Ω(2n). Since

the state complexity is exponential, so is the time complexity

of any algorithm computing the corresponding minimal DFA.

In addition, our construction shows that a DFA representa-

tion of the infimal prefix-closed and observable superlanguage

of K wrt the language Σ∗ can be computed in time O(2n).
Our construction involves nondeterministic finite automata

(NFAs) and is based on a formula equivalent to the formulae of

Rudie and Wonham [10] and of Kumar and Shayman [5]. The

formulae include a computation of the supremal prefix-closed

sublanguage. We study the computation of the supremal prefix-

closed sublanguage and show that there is no polynomial-time

algorithm computing an NFA representation of the supremal

prefix-closed sublanguage of a language given as an NFA even

if the language is unary.

II. PRELIMINARIES

We assume that the reader is familiar with supervisory con-

trol theory [6] and automata theory [11], [12]. For undefined

notions, the reader is refer to these references.

The prefix closure of a language L is the set L = {w ∈ Σ∗ |
there is u ∈ Σ∗ s.t. wu ∈ L}; L is prefix-closed if L = L.

The right quotient of a language L wrt a language M is the set

L/M = {w ∈ Σ∗ | there is x ∈ M s.t. wx ∈ L}. If M = {a}
is a singleton, we simply write L/a = {w ∈ Σ∗ | wa ∈ L}.

The empty string is denoted by ε.
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A nondeterministic finite automaton (NFA) is a quintuple

A = (Q,Σ, δ, Q0, F ), where Q is a finite nonempty set of

states, Σ is an input alphabet, Q0 ⊆ Q is a set of initial states,

F ⊆ Q is a set of marked states, and δ : Q × (Σ ∪ {ε}) →
2Q is a transition function that is extended to 2Q × Σ∗ by

induction. The language generated by A is the set L(A) =
{w ∈ Σ∗ | δ(Q0, w) 6= ∅} and the language marked by A is

the set Lm(A) = {w ∈ Σ∗ | δ(Q0, w) ∩ F 6= ∅}.

The NFA A is an (incomplete) deterministic finite automa-

ton (DFA) if |Q0| ≤ 1 and |δ(q, a)| ≤ 1 for every q ∈ Q and

a ∈ Σ. Moreover, DFAs do not admit ε-transitions, that is, δ
is a partial transition function from Q × Σ to Q.

For every NFA A there exists a DFA B such that Lm(B) =
Lm(A) and L(B) = L(A). The DFA B is constructed by

the standard subset construction [12] and is called the subset

automaton of A. Specifically, for A = (Q,Σ, δ, Q0, F ), B =
(2Q,Σ, δ′, Q0, F

′), where δ′ : 2Q × Σ → 2Q is defined as

δ′(X, a) = δ(X, a) and F ′ = {R ⊆ Q | R ∩ F 6= ∅}.

Let Σ and ∆ be alphabets. An (observation) mask is a map

P : Σ → ∆ ∪ {ε} that is extended to Σ∗ so that P (ε) = ε
and P (sa) = P (s)P (a) for s ∈ Σ∗ and a ∈ Σ. If L is a

regular language, then P (L) = ∪w∈L P (w) is regular [13]. A

mask P is a (natural) projection if ∆ ⊆ Σ and P (a) = a, for

a ∈ ∆, and P (a) = ε otherwise. The inverse image of a mask

P , denoted by P−1 : 2∆
∗

→ 2Σ
∗

, is defined as P−1(L) =
{w ∈ Σ∗ | P (w) ∈ L}. Regular languages are closed under

the inverse image of a mask [13].

In the rest, the term language stands for a regular language.

III. KNOWN AND PRELIMINARY RESULTS

Let inf CO(K,L(G),Σu, P ) denote the infimal superlan-

guage of K that is prefix-closed, controllable and observable

wrt L(G), uncontrollable events Σu, and a mask P . Similarly

we use inf C(K,L(G),Σu) to denote the infimal prefix-closed

and controllable superlanguage and inf O(K,L(G), P ) to de-

note the infimal prefix-closed and observable superlanguage.

Kumar and Shayman [5] have proved that the computation

of the infimal prefix-closed, controllable and observable super-

language of K wrt L(G) depends on the computation wrt Σ∗,

namely inf CO(K,L(G),Σu, P ) = inf CO(K,Σ∗,Σu, P ) ∩
L(G). It thus suffices to consider the computation wrt the lan-

guage Σ∗. They further proved that inf CO(K,Σ∗,Σu, P ) =
inf O(inf C(K,Σ∗,Σu),Σ

∗, P ). Lafortune and Chen [9] have

shown that inf C(K,Σ∗,Σu) = KΣ∗
u, which can be computed

from a DFA for K in linear time. The computation of the

infimal prefix-closed and controllable superlanguage is thus

easy and we focus in the rest on the computation of the infimal

prefix-closed and observable superlanguage.

Rudie and Wonham [10] showed that inf O(K,L(G), P ) =
L(G)\ (Σ+ \ P̃−1(P̃ (K)))Σ∗, where P is a projection and P̃
projects all but the last event, inductively defined by P̃ (ε) = ε
and P̃ (sa) = P (s)a. They also proved that for K 6= ∅,

P̃−1P̃ (K) =
⋃

a∈Σ

[
P−1(P (Ka ∩K)) ∩ Σ∗a

]
∪ {ε} . (1)

The equation remains valid for masks and Kumar and Shay-

man [5] extended it and simplified to the form

inf O(K,L(G), P ) = sup [P̃−1P̃ (K)] ∩ L(G) (2)

where sup (H) stands for the supremal prefix-closed sublan-

guage of a language H . Note that it immediately implies that

inf O(K,L(G), P ) = inf O(K,Σ∗, P ) ∩ L(G).
The formulae consist of operations studied in the literature

and their worst-case state complexities give a rough estimate

on the state complexity of the language inf O(K,Σ∗, P ). By

Yu et al. [14], the bound is no more than 2|Σ|(4n2+8n+1), where

n is the state complexity of K . Namely, Yu et al. [14] show

that Ka needs no more than 4n + 8 states and Ka ∩ K no

more than (4n + 8)n states. Then P−1P (Ka ∩K) needs at

most 2(4n+8)n states. (If P is a natural projection, the bound

is lower [15], [16].) The intersection with Σ∗a then needs no

more than 2(4n+8)n · 2 states and the union over all events

a in Σ no more than (2(4n+8)n · 2)|Σ| states. The supremal

prefix-closed sublanguage of a DFA can be computed in linear

time and does not increase the state complexity; it requires to

remove all non-marked states and corresponding transitions.

Results of Yu et al. [14] hold for any language and the reader

may notice that the languages of the formulae are of special

forms. The worst-case state complexity of Yu et al. [14] is

thus mostly not tight for them. For instance, it can be shown

that the tight state complexity on Ka ∩ K is 2n rather than

(4n+ 8)n, which decreases the upper bound to 2|Σ|2n.

We now show that the upper bound on the state complexity

of the language inf O(K,Σ∗, P ) is no more than 2n + 1. To

this aim, we express the formula for inf O(K,Σ∗, P ) in an

equivalent form using the operation of right quotient. This

expression is based on the following relation between the

mask, intersection and right quotient operations.

Lemma 1: Let P be a mask from Σ to ∆. For a prefix-closed

language K over Σ and an event a ∈ Σ, it holds that

P−1(P (Ka ∩K)) ∩ Σ∗a = (P−1P (K/a))a .

Proof: The claim holds for K = ∅. Assume that K 6= ∅.

Let xa ∈ P−1(P (Ka∩K))∩Σ∗a. Then P (xa) ∈ P (Ka∩K)
and there exists ya ∈ Ka∩K such that P (xa) = P (ya). Since

ya ∈ K , we have that y ∈ K/a, hence xa ∈ P−1(P (y))a ⊆
(P−1P (K/a))a. On the other hand, let xa ∈ (P−1P (K/a))a.

Then x ∈ P−1P (K/a) and there is y ∈ K/a with P (x) =
P (y). Since y ∈ K/a, ya ∈ K . Because K is prefix-closed,

y ∈ K , which implies that ya ∈ Ka ∩ K . Thus, P (xa) ∈
P (Ka ∩K), that is, xa ∈ P−1(P (Ka ∩K)) ∩ Σ∗a.

The assumption that the language is prefix-closed is essen-

tial. The lemma does not hold for non-prefix-closed languages

even if P is the identity mask. In this case, Lemma 1 reduces

to Ka∩K = (K/a)a. If K = {aa} is non-prefix-closed, then

Ka ∩K = ∅, whereas (K/a)a = {aa}.

We can now express the formula of Kumar and Shayman [5]

in an equivalent form using the operation of right quotient.

Theorem 2: Let K be a nonempty language over Σ, and

let P be a mask from Σ to ∆. Then inf O(K,Σ∗, P ) =
sup (∪a∈Σ(P

−1P (K/a))a ∪ {ε}).
Proof: By (1), (2), and Lemma 1, inf O(K,Σ∗, P ) =

sup (P̃−1P̃ (K)) = sup (∪a∈Σ [P−1(P (Ka ∩ K)) ∩ Σ∗a] ∪
{ε}) = sup (∪a∈Σ (P−1P (K/a))a ∪ {ε}), respectively.

We further modify the formula by moving the union opera-

tion deeper into the formula. It is then applied to a structurally

simpler subformula, which is useful for our goal.
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Lemma 3: Let K ⊆ Σ∗ be a language and P : Σ → ∆∪{ε}
be a mask. Let Σ′ = {a′ | a ∈ Σ} be a copy of Σ disjoint

from both Σ and ∆. Let h : Σ ∪ Σ′ → ∆ ∪ Σ′ ∪ {ε} be a

mask defined by h(a) = P (a), for a ∈ Σ, and h(a′) = a′, for

a′ ∈ Σ′. Let g : Σ′ → Σ be a mask defined by g(a′) = a, for

a′ ∈ Σ′. Then

⋃

a∈Σ

(P−1P (K/a))a = g

(
h−1h

(
⋃

a∈Σ

(K/a)a′

)
∩ Σ∗Σ′

)
.

Proof: By the properties of masks, we have that

g(h−1(h(∪a∈Σ(K/a)a′)) ∩ Σ∗Σ′)

= g([∪a∈Σ h−1(h((K/a)a′))] ∩ Σ∗Σ′)

= g([∪a∈Σ h−1(h(K/a)h(a′))] ∩ Σ∗Σ′)

= g([∪a∈Σ h−1(P (K/a)a′)] ∩ Σ∗Σ′)

= g([∪a∈Σ h−1(P (K/a))h−1(a′)] ∩ Σ∗Σ′)

= g([∪a∈Σ P−1(P (K/a))a′P−1(ε)] ∩Σ∗Σ′)

= g(∪a∈Σ [P−1(P (K/a))a′P−1(ε) ∩Σ∗Σ′])

= g(∪a∈Σ P−1(P (K/a))a′)

= ∪a∈Σ g(P−1(P (K/a))a′)

= ∪a∈Σ (P−1P (K/a))a .

This completes the proof.

As a corollary of Theorem 2 and Lemma 3, we obtain the

following formula, which we use to show the asymptotically

tight bound on the state complexity of inf O(K,Σ∗, P ).
Corollary 4: Under the assumptions of Lemma 3, if K 6= ∅,

inf O(K,Σ∗, P ) =

sup

[
g

(
h−1h

(
⋃

a∈Σ

(K/a)a′

)
∩ Σ∗Σ′

)
∪ {ε}

]
.

IV. DETERMINISTIC STATE COMPLEXITY

We now use Corollary 4 to show that 2n + 1 is an upper-

bound on the state complexity of the language inf O(K,Σ∗, P )
and that the bound is asymptotically tight.

Corollary 4 suggests an algorithm (Algorithm 1) to compute

the language inf O(K,Σ∗, P ). We now discuss state complex-

ities of its steps. Consequently we obtain its time complexity.

Lemma 5 (Yu et al. [14]): Let A be a DFA over Σ with n
states, and let a ∈ Σ. Then the minimal DFA for Lm(A)/a
has at most n states. The bound is tight.

Algorithm 1 Computation of inf O(K,Σ∗, P )

Input: a DFA for K over Σ and a mask P
Output: a DFA for the language inf O(K,Σ∗, P )

1: if K = ∅ then return the DFA for K
2: else

3: Compute a DFA for K
4: Compute a DFA for ∪a∈Σ (K/a)a′

5: Compute an NFA for g(h−1h(∪a∈Σ (K/a)a′)∩Σ∗Σ′)
6: Determinize the NFA

7: Compute the union with {ε}
8: Compute the supremal prefix-closed sublanguage

0 1

a, b

c

a

0 1 2

a, b

c

a

a′, b′

a′

Fig. 1. Automata A (left) and B (right) for ∪a∈Σ(Lm(A)/a)a′

The construction is as follows. Let A = (Q,Σ, δA, q0, FA)
be a DFA. Construct the DFA A′ = (Q,Σ, δA, q0, FA′), where

FA′ = {q ∈ Q | δA(q, a) ∈ FA}. Then Lm(A′) = Lm(A)/a.

We now study the size of the minimal DFA for the language

computed in Step 4 of the algorithm.

Lemma 6: Let A be a DFA over Σ with n states. Then the

minimal DFA for ∪a∈Σ (Lm(A)/a)a′ has at most n+1 states.

The bound is tight even for prefix-closed languages.

Proof: Let A = (Q,Σ, δA, q0, FA) be a DFA with n
states Q = {0, 1, . . . , n − 1}. For every a ∈ Σ, we construct

the set Fa = {q ∈ Q | δA(q, a) ∈ FA} of all states of A from

which an a-transition reaches a marked state. We construct the

DFA B = (Q ∪ {n},Σ, δB, 0, {n}) from A by adding a new

state, n, which is the only marked state, and by defining the

transitions δB(q, a) = δA(q, a), for 0 ≤ q ≤ n− 1 and a ∈ Σ,

and δB(f, a
′) = n, for every f ∈ Fa. The construction is

illustrated in Fig. 1. The corresponding sets are Fa = {0, 1},

Fb = {0} and Fc = ∅.

We claim that B marks the language ∪a∈Σ (Lm(A)/a)a′.
If a string is marked by B, it is of the form wa′, for some

a ∈ Σ, which means that δB(0, w) ∈ Fa. By the construction

of Fa, w ∈ Lm(A)/a, hence wa′ ∈ (Lm(A)/a)a′. On the

other hand, if wa′ ∈ ∪a∈Σ (Lm(A)/a)a′, then w ∈ Lm(A)/a,

hence δB(0, w) = fa, for some fa ∈ Fa, which implies that

δB(0, wa
′) = δB(fa, a

′) = n, hence it is marked by B.

To show that the bound is tight, we consider the DFA A
depicted in Fig. 2 (solid arrows) with states {0, . . . , n − 1},

where state 0 is initial and all states are marked. The DFA is

minimal; two states are distinguishable by a string in b∗. The

DFA B for (Lm(A)/a)a′ ∪ (Lm(A)/b)b′ is depicted in Fig. 2

(all arrows), where the states are {0, . . . , n} with n being the

only marked state. There is an a′-transition from state i to

state n for every 0 ≤ i ≤ n− 1, and a b′-transition from state

j to state n for every 0 ≤ j ≤ n− 2. The DFA B is minimal;

states {0, . . . , n−1} are distinguishable by the same argument

as for A and n is not equivalent with any other state since it

is the only marked state.

We now use the previous results to obtain our upper-bound

on the state complexity of the language inf O(K,Σ∗, P ).
Theorem 7 (Upper bound): Let K over Σ be a nonempty

language marked by a DFA with n states. Then the minimal

0 1 · · · n− 2 n− 1 n
a, b a, b a, b

a

a, b

a′, b′

a′

a′, b′

a′, b′

Fig. 2. Automata A (solid arrows) and B (all arrows)
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DFA for inf O(K,Σ∗, P ) has no more than 2n + 1 states.

Proof: Let P : Σ → ∆∪{ε}. By Corollary 4, we have that

inf O(K,Σ∗, P ) = sup [g(h−1h(∪a∈Σ (K/a)a′) ∩ Σ∗Σ′) ∪
{ε}]. From Lemma 6, we have that the minimal DFA marking

the language ∪a∈Σ (K/a)a′ has at most n+1 states, only one

of which is marked. We denote this state by f . Notice that,

by the construction, there is no transition from state f .

We represent the language g(h−1h(∪a∈Σ (K/a)a′)∩Σ∗Σ′)
as an NFA as follows. The language h(∪a∈Σ (K/a)a′) is

computed by replacing every x-transition, x ∈ Σ, with the

h(x)-transition. The language h−1h(∪a∈Σ (K/a)a′) is then

computed by replacing every y-transition, y ∈ ∆, by an x-

transition for every x ∈ Σ such that h(x) = y. In addition,

for every x ∈ Σ such that h(x) = ε, we add a self-

loop under x to every state of the NFA. To compute an

NFA for h−1h(∪a∈Σ (K/a)a′)∩Σ∗Σ′ then means to remove

all transitions from state f . This can be done during the

computation of an NFA for h−1h(∪a∈Σ(K/a)a′) so that no

self-loop is added to state f . The computation of an NFA for

the mask g is similar to that of h.

The resulting NFA has at most n + 1 states. Thus, a DFA

equivalent to the NFA, constructed by the standard subset

construction, has at most 2n+1 reachable states. However,

since every marked state of the subset automaton must contain

f , and there are at most 2n subsets containing f , there are at

most 2n marked states in the computed DFA.

To compute the union with {ε}, the DFA may require one

more (initial and marked) state. Thus, the resulting DFA has at

most 2n+1+1 states, where at most 2n+1 states are marked.

Since inf O(K,Σ∗, P ) is prefix-closed, its minimal DFA

must have all states marked. There are at most 2n + 1
marked states in the above constructed automaton, therefore

the minimal DFA for inf O(K,Σ∗, P ) can have at most so

many states.

Consequently, the time complexity of Algorithm 1 is O(2n).
Indeed, let n be the state complexity of K . Step 3 requires

time O(n). To compute Step 4, we add a new state, f , and

scan the automaton in linear time using, e.g., the breadth-

first search (BFS) algorithm [17]. For every state q and its

out-going transition under x, if δ(q, x) is marked, we add

an x′-transition from q to f . This can be done in time

O(1 + n + 2n · |Σ|) = O(n · |Σ|), since there are n states,

one added new state, and at most n · |Σ| transitions that

may be duplicated to f . Step 5 can be computed in time

O(n · |Σ|) as follows. The application of h can be done in

time O(n · |Σ|) by the BFS algorithm. The application of h−1

can be done in time O(n · |Σ| + n · |Σ \ ∆|) = O(n · |Σ|),
where the second part corresponds to adding self-loops under

unobservable events. As explained above, the intersection with

Σ∗Σ′ is done so that no transitions are added to f during

the computation of h−1. Step 6 can be computed in time

O(2n · |Σ|), since, by the proof of Theorem 7, the DFA has

at most 2n+1 + 1 states and |Σ| transitions in every state.

Step 7 can be computed in time O(|Σ|) as follows: let q0 be

the initial state of the DFA, and let qi be a new marked state.

We change the DFA so that qi is the only initial state, i.e.,

q0 is not initial anymore, and for every x ∈ Σ, we define

δ(qi, x) = δ(q0, x). Finally, Step 8 can be computed in linear

0 1 2 n− 2 n− 1
a

b

a, b aa, b

b

a

c

b

Fig. 3. The minimal DFA An for Kn

time wrt the size of the input DFA by removing all non-

marked states and the corresponding transitions. The overall

time complexity is O(|Σ| · 2n). Considering the size of the

alphabet as constant results in the claimed complexity O(2n).
We now discuss the lower-bound state complexity and show

that it is Ω(2n). It holds even for projections.

Theorem 8 (Lower bound): Let P : {a, b, c}∗ → {a, b}∗ be

a projection. For every n ≥ 2, there exists a minimal DFA

with n states marking a language Kn ⊆ {a, b, c}∗, such that

the state complexity of inf O(Kn,Σ
∗, P ) is at least 3

4 ·2
n−1.

Proof: Let Kn be the language marked by the DFA An

depicted in Fig. 3. It has n states {0, 1, . . . , n − 1}, where

state 0 is the sole initial and marked state. For 0 ≤ i ≤ n− 1,

δ(i, a) = (i + 1 mod n). For 1 ≤ i ≤ n− 3, δ(i, b) = i + 1,

δ(n − 2, b) = 0, and, for i ∈ {0, n− 1}, δ(i, b) = i. Finally,

there is a single c-transition δ(n− 1, c) = 0.

An NFA Bn for the language g(h−1h(∪a∈Σ(Kn/a)a
′) ∩

Σ∗Σ′) is build from An according to the above constructions

in the following steps and the result is depicted in Fig. 4:

1) We compute Kn by marking all states of An.

2) To compute ∪a∈Σ(Kn/a)a
′, we add a new state, n.

From every state of An, transitions under a′ and b′ go

to state n, and a transition under c′ goes from state n−1
to state n. The only marked state is state n.

3) The language h(∪a∈Σ(K/a)a′) is computed by replac-

ing the c-transition by an ε-transition.

4) To compute h−1h(∪a∈Σ(K/a)a′) ∩ Σ∗Σ′, a self-loop

under c is added to every state of An. Note that it is not

added to state n, since it would be eliminated by the

intersection with Σ∗Σ′. Thus, this can be done in linear

time without computing the intersection.

5) Finally, to apply g means to rename all transitions under

a′, b′ and c′, which all go to state n.

We show that the minimal DFA equivalent to the NFA Bn

has at least 3
4 · 2n − 1 reachable marked states. Using the

standard subset construction, we first show that all states of the

0

n

1 2 n− 2 n− 1
a

b, c

a, b aa, b

b, c

a
b

ε

a
, b a,

b
a, b

a, b
a, b, c

c
c

c

Fig. 4. An NFA Bn marking language g(h−1h
(
⋃

a∈Σ
(Kn/a)a′

)

∩Σ∗Σ′)
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subset automaton corresponding to the NFA Bn are pairwise

distinguishable. Indeed, Bn marks ε only from state n and aic
only from state n− 1 − i, for 0 ≤ i ≤ n − 1. Therefore, the

states of the subset automaton are pairwise distinguishable.

To prove the theorem, we show that the subset automaton has

2n−1+2n−2−1 marked states that are all reachable via other

marked states.

State {0} is initial, but not marked; we resolve this issue

later. We now prove, by induction on the size of the subset,

that every subset of {0, 1, . . . , n − 1, n} containing 0 and n
is reachable in the subset automaton from state {0} by a

nonempty string over {a, b}. Since there is an a-transition and

a b-transition from every state 0 through n−1 to n, all subsets

reachable by such a string must contain state n, i.e., they are

marked in the subset automaton. State {0, n} is reachable from

state {0} by b. State {n−2, n} is reachable from {0} by an−2.

State {0, n−2, n} is reachable from state {n−2, n} by a2bn−3.

State {0, n−2, n} goes to state {0, 1, n−1, n} by a, and then

by a string in b∗ to states {0, i, n− 1, n} with 1 ≤ i ≤ n− 2.

State {0, n− 2, n− 1, n} goes to state {0, n− 1, n} by b, and

then to state {0, 1, n} by a. By a string in b∗, state {0, 1, n}
goes to states {0, i, n} with 1 ≤ i ≤ n− 2. Thus, each subset

of size two or three containing 0 and n is reachable.

Now, let X = {0, i1, i2, . . . , it, n} be a set of size t + 2,

where 2 ≤ t ≤ n − 1 and 1 ≤ i1 < i2 < · · · < it ≤ n − 1.

We consider two cases:

1) If it = n − 1, then X is reachable from state {0, i2 −
i1, . . . , it−1 − i1, n− 2, n} by abi1−1, and the latter set

of size t+ 1 is reachable by the induction hypothesis.

2) If it < n − 1, then X is reachable from state {0, i2 −
i1, . . . , it − i1, n− 1, n} by abi1−1, and the latter set of

size t+ 2 contains state n− 1, and is reachable by 1).

This proves reachability of all subsets of {0, 1, . . . , n} con-

taining 0 and n. There are 2n−1 such subsets.

Next, if X = {i1, i2, . . . , it} is a non-empty subset of the

set {1, 2, . . . , n− 2}, then the set X ∪ {n} is reachable from

the set {0, i2−i1, i3−i1, . . . , it−i1, n} containing 0 and n by

ai1 . Thus, for every ∅ 6= X ⊆ {1, 2, . . . , n−2}, state X∪{n}
is reachable in the subset automaton. These sets do not contain

0, hence they are different from the reachable states considered

above. There are 2n−2 − 1 such subsets.

Finally, we compute the union with the language {ε}. To do

this, we create a new initial and accepting state, I , (state {0}
is not initial anymore) with transitions defined exactly as for

state {0}, that is, δ(I, x) = δ({0}, x), for every x ∈ {a, b, c}.

This has resolved the problem with the non-marked initial

state, since state I is marked and has the same transitions

as state {0}, that is, all states reachable from state {0} are

also reachable from state I . Thus, we have shown that the

minimal DFA constructed by the subset construction has at

least 2n−1 + 2n−2 marked states that are all reachable from

the initial marked state I via marked states.

However, state I is equivalent to state {0, n}. Indeed, both

states I and {0, n} go to state {1, n} under a, to state {0, n}
under b, and to state {0} under c.

It remains to show that if the non-marked states are elimi-

nated, the constructed marked states different from I are still

pairwise distinguishable. Let X and Y be two sets different

0 1 2
a

a

b

Fig. 5. A prefix-closed NFA A with Lm(A) = {ab}

from I constructed above. They both contain n and, without

loss of generality, we may assume that there exists i such that

n − 1 − i ∈ X \ Y . Then the set reachable from X under

ai contains n − 1, but the set reachable from Y under ai

does not. It means that aic is marked from X , but not from

Y , which distinguishes the states X and Y . Therefore, the

minimal DFA of the supremal prefix-closed sublanguage has

at least 2n−1+2n−2−1 states, which completes the proof.

Combining the upper and lower bounds of Theorems 7 and 8

gives the following corollary.

Corollary 9: Let K over Σ be a language with state

complexity n, and let P be a mask. Then the worst-case state

complexity of the language inf O(K,Σ∗, P ) is Θ(2n).
We also have the following consequence on the time com-

plexity of Algorithm 1.

Corollary 10: The time complexity of Algorithm 1 is Θ(2n),
where n is the state complexity of the input language.

V. NONDETERMINISTIC STATE COMPLEXITY

Algorithm 1 represents the language as an NFA and it

is determinized before computing the operation sup (·). The

algorithm computing sup (·) on a DFA cuts off all non-marked

states and the corresponding transitions, which requires linear

time wrt the size of the input DFA. However, as shown above,

this DFA may be exponentially larger than the DFA for K .

Another possibility is to execute sup (·) directly on an NFA.

We now discuss this possibility and show that, in general, there

is no polynomial-time algorithm that, given an NFA A, would

compute an NFA marking the language sup (Lm(A)).
We first provide a brief insight into the difference between

the computation of sup (·) for DFAs and NFAs. Indeed, if all

states of an NFA are marked, then its language is prefix-closed.

However, compared to DFAs, the problem with NFAs is that

having a non-marked state does not yet mean that the language

is not prefix-closed, cf. Fig. 5 for an example. It can be shown

that, given an NFA, it is PSPACE-complete to decide whether

its marked language is prefix-closed [18].

Theorem 11: The problem whether the marked language of

an NFA is prefix-closed is PSPACE-complete.

We now show that there is no polynomial-time algorithm

computing an NFA representation of sup (Lm(A)) in general.

Theorem 12: Let A be an NFA. There is no polynomial-time

algorithm computing an NFA for the language sup (Lm(A)).
The claim holds even for unary languages.

Proof: We prove the theorem by constructing, for any

n ≥ 1, an NFA An with polynomially many states in n such

that any NFA for sup (Lm(An)) has at least exponentially

many states in n. Clearly, such an NFA cannot be computed

in polynomial time wrt the size of An.

To construct the NFAs An, we first construct auxiliary

DFAs Bn, for every n ≥ 0. The DFA B0 = (X0, {a},
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a

a

02 12 22
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Fig. 6. The NFA A2; “nondeterministic” union of DFAs B0, B1, and B2

γ0, Xi,0, Xm,0), where X0 = Xi,0 = Xm,0 = {00} and

γ0(00, a) is undefined. For n ≥ 1, let pn denote the nth prime

number. We define the DFA Bn = (Xn, {a}, γn, Xi,n, Xm,n),
where the state set is Xn = {0n, 1n, . . . , (pn − 1)n}, the

set of initial states is Xi,n = {0n}, the set of marked

states is Xm,n = Xn \ {0n}, and the transition function

is γn(in, a) = (i + 1 mod pn)n, for all in ∈ Xn. Then

Lm(B0) = {ε} and Lm(Bn) = a∗ \ (apn)∗, cf. Fig. 6 for

automata B0, B1, and B2. We assume that the state sets Xi

and Xj are disjoint for any i 6= j.

For n ≥ 1, we build the NFA An = (Qn, {a}, δn, Qi,n, Fn)
as a “nondeterministic” union of the DFAs B0,B1, . . . ,Bn.

The NFA A2 is depicted in Fig. 6. Formally, Qn = ∪n
k=0 Xk,

δn(ik, a) = γk(ik, a), Qi,n = ∪n
k=0 Xi,k, and Fn =

∪n
k=0 Xm,k. The number of states of An is 1 +

∑n

i=1 pi,
which has been estimated by Bach and Shallit [19] to be

1 + 2−1n2 lnn = O(n2 lnn). The marked language of An

is Lm(An) = a∗ \ (apn#)+, where pn# = Πn
i=1pi. Indeed,

for m ≥ 1, string am is marked by An if and only if there

is pi ∈ {p1, . . . , pn} such that m mod pi 6= 0. Thus, the

shortest string that is not marked by An is of length pn#.

Therefore, the supremal prefix-closed sublanguage of Lm(An)
is the finite language {apn#−1}.

We now show, using the fooling set technique [20], that any

NFA marking this language requires at least pn# states.

Fact 13 (Fooling set technique): Let L ⊆ Σ∗ be a language,

and let S = {(xi, yi) | 1 ≤ i ≤ k} be a set of pairs such that

(i) xiyi ∈ L for 1 ≤ i ≤ k, and

(ii) if i 6= j, then xiyj /∈ L or xjyi /∈ L, for 1 ≤ i, j ≤ k.

Then any NFA marking the language L has at least k states.

Set S is called a fooling set for L.

Let S = {(ai, apn#−i−1) | 0 ≤ i ≤ pn# − 1}. Then

ai+pn#−i−1 = apn#−1 belongs to the language {apn#−1}.

Thus, S satisfies item (i) of the fooling set technique. To

show that it also satisfies item (ii), let (ai, apn#−i−1) and

(aj , apn#−j−1) be two elements of S. Without loss of gener-

ality, we assume that i < j. Then j+pn#− i−1 > pn#−1,

which implies that ajapn#−i−1 does not belong to {apn#−1},

i.e., it proves that S satisfies item (ii). Thus, S is a fooling set

for the language {apn#−1} of size pn#. Therefore, any NFA

marking the language {apn#−1} has at least pn# states. Since

pn# = e(1+o(1))n logn [21] is exponential wrt n, hence not

polynomial wrt the size of An, there is no algorithm that would

compute an NFA for the language {apn#−1} in polynomial

time.

VI. CONCLUSION

A consequence of the exponential state complexity is that

any algorithm computing a DFA for inf O(K,Σ∗, P ) requires,

in the worst case, exponential time (and exponential space to

store it). Algorithm 1 further shows that the exponential time

is sufficient. The algorithm is thus optimal in the sense that

there is no asymptotically more efficient algorithm.

Concerning the NFA representation, we showed that even

for unary languages, the algorithm would need more than poly-

nomial time to compute the result and more than polynomial

space to store it. This is in contrast to checking whether the

language of an NFA is prefix closed, which can be done in

polynomial space and it is not known whether it can be done

in polynomial time.
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