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Target via a PD-like Controller
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Abstract—This paper proposes a coordinate-free controller
for a nonholonomic vehicle to circumnavigate a fully-actuated
moving target by using range-only measurements. If the range
rate is available, our Proportional Derivative (PD)-like controller
has a simple structure as the standard PD controller, except the
design of an additive constant bias and a saturation function
in the error feedback. We show that if the target is stationary,
the vehicle asymptotically encloses the target with a predefined
radius at an exponential convergence rate, i.e., an exact circum-
navigation pattern can be completed. For a moving target, the
circumnavigation error converges to a small region whose size is
shown proportional to the maneuverability of the target, e.g., the
maximum linear speed and acceleration. Moreover, we design a
second-order sliding mode (SOSM) filter to estimate the range
rate and show that the SOSM filter can recover the range rate
in a finite time. Finally, the effectiveness and advantages of our
controller are validated via both numerical simulations and real
experiments.

Index Terms—Circumnavigation, PD-like controller, Moving
target, Nonholonomic vehicle, Range-only measurement

I. INTRODUCTION

The target circumnavigation requires a mobile vehicle to
enclose a target of interest at a stand-off distance to neutralize
the target by restricting its movement [1]–[6], which has been
widely applied in both military and civilian applications for
convoy protection or aerial surveillance purposes. The existing
circumnavigation methods can be roughly categorized by the
use of the state information of the vehicle or the target.

If the states (position, velocity, course, etc.) of both the
vehicle and target are available, a Lyapunov guidance vector
field (LGVF) method is proposed in [7] and then extended
in [8]–[10]. Vector field methods are also proposed for the
circular orbit tracking in [11] and [12]. Interestingly, the
circumnavigation pattern can cover the moving path following
(MPF) problem in [13], which is resolved by designing a
Lyapunov-based MPF control law and a path-generation al-
gorithm.
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For an uncooperative target, its state cannot be directly
accessed by the tracking vehicle. In this case, the chal-
lenge lies in effectively estimating the target state via sensor
measurements, such as ranges [6], [14], [15], bearings [1],
[16], or received signal strengths. For a stationary target, an
adaptive localization algorithm is devised by using range-only
measurements in [14] and a discrete-time observer is given in
[17] by using both the range and range rate (the time derivative
of range) measurements. For a moving target, an adaptive
motion estimator and a nonlinear filter are exploited in [18]
and [19], respectively. Moreover, a Rao-Blackwellised particle
filter is devised for a maneuvering target to simultaneously
estimate its input and state in [10]. Note that the vehicle state
is necessary to locate the target in the above mentioned works.

If neither the vehicle state nor the target state is available,
e.g., the vehicle travels in complex underwater environments,
a geometrical guidance law is designed in [20] by using a
pair of a trigonometric function and an inverse trigonometric
function, whose idea is to drive the vehicle towards a tangent
point of an auxiliary circle. However, the control input is
set as zero when the vehicle enters the circle, which may
result in large overshoots. A biased proportional controller is
proposed in [21] by using range rate measurements, which
is also consistent with the bearing-only controller in [22].
Moreover, a nonlinear PD controller is designed in [23] for
a state-space kinematic model which is composed of two
continuous and one discrete state variables. Then, the control
parameters depend on the maximum range of the controller
operating space. Since the range-based controllers mentioned
above are only concerned with the circumnavigation problem
of a stationary target, how to extend to the moving target is
unclear.

There is no doubt that circumnavigating a moving target
is more practical and significant. To this end, a sliding mode
controller (SMC) is proposed in [24], [25]. To eliminate the
chattering phenomenon, they model the dynamics of actuator
as the simplest form of the first-order linear differential equa-
tion. Yet, their approach cannot achieve zero steady-state error
even for a stationary target, and requires the vehicle to start far
away from the target. Anderson et al. [26] devise a stochastic
approach by further using relative angles. Shames et al. [14]
show that the upper bound of the circumnavigation error is
proportional to the maximum linear speed of the moving
target, which however uses the explicit position information
of the vehicle. In sharp contrast, we can achieve the same
results by using the range-only measurements.

Specifically, we propose a PD-like controller to ensure that
the vehicle can circumnavigate a moving target with range-
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only measurements, the idea of which is inspired from our
previous work [27]. Indeed, the controller in [27] also has a
PD-like form. Moreover, it investigates the case of a stationary
target with both range and range rate measurements by using
time-varying gains. Given that the target is stationary and both
range and range rate measurements are known, our controller
is shown to achieve the exact circumnavigating task at an
exponential convergence rate. This implies that the closed-loop
system is robust against small perturbations, which is essential
to explicitly derive the upper bound of the circumnavigation
error for the case of a time-varying target. Such a result is
also consistent with [14] though the latter requires the position
information of vehicle. Moreover, the error bound can be
further reduced by selecting proper control parameters, which
are independent of the initial state.

In some scenarios, the range rate may not be accessible
to the vehicle. Since small noises may result in large or
unbounded estimation errors, it is not effective to simply
calculate the range rate by regular differentiating methods. To
address it, a first-order filter and a washout filter are utilized in
[28] and [29], respectively, which unfortunately lack a rigorous
justification. A second-order sliding mode (SOSM) filter is
proposed in [30] and is adopted for the circumnavigating
problem in [20] and [21] for a stationary target. Similarly, we
revise our controller into a range-only form by designing an
SOSM filter, the estimation error of which converges to zero in
a finite time if the initial distance to the target is sufficiently
large and both the speed and acceleration of the target are
bounded.

In a nutshell, the contributions of this paper are summarized
as follows:
(a) A PD-like controller is proposed to solve the circumnav-

igation problem by only using the range-based measure-
ments, and is shown to complete the exact circumnaviga-
tion task at an exponential convergence rate if the target
is stationary.

(b) For a moving target, the steady-state circumnavigation
error can be arbitrarily reduced by increasing the P gain
if there is no controller limit.

(c) An SOSM filter is further designed to recover the range
rate in a finite time by using range-only measurements for
a moving target with bounded velocity and acceleration.

The rest of this paper is organized as follows. In Section
II, the target circumnavigation problem is described in detail.
In Section III, we propose the PD-like controller to regulate
the nonholonomic vehicle. If the explicit range rate is known,
we prove the exponential convergence and derive the circum-
navigation error bound for the moving target in Section IV.
We extend to the case without explicit range rate in Section
V. Both simulations and experiments are performed in Section
VI. Some concluding remarks are drawn in Section VII.

II. PROBLEM FORMULATION

In Fig. 1, we aim to track a moving target with double-
integrator kinematics on a horizontal plane

ṗo(t) = vo(t), v̇o(t) = ao(t), (1)
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Fig. 1. Circumnavigation of a moving target.

by a nonholonomic vehicle

ṗ(t) = v

[
cos θ(t)
sin θ(t)

]
, θ̇(t) = ω(t), (2)

where po(t), vo(t), ao(t) ∈ R2 denote the position, lin-
ear velocity, and acceleration of the target, and p(t) ∈
R2, θ(t), ω(t), v represent the position, heading course,
adjustable angular speed, and constant linear speed of the
vehicle, respectively. If the target and the vehicle travel with
different altitudes, e.g., an unmanned aerial vehicle (UAV)
circles over a ground moving target, then Fig. 1 denotes the
projection of the 3D trajectory of the UAV to the horizontal
plane. In this work, only the (horizontal) range measurement
from the vehicle to the target is available, i.e.,

d(t) = ‖p(t)− po(t)‖2. (3)

Neither the target position po(t) nor the vehicle position p(t)
is known, which requires the controller to be coordinate-free.
A notable example is that the vehicle travels in GPS-denied
environments and the target is an uncooperative intruder.

Our objective is to design a coordinate-free controller1

via range-only measurements d(t) to drive the vehicle (2)
to circumnavigate the target (1) with a predefined radius rd.
Mathematically,

(i) if po(t) ≡ po in (1) is constant, it requires that

lim
t→∞

|d(t)− rd| = lim
t→∞

|ḋ(t)| = 0, (4)

(ii) if both ‖vo(t)‖2 ≤ v̄o < v and ‖ao(t)‖2 ≤ āo in (1) for
all t ≥ t0, it requires that

lim sup
t→∞

|d(t)− rd| ≤ ε, (5)

where ε > 0 is a small constant that explicitly depends
on v̄o and āo.

That is, the trajectory of the vehicle in (4) asymptotically forms
an exact circle with the unknown target position po and rd as
its center and radius, respectively. In (5), the trajectory is close
to a circle with po(t) and rd as its moving center and radius.

In [14], the two objectives in (4) and (5) have been achieved
by a single-integrator vehicle but further using its exact

1Coordinate-free refers to that the controller is designed without the position
information of the vehicle.
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position information p(t). By contrast, our coordinate-free
controller does not need the position p(t) of the nonholonomic
vehicle.

III. CONTROLLER DESIGN

In this section, we propose two controllers. The first is the
range-based controller by using both the range measurement
d(t) and its rate ḋ(t). It has a PD-like form with a bias to
eliminate the steady-state circumnavigation error. A similar
idea has been presented in our preliminary work [27], which
however only investigates the case of a stationary target. The
second is the range-only controller by further designing an
SOSM filter to recover the range rate if both the linear speed
and acceleration of the target are bounded.

A. The PD-like controller with explicit range rates

To solve the circumnavigation problem, define a relative
tracking error

e(t) =
d(t)− rd

rd
, (6)

and a saturation function

sat(z) =

{
z, if |z| < 1,

sgn(z), if |z| ≥ 1,

where sgn(·) is the standard sign function.
If the range rate ḋ(t) is explicitly known, we propose the

following PD-like range-based controller

ω(t) = ωc + c1ė(t) + c2sat (e(t)) , (7)

where ci, i ∈ {1, 2} is a positive parameter to be designed and
ωc = v/rd is a bias to eliminate the steady-state circumnavi-
gation error. Specifically, if d(t) = rd and ḋ(t) = 0 at some
time t, then ω(t) = ωc is the desired angular speed of the
vehicle, and if the target is stationary, the vehicle will keep
this angular speed afterwards.

The major difference from the standard PD controller lies
in the use of the saturation function to ensure that the control
parameters can be selected independent of the initial state
of the circumnavigation system. That is, if we remove the
saturation function, we also need to restrict the initial state
of e(t) for a fixed ci since |ė(t)| is bounded. Otherwise, the
circumnavigation task may fail even for a stationary target.
As the system is inherently nonlinear, one cannot expect to
use a linear controller to globally complete the circumnaviga-
tion task. From this perspective, our controller in (7) is the
“simplest” one.

For the case of a stationary target, we show in Proposition 1
that the PD-like range-based controller in (7) can even achieve
an exponential convergence with a fixed set of parameters
for any initial condition. In comparison, the sliding mode
approach in [24] cannot achieve exact circumnavigation, i.e.,
e(t) cannot exactly converge to zero. The geometrical method
in [20] may result in large overshoots since there is no
control input when the vehicle enters an auxiliary circle.
Moreover, the control parameters in [23] are determined by the
maximum range of the controller operating space. Importantly,

both controllers in [20] and [23] are only concerned with a
stationary target, and it is confirmed by Fig. 15 in Section
VI that their controllers cannot be adopted for the case of
a moving target. Furthermore, the backstepping controller in
[31] aims to steer the vehicle to follow a smooth reference
command from a stationary target.

Since the PD-like controller in (7) only contains the range-
based measurements from the vehicle to the target, it is par-
ticularly useful in GPS-denied environments and substantially
different from [10], [13], [16], [18], [19] as they further require
the position information p(t).

B. The PD-like controller without explicit range rates

If the range rate ḋ(t) is unavailable, we adopt an SOSM
filter [30] to estimate it, i.e.,

α̇1(t) = k1|d(t)− α1(t)|1/2sgn (d(t)− α1(t))

+ k2(d(t)− α1(t)) + α2(t)

α̇2(t) = k3sgn (d(t)− α1(t)) + k4 (d(t)− α1(t))

, (8)

where ki, i ∈ {1, 2, 3, 4} is a positive filter parameter to be
designed. If both the linear speed and acceleration of the target
are bounded, we show that there is a finite T such that d(t)−
α1(t) = ḋ(t)− α2(t) = 0, ∀t ≥ t0 + T.

Thus, we can directly replace ė(t) in (7) by α2(t)/rd and
obtain the following PD-like range-only controller

ω(t) = ωc + c1/rd · α2(t) + c2sat (e(t)) . (9)

IV. MOVING TARGET CIRCUMNAVIGATION UNDER THE
RANGE-BASED CONTROLLER

If the target is stationary, the PD-like range-based controller
in (7) can achieve an exponential convergence with a fixed set
of parameters for any initial condition. Otherwise, the upper
bound of the circumnavigation error is explicitly shown to be
proportional to the maximum linear speed and acceleration of
the moving target.

A. Stationary target circumnavigation

For a stationary target, i.e., v̄o = 0, let po be the unknown
position of the target. Consider a polar frame centered at the
target, we convert the kinematics in (2) from the Cartesian
coordinates into the following form

ḋ(t) = v cosφ(t),

φ̇(t) = ω(t)− v

d(t)
sinφ(t),

(10)

where the angle φ(t) ∈ (−π, π] is formed by the direction that
the target points to the vehicle and the heading direction of
the vehicle. See Fig. 1 for an illustration. By convention, the
counter-clockwise direction is set to be positive. From Fig. 1,
we obtain that φ(t) = θ(t) − ψ(t), where ψ(t) is subtended
by the direction from the target to the vehicle and the positive
direction of x-axis.

Note that, φ(t) is not defined when d(t) = 0. In light of
Fig. 1, the case d(t) = 0 is a special one in which the vehicle
goes directly through the target. Thus, we follow the definition
in [23].
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Definition 1: Suppose that there is a time instant t∗ > t0
such that d(t∗) = 0, then the angle φ(t) just before hitting
the target is φ(t−∗ ) = π and just after leaving the target is
φ(t+∗ ) = 0.

By Fig. 1, one can easily observe that [d(t), φ(t)]′ =
[rd, π/2]′ is the desired state to achieve the objective of
circumnavigation in the counter-clockwise direction, which is
also an equilibrium of (10).

Now, we show that the closed-loop system in (10) with the
range-based controller in (7) is exponentially stable.

Proposition 1: Consider the circumnavigation system in (10)
under the PD-like range-based controller in (7). Let x(t) =
[d(t), φ(t)]′ and xe = [rd, π/2]′. If the control parameters are
selected to satisfy that

(c1 − 1)ωc > c2, (11)

there exists a finite time instant t1 ≥ t0 such that

‖x(t)− xe‖ ≤ C‖x(t1)− xe‖ exp (−ρ(t− t1)) , ∀t > t1,

where ρ and C are two positive constants.
Proof: See Appendix A.

It is clear that the convergence rate to the equilibrium xe

is exponentially fast. Thus, small perturbations will not result
in large deviations from the equilibrium [32, Chapter 9.2].
Interestingly, the selection of control parameters ci, i ∈ {1, 2}
is independent of d(t0) in light of (11), which is in sharp
contrast to [23].

B. Moving target circumnavigation

For a moving target, we decompose its forward velocity
vo(t) into v1(t) and v2(t), which denote the radial and tangen-
tial velocities of the target relative to the vehicle, respectively.
See Fig. 1 for an illustration. Then the circumnavigation
kinematics is given by

ḋ(t) = v cosφ(t)− v1(t),

φ̇(t) = ω(t)− v

d(t)
sinφ(t) +

v2(t)

d(t)
.

(12)

Now, we show that the circumnavigation error of the closed-
loop system in (12) under the range-based controller in (7) is
bounded by a constant, which is proportional to the maximum
linear speed and acceleration of the target. Moreover, we
can reduce the upper bound of the circumnavigation error by
properly increasing ci, i ∈ {1, 2}.

Proposition 2: Consider the target circumnavigation system
in (12) under the range-based controller in (7). If ‖vo(t)‖2 ≤
v̄o, ‖ao(t)‖2 ≤ āo, and the control parameters are selected to
satisfy that

(c1 − 1)ωc > c2 + (c1 + 1)ωo, (13)
c2 > max {(c1 + 1)ωo, 2ωc + 4ωo} , (14)

where ωo = v̄o/rd, then there is a positive ε > 0 of the form

ε = O
(
v + v̄o + āo

c2
+
v + v̄o
c1

)
(15)

and a positive constant2 T1 = T1(c1, c2, ωc) such that

lim sup
t→∞

|d(t)− rd| ≤ ε

for all d(t0) > 2rd + (v + v̄o)T1.
Proof: By (13), we obtain that c1ωc > (c1 − 1)ωc >

c2 +(c1 +1)ωo > c2 +c1ωo which jointly with ωc = v/rd and
ωo = v̄o/rd implies v > v̄o + c2/c1 · rd. Let q1 = c2/c1 · rd.
Then, there exists a v∗ ∈ (0, v − v̄o − q1) and φ∗ such that

sinφ∗ =
(
1− ((v∗ + v̄o + q1)/v)2

)1/2
. (16)

Step 1: we show that there exists a finite time instant t1 ≥ t0
such that sinφ(t) ≥ sinφ∗ > 0 for all t ≥ t1.

Let

z(t) = ė(t) + c2/c1 · sat(e(t)). (17)

By (12) and z(t) = 0, it yields that

φ(t) = arccos

(
v1(t)− q1sat(e(t))

v

)
,

where q1 is defined in (16). Then, inserting (7) into (12) leads
to that

φ̇(t) = c1z(t) + v/rd − v/d(t) · sinφ(t) + v2(t)/d(t). (18)

(a) If φ(t0) ∈ [arccos((q1 + v̄o)/v), π−arccos((−v∗− v̄o−
q1)/v)], then φ(t) remains in this interval for all t ≥ t0. When
φ(t) = arccos((q1 + v̄o)/v), i.e., z(t)/rd = q1 + q1sat(e(t)) +
v̄o − v1(t), it follows from (14) and (18) that

φ̇(t) > c1/rd · (q1/2)− ωc − 2ωo > 0.

Similarly, φ(t) = π− arccos((−v∗− v̄o− q1)/v) leads to that
φ̇(t) < −c1/rd · v∗ + ωc + ωo < 0. Since φ(t) is continuous
in t, the result follows.

(b) If φ(t0) /∈ [arccos((q1 + v̄o)/v), π−arccos((−v∗− v̄o−
q1)/v)], we show in Lemma 4 of Appendix B that there is a
finite δ > 0 such that φ(t0 + δ) ∈ [arccos((q1 + v̄o)/v), π −
arccos((−v∗ − v̄o − q1)/v)].

Thus, there exists a finite time instant t1 ≥ t0 such that
φ(t) ∈ [arccos((q1 + v̄o)/v), π − arccos((−v∗ − v̄o − q1)/v)]
for all t ≥ t1, i.e., sinφ(t) ≥ sinφ∗.

Step 2: we show the uniform boundedness of z(t). By Step
1, there is no loss of generality to assume that sinφ(t) ≥
sinφ∗ > 0 for all t ≥ t0.

Consider the following Lyapunov function candidate

Vz(z) =
1

2
z2(t). (19)

If d(t) ≥ 2rd, it follows from (7) and (12) that

ż(t) = −
(
ωc −

v

d(t)
sinφ(t) +

v2(t)

d(t)

)
ωc sinφ(t)− v̇1(t)

rd

− c1ωcz(t) sinφ(t).

2An explicit form of T1 is given in the proof of Lemma 4.
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Then, the time derivative of Vz(z) leads to that

V̇z(z) = −c1ωcz
2(t) sinφ(t)− z(t)×((

ωc −
v sinφ(t)

d(t)
+
v2(t)

d(t)

)
ωc sinφ(t) +

v̇1(t)

rd

)
< −c1ωcz

2(t) sinφ(t) + |z(t)|
(
ωc (ωc + ωo) +

āo
rd

)
.

(20)

If d(t) ∈ (rd/2, 2rd),3 it similarly holds that

V̇z(z) < |z(t)|
(
ωc (ωc + 2ωo) +

āo
rd

+ c2
v + v̄o
c1

)
− c1ωcz

2(t) sinφ(t). (21)

Overall, if d(t) > rd/2, it follows from (20) and (21) that

V̇z(z) < |z(t)| (ωc (ωc + 2ωo) + āo/rd + c2(v + v̄o)/c1)

− c1ωcz
2(t) sinφ∗.

Thus, V̇z(z) < 0 holds for all

|z(t)| ≥ ωc (ωc + 2ωo) + āo/rd + c2(v + v̄o)/c1
c1 · ωc sinφ∗

,
ε1
c1
,

which means that |z(t)| will be bounded by ε1/c1.
Step 3: we show the uniform boundedness of e(t).
By Step 2, (17) and Lemma 6.2 of [24], it yields that

lim sup
t→∞

|d(t)− rd| ≤ ε1rd/c2 , ε, (22)

where

ε =
v + 2v̄o
c2 sinφ∗

+
āo

c2ωc sinφ∗
+
rd(v + v̄o)

c1ωc sinφ∗
.

Since v∗ in (16) depends only on the control parameters in
the form of c2/c1, then (15) follows from (22).

By (15), the steady-state circumnavigation error ε is pro-
portional to the maneuverability of the target, and can be
made small by increasing the control parameters c1 and c2.
If the target is stationary, i.e. v̄o = āo = 0, then c1 and c2
can be selected properly large, in which case the steady-state
circumnavigation error is close to zero.

C. The input saturation

If the vehicle in (2) has a controller limit, i.e. |ω(t)| ≤ ω̄,
the limit ω̄ should be large enough to maintain the circum-
navigation pattern, which is quantified below.

Lemma 1: The vehicle in (2) can maintain the distance rd
from the target (1) if and only if

vω̄ ≥ (v + v̄o)2/rd + āo. (23)

Proof: The circumnavigation pattern is maintainable if
and only if there exists a finite time instant t1 ≥ t0 such that
e(t) = ė(t) = 0 for all t ≥ t1. By (6), (12) and the proof of
[24, Proposition 3.1], the inequality in (23) is not difficult to
establish. The details are omitted due to space limitation.

Thus, the maximal feasible acceleration of the vehicle
should be greater than that of the target plus the maximal

3Note that the initial condition d(t0) > 2rd + (v + v̄o)T1 excludes the
case d(t) ≤ rd/2.

radial acceleration, which is resulted from the rotation of the
vehicle relative to the target at the radius rd. In this regard,
it is reasonable to assume that the controller limit ω̄ always
satisfies the strict inequality in (23). Then, we revise the range-
based controller in (7) as follows

ωs(t) = ω̄ · sat
(

1

ω̄
(ωc + c1ė(t) + c2sat(e(t)))

)
. (24)

Since maxt≥t0 |ω(t)| = ωc + c1(v+ v̄o) + c2, the controller
in (24) will never saturate if c1 and c2 are selected to satisfy
ωc + c1(v+ v̄o) + c2 < ω̄. Jointly with (15), the tracking error
is essentially bounded by O(1/ω̄).

V. MOVING TARGET CIRCUMNAVIGATION UNDER THE
RANGE-ONLY CONTROLLER

If the range rate ḋ(t) is not explicitly available, we adopt
the SOSM filter in (8) to obtain the range-only controller (9).
A similar idea can also be found in [20], which however only
focuses on the stationary target circumnavigation. Note that a
first-order filter and a washout filter are adopted in [28] and
[29], respectively.

Proposition 3: Consider the circumnavigation system in (12)
under the PD-like range-only controller in (9). If ‖vo(t)‖2 ≤
v̄o, ‖ao(t)‖2 ≤ āo, the parameters of the filter (8) and
controller (9) satisfy that

k1 > 2σ2, k2 > σ2
2 + 2σ2,

k3 > max
{

0, (k1 + 1)σ1/k1 − k2
1/2, σ1 − 2k2

1 − k2
1/(2k2)

}
,

k4 > max
{

0, k2/2− k2
2, k

2
2(2k1 + 5σ1)/(k1 − 2σ2)

}
(c1 − 1)ωc > c2 + (c1 + 1)ωo,

c2 > max {(c1 + 1)ωo, 2ωc + 4ωo} ,

where σ1 = 2ωcv+c1ωcv+c2v+ωcv̄o+āo and σ2 = c1ωc, and
d(t0) > 2rd + (v + v̄o)(T1 + T2) with a positive constant4 T2,
then it holds that

α1(t) = d(t) and α2(t) = ḋ(t), ∀t > t0 + T2.

Moreover, lim supt→∞ |d(t)− rd| ≤ ε where ε and T1 are
given in Proposition 2.

Proof: In light of Proposition 2, we complete the proof
by showing that α1(t) = d(t) and α2(t) = ḋ(t) for any t ≥
t0 +T2, where T2 is finite. Then, the circumnavigation system
(12) exactly works as the case of using the explicit range rate
ḋ(t) after t0 + T2.

To this end, we define the estimation error as

ξ1(t) = d(t)− α1(t) and ξ2(t) = ḋ(t)− α2(t).

Then it follows from (8) and (12) that

ξ̇1(t) =− k1|ξ1(t)|1/2sgn (ξ1(t))− k2ξ1(t) + ξ2(t),

ξ̇2(t) =− v sinφ(t)

(
ω(t)− v sinφ(t)

d(t)
+
v2(t)

d(t)

)
− v̇1(t)

− k3sgn (ξ1(t))− k4ξ1(t),
(25)

4The explicit form of T2 is given in the proof of Proposition 3.
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where ω(t) = ωc + c1/rd ·
(
ḋ(t)− ξ2(t)

)
+ c2sat (e(t)) . Let

f(ξ1, ξ2, t) = −v sinφ(t)

(
ω(t)− v sinφ(t)

d(t)
+
v2(t)

d(t)

)
−v̇1(t).

If d(t) > rd, it follows from (9) and (12) that

|f(ξ1(t), ξ2(t), t)| < σ1 + σ2|ξ2(t)|, (26)

where σ1 = ωc(2v + v̄o) + c1ωc(v + v̄o) + c2v + āo and
σ2 = c1ωc.

Let ξ(t) =
[
|ξ1(t)|1/2sgn(ξ1(t)), ξ1(t), ξ2(t)

]′
and con-

sider the following Lyapunov function candidate

VΩ(ξ) = ξ′Ωξ where Ω =
1

2

4k4 + k2
1 k1k2 −k1

k1k2 2k4 + k2
2 −k2

−k1 −k2 2

 .
Clearly, VΩ(ξ) is continuous, positive definite, and radially
unbounded if k3 > 0 and k4 > 0, i.e.,

λmin(Ω)‖ξ‖22 ≤ VΩ(ξ) ≤ λmax(Ω)‖ξ‖22, (27)

where λmin(Ω) and λmax(Ω) are the minimum and maximum
eigenvalues of Ω, respectively.

Taking the derivative of VΩ(ξ) along with (25) leads to that

V̇Ω(ξ) = −|ξ1(t)|−1/2ξ′Q1ξ − ξ′Q2ξ + 2ξ2(t)f(ξ1, ξ2, t)

−
(
k2ξ1(t) + k1|ξ1(t)|1/2sgn(ξ1(t))

)
f(ξ1, ξ2, t),

where

Q1 =
k1

2

2k3 + k2
1 0 −k1

0 2k4 + 5k2
2 −3k1

−k1 −3k2 1

 , and

Q2 = k2

k3 + 2k2
1 0 0

0 k4 + k2
2 −k2

0 −k2 1

 .
Together with (26), we have that

|2ξ2(t)f(ξ1, ξ2, t)| ≤ 2|ξ2(t)| (σ1 + σ2|ξ2(t)|)
≤ σ1|ξ1(t)|−1/2

(
|ξ1(t)|+ ξ2

2(t)
)

+ 2σ2ξ
2
2(t),

| − k2ξ1(t)f(ξ1, ξ2, t)| ≤ k2|ξ1(t)| (σ1 + σ2|ξ2(t)|)
≤ k2σ1|ξ1(t)|+

(
k2

2ξ
2
1(t) + σ2

2ξ
2
2(t)

)
/2,

| − k1|ξ1(t)|1/2sgn(ξ1(t))f(ξ1, ξ2, t)|
≤ k1σ1|ξ1(t)|−1/2|ξ1(t)|2 +

(
k2

1|ξ1(t)|+ σ2
2ξ

2
2(t)

)
/2.

Then, it immediately follows that

V̇Ω(ξ) ≤ −|ξ1(t)|−1/2ξ′(Q1 −Q3)ξ − ξ′(Q2 −Q4)ξ,

where

Q3 =

(k1 + 1)σ1 0 0
0 0 0
0 0 σ1

 ,
Q4 =

k2σ1 + k2
1/2 0 0

0 k2
2/2 0

0 0 2σ2 + σ2
2

 .
If k1 > 2σ1, k2 > 0, k3 > max

{
0, (k1 + 1)σ1/k1 − k2

1/2
}

,
and k4 > k2

2(2k1 + 5σ1)/(k1 − 2σ2), then Q1 − Q3 is
positive definite. Similarly, the conditions k1 > 0, k2 >

UWB 
Sensor Handheld 

Target

Bluetooth 
Module

Fig. 2. The DSV equipped with an onboard UWB sensor and the handheld
target to be tracked.

σ2
2 + 2σ2, k3 > max

{
0, σ1 − 2k2

1 − k2
1/(2k2)

}
and k4 >

max
{

0, k2/2− k2
2

}
lead to that Q2−Q4 is positive definite.

Overall, the conditions on controller and filter parameters
ensure that

V̇Ω(ξ) ≤ −|ξ1(t)|−1/2ξ′(Q1 −Q3)ξ

≤ −|ξ1(t)|−1/2λmin(Q1 −Q3)‖ξ‖22. (28)

In virtue of (27), (28), and the fact |ξ1(t)|1/2 ≤ ‖ξ‖2 ≤
V

1/2
Ω (ξ)/λ

1/2
min(Ω), it yields that

V̇Ω(ξ) ≤ −λ
1/2
min(Ω)

V 1/2(ξ)
λmin(Q1 −Q3)‖ξ‖22 ≤ −γV

1/2
Ω (ξ),

where

γ = λ
1/2
min(Ω)λmin(Q1 −Q3)/λmax(Ω). (29)

By the comparison principle [32, Lemma 3.4], we obtain that

α1(t) = d(t) and α2(t) = ḋ(t), ∀t > t0 + T2,

where T2 = 2V
1/2
Ω (ξ(t0))/γ and γ is given in (29). Thus, the

range-only controller in (9) is exactly identical to the range-
based controller in (7) for all t > t0 + T2 if d(t0 + T2) >
2rd + (v + v̄o)T1. The rest of the proof follows from that of
Proposition 2.

VI. SIMULATIONS AND EXPERIMENTS

For brevity, we denote the states of the target and vehicle by
so(t) = [p′o(t),vo(t)]′ and s(t) = [p′(t), θ(t)]′. To obtain the
relative range in actual experiments, we respectively adopt an
on onboard ultra-wideband (UWB) sensor in Section VI-A
and use global positions to compute (3) in Section VI-B.
Moreover, we incorporate our proposed controller (9) into
the control system of [33] for a 6-DOF fixed-wing UAV and
further take the noisy measurements into account in Section
VI-C to validate the effectiveness of the SOSM filter (8).
Finally, comparisons with the existing methods are carried out
in Section VI-D.

A. Experiments with a differential steering vehicle

In this subsection, we adopt the differential steering vehicle
(DSV) in Fig. 2 to test the proposed controller (7), where an
onboard UWB sensor measures the range to a handheld target
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Fig. 3. Experimental result generated by the DSV, where “S”, “M”, and
“T” denote the different statuses of the handheld target with the following
notations: stationary, slowly moved, and suddenly translocated, respectively.

at a frequency of 10 Hz and a Bluetooth module sends the real-
time measurements at 1 Hz. The received data is visualized in
Fig. 3, from which we can observe that the DSV approaches
the stationary target (denoted by “S”) from a far away position
and then slides on a circular orbit between 0 and 100 s. Then
the DSV can keep circumnavigating the target while it is
slowly moved (denoted by “M”) from 100 to 270 s and from
560 s to the end. Although the target is suddenly translocated
(denoted by “T”) at 420 s, the DSV immediately returns to
the circular orbit with the new target position as its center and
the original radius rd = 2 m. The above observations show
the potential effectiveness of (7) in real applications.

B. Experiments with a Racecar and an omnidirectional vehi-
cle

From Fig. 4, a Racecar and a DJI Robomaster play the
roles of tracker and target, respectively. A vision-based motion
capture system is used to measure the current positions of
the tracker and target by the markers at a frequency of 120
Hz. Then the positions are subsequently transformed into the
relative range by (3) as feedback information. The system
can also record the real-time measurement to facilitate the
experimental performance analysis. The Racecar has a servo
motor with a maximum angle of 0.39 rad to control its
angular speed, the desired value of which is generated by
our controller in (7), while the target is omnidirectional and
remotely manually operated through a mobile phone. Due to
the space limitation, we set the constant linear speed of the
Racecar as v = 1 m/s and the predefined radius as rd = 1 m.

For the stationary Robomaster located at po =
[−0.10, 1.85]′ as Fig. 5, the Racecar approaches the desired
orbit from the initial position p(t0) = [−0.01,−3.33]′ and
then slides on it. See Fig. 6 for an illustration. When the
Robomaster is freely moving, both trajectories of the Racecar
and Robomaster are exhibited in Fig. 7(a), wherein the small
square and circle respectively represent their initial positions
p(t0) = [−1.02, 1.60]′ and po(t0) = [1.26,−2.66]′. More-
over, the relative trajectory of the Racecar with respect to the
Robomaster is depicted in Fig. 7(b). Furthermore, the tracking

Robomaster
(Target)Racecar 

(Tracker)

Markers

Fig. 4. The Racecar and Robomaster are adopted respectively to play the role
of tracker and target.

-3 -2 -1 0 1 2 3 4

X-position (m)

-3

-2

-1

0

1

2

3

Y
-p

os
iti

on
 (

m
)

Target
Tracker

Fig. 5. Trajectory of the Racecar and position of the stationary Robomaster.
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Fig. 6. Tracking error d(t)− rd of the Racecar.

error is shown in Fig. 8, and two supplementary videos are
available at [34]. It is clear that the steady-state error has an
upper bound and the objective (5) is achieved.

C. Target circumnavigation by a fixed-wing UAV

In this subsection, a 6-DOF fixed-wing UAV [10], [35] is
adopted to test the effectiveness of the range-only controller
in (9). Due to the page limitation, we omit details of the
complicated mathematical model of the UAV, which can be
found in Chapter 3 of [35], and directly adopt codes from
[33] for the model. The objective of circumnavigation requires
the fixed-wing UAV to move at a constant altitude −100 m
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Fig. 7. Trajectories of the Racecar and Robomaster.
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Fig. 8. Tracking error d(t)− rd of the Racecar.
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Fig. 9. Control architecture for the fixed-wing UAV.

and forward speed 35 m/s by adjusting the aileron deflection,
elevator deflection, and propeller thrust.

To this end, we adopt the control architecture of [33] and
modify it to verify our controllers. The details can be found
in Fig. 9 where the differences from [33] are highlighted in
the bright yellow shade. The inverse controller is designed to
convert the desired angle speed ω(t) generated by (9) to the
desired roll angle ψdes(t), which is given by

ψdes(t) = tan−1

(
ω(t)
√
u2 + v2 + w2

g

)
,
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Fig. 10. Trajectories of the target and fixed-wing UAV.
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Fig. 11. Range d(t) and its rate ḋ(t) versus time with measurement noises.

where g is the acceleration of gravity. All the controllers in
Fig. 9 are encoded with saturation to simulate the physical
characteristics of the UAV, whose values are the same as [33].

Moreover, we consider the situation that range measure-
ments are corrupted by an additive Gaussian noise, i.e.,

d(t) = ‖p(t)− po(t)‖2 + η(t),

where η(t) ∼ N (0, σ2).
The target in (1) moves on the plane and its horizontal ac-

celeration is generated by a uniform distribution, e.g. ao(t) ∼
U [−1.0, 1.0]. The projected trajectories of both the target and
UAV are given in Fig. 10(a) with initial velocities vo(t0) =
[4.0, 3.0]′ m/s and v(t0) = [35, 0]′ m/s, where the circle and
square denote their initial positions po(t0) = [0, 100]′ and
p(t0) = [0, 0]′, respectively. In addition, Fig. 10(b) illustrates
the relative trajectory of the UAV with respect to the target.
Furthermore, both the actual range (rate) and its estimated
version versus time are depicted by Fig. 11 with rd = 400 and
σ = 4. One can observe from the dashed line in Fig. 11 that
the maximum circumnavigation error is not larger than 6 m,
which implies that the performance of the proposed controller
is not significantly degraded.
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TABLE I
PARAMETERS OF THE PD-LIKE RANGE-BASED CONTROLLER (7)

Parameter c1 c2
Value 200 30

D. Comparison with the existing methods

For comparison, we consider the constraint on control input
and let |ω(t)| ≤ ω̄, where ω̄ = 1 rad/s [24] in this subsection.
The compared methods include the geometrical approach [20]
with parameters k = 1 and ra =

√
3, the bearing approach

[21] with parameter k = 1.4/rd, the sliding mode approach
[24] with δ = 0.83 and γ = 0.3, and the backstepping
approach [31] with k1 = 20 and k2 = 0.3.

When the target is stationary, the performance comparison
is depicted in Fig. 12, wherein s(t0) = [3, 3, 0.25π]′, i.e.,
φ(t0) = 0 as shown by Fig. 13. It is observed from Fig. 12 that
all methods other than the sliding mode approach can complete
the task with zero steady-state error. In addition, the geomet-
rical approach has large overshoots, and the convergence rate
of the bearing approach is slowest. From Fig 14, we observe
that the input of the sliding mode approach switches between
−ω̄ and ω̄, which results in the “chattering” phenomenon as
illustrated in Figs. 12 and 13.

Then, let the target be moving with v̄o = 0.15 m/s and the
acceleration ao(t) in (1) be generated by a sine distribution,
e.g. ao(t) = [0.01 sin(0.01t), 0.01 cos(0.01t)]′. The control
parameters are selected as those in Table I. Fig. 15 illustrates
the results with so(t0) = [0, 0,−

√
2v̄o/2,−

√
2v̄o/2]′ and

s(t0) = [5, 0,−0.6π]′. Since both the geometrical approach
and the bearing approach are designed for the stationary
target, they cannot handle the case of a moving target. The
performance of our controller is similar to that of the slid-
ing mode approach. However, the mean-square steady-state
circumnavigation error (MSSE)5 of our PD-like controller is
less than that of the sliding mode approach in the time interval
from 160 s to 200 s. See the partially enlarged view of Fig. 15.
Moreover, Fig. 16 confirms that the controller limit only takes
effect at the early stage of the system.

Overall, the range-based controller in (7) outperforms the
methods in [20], [21], [24]. Particularly, our method is effec-
tive in handling the problem of moving target circumnaviga-
tion.

VII. CONCLUSION

In this paper, we have proposed a range-only controller
to drive a nonholonomic vehicle to circumnavigate a moving
vehicle with double-integrator kinematics which plays the role
of a target. Given that both the range and range rate measure-
ments are known, the proposed controller has a Proportional
Derivative (PD)-like form with a bias to eliminate steady-
state circumnavigation error. Thus, for a stationary target, the
controller can ensure global convergence and local exponential
stability near the equilibrium with zero steady-state error.
Moreover, we explicitly showed that the upper bound of the
circumnavigation error is proportional to the maximum linear

5MSSE = 1
n

∑n
i=1(d(i)− rd)2 where i denotes the i-th time step.

0 20 40 60 80 100
Time (sec)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Proposed method
Geometrical approach
Bearing approach
Sliding mode approach
Backstepping approach

80 85 90 95 100
0

2

4

6
10-3

Fig. 12. Tracking errors d(t)− rd when the target is stationary.
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Fig. 13. Variations of φ(t) when the target is stationary.

0 20 40 60 80 100
Time (sec)

-0.2

0

0.2

0.4

0.6

0.8

1
Proposed method
Geometrical approach
Bearing approach
Sliding mode approach
Backstepping approach

99.7 99.8 99.9 100
-1

-0.5

0

0.5

1

Fig. 14. Control inputs ωs(t) when the target is stationary.

speed and acceleration of the target. Furthermore, we revised
the range-based controller by replacing the actual range rate
with its estimated version by designing a second-order-sliding-
mode (SOSM) filter. Finally, the numerical simulations and
real experiments validated our theoretical results, and showed
that our method outperforms the existing controllers and is
particularly effective in the case of maneuvering target.
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Fig. 16. Control input ωs(t) with the limit ω̄ = 1 rad/s.

APPENDIX

A. Proof of Proposition 1

To prove Proposition 1, we first show that there exists a
finite time instant t1 ≥ t0 such that φ(t) ∈ [0, π],∀t ≥ t1, for
any initial state, see Lemma 2. Then, the closed-loop system
in (10) under (7) is shown to be asymptotically stable with an
exponential convergence rate.

Lemma 2: Under the conditions in Proposition 1, there exists
a finite time instant t1 ≥ t0 such that φ(t) ∈ [0, π], ∀t ≥ t1,
for any initial state φ(t0) ∈ (−π, π].

Proof: Inserting (7) into (10) yields that

ḋ(t) = v cosφ(t),

φ̇(t) = ωc +
c1
rd
ḋ(t) + c2sat

(
d(t)− rd

rd

)
− v sinφ(t)

d(t)
.

(30)

If d(t0) = 0, the vehicle will immediately leave the target
due to the constant linear speed v, i.e., d(t+0 ) > 0. By
Definition 1, φ(t+0 ) = 0, which jointly with (30) implies that

φ̇(t+0 ) > (c1 + 1)ωc − c2 > 0.

This results in that φ(t) enters the interval (0, π/2) and d(t)
increases after t0. Henceforth, we only consider the case of
d(t) > 0.

Target 
𝑋𝑋

𝑌𝑌

𝑂𝑂

𝑟𝑟𝑑𝑑

𝜋𝜋
2

𝜙𝜙

(i)

(ii)

(iii)

𝑡𝑡0

0

Fig. 17. Illustration of Case (b), i.e., d(t0) ∈ [rd,∞) and φ(t0) ∈
(−π,−π/2).

Moreover, if φ(t) = 0, it follows from (30) that

φ̇(t) > (1 + c1)ωc − c2 > 0. (31)

Similarly, φ(t) = π leads to that

φ̇(t) ≤ (1− c1)ωc + c2 < 0. (32)

Together with the fact that φ̇(t) is continuous with respect
to t when d(t) > 0, it implies that φ(t) ∈ [0, π] for all t ≥ t0
if φ(t0) ∈ [0, π].

Next, we only need to show that there exists a finite time
instant t1 > t0 such that φ(t1) ∈ [0, π] if φ(t0) ∈ (−π, 0). To
this end, three cases are considered.
(a) d(t0) ∈ [rd,∞) and φ(t0) ∈ [−π/2, 0).
(b) d(t0) ∈ [rd,∞) and φ(t0) ∈ (−π,−π/2).
(c) d(t0) ∈ (0, rd) and φ(t0) ∈ (−π, 0).

Case (a): if d(t) ∈ [rd,∞) and φ(t) ∈ [−π/2, 0), it follows
from (30) that ḋ(t) ≥ 0 and φ̇(t) > ωc. That is, d(t) is
increasing and φ(t) is strictly increasing with a rate greater
than ωc. Then, Case (a) cannot always hold and must be
violated in the sense that there exists a finite time instant
t1 > t0 such that φ(t1) ≥ 0.

Case (b): by (30), (32) and d(t) ≥ rd, it holds that

φ̇(t) > ωc, if φ(t) = −π/2, (33)
φ̇(t) < 0, if φ(t) = −π. (34)

We use Fig. 17 to help illustrate this case. By (33) and the
continuity of φ̇(t), there is a sufficiently small ε0 > 0 such
that φ̇(t) > 0 if |φ(t) + π/2| ≤ ε for any ε ∈ (0, ε0).

If φ(t) ∈ (−π,−π/2− ε], it follows from (30) that ḋ(t) ≤
−v sin ε < 0. Thus, either there exists some finite δ > 0 such
that d(t0 + δ) < rd, which corresponds to Case (c), or φ(t)
will escape from the interval (−π,−π/2−ε]. In the later case,
there exists a finite δ > 0 such that φ(t0 + δ) ≥ −π/2 − ε
or φ(t0 + δ) ≤ −π. If φ(t0 + δ) ≥ −π/2 − ε, letting ε go
to zero reduces to either Case (a) or Case (c), depending on
the value of d(t0 + δ). If φ(t0 + δ) ≤ −π, it means that φ(t)
must have already entered the interval [0, π].

Case (c): we first show that there is no stable equilibrium
of (30). Letting φ(t) = −π/2, it follows from (30) and d(t) ∈
(0, rd) that

φ̇(t) =
c2

rdd(t)

(
d2(t) +

v − c2rd
c2

d(t) +
vrd
c2

)
. (35)
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Let 4 = (v/c2 − rd)2 − 4vrd/c2.

• If 4 < 0, it follows from (35) that φ̇(t) > 0, i.e., there
is no equilibrium in Case (c).

• If 4 ≥ 0, letting φ̇(t) = 0 in (35) yields two solutions
with respect to d(t), which are respectively denoted by d1

and d2. Then, xeq1 = [d1,−π/2]′ and xeq2 = [d2,−π/2]′

are two equilibria of (30). By linearizing (30) at xeqi,
i ∈ {1, 2}, it follows that

ẋ(t) =

[
0 v

c2/rd − v/d2
i c1ωc

]
(x(t)− xeqi).

Since c1ωc > 0, one can easily verify that the transition
matrix of the above linearized system must contain an
unstable eigenvalue. That is, xeqi cannot be a stable
equilibrium.

We then show that there is no closed orbit in Case (c). By
selecting a continuously differentiable function g(x) = x1(t),
it follows from x1(t) ∈ (0, rd) and x2(t) ∈ (−π, 0) that

∂(g(x)ẋ1)

∂x1
+
∂(g(x)ẋ2)

∂x2
= −c1ωcx1(t) sinx2(t) > 0.

Our claim follows from the Dulac’s Criterion [36, Chapter
7.2].

Since there is no stable equilibrium or closed orbit of (30) in
Case (c), we recall Poincaré-Bendixson Theorem [36, Chapter
7.3] to conclude that Case (c) cannot always hold. Particularly,
there is a finite δ > 0 such that d(t0+δ) ≥ rd with φ(t0+δ) ∈
[−π/2, 0), which is Case (a), or φ(t0 + δ) ∈ [0, π].

Combining the above cases, there exists a finite time instant
t1 such that φ(t1) ∈ [0, π] for any initial φ(t0) ∈ (−π, 0).

Lemma 3: Under the conditions in Proposition 1, the closed-
loop system in (10) is asymptotically stable.

Proof: By Lemma 2, there exists a finite time instant t1
such that x2(t) ∈ [0, π], ∀t ≥ t1.

Consider the Lyapunov function candidate as

V (x) =

∫ x1(t)

rd

c2
v

sat
(
τ − rd
rd

)
dτ +

∫ x1(t)

rd

(
1

rd
− 1

τ

)
dτ

+ 1− sinx2(t).

Taking the time derivative of V (x) along with (10) leads to

V̇ (x)

= c2sat
(
x1(t)− rd

rd

)
cosx2(t) +

(
v

rd
− v

x1(t)

)
cosx2(t)

−
(
ω(t)− v sinx2(t)

x1(t)

)
cosx2(t)

= −v cosx2(t)

(
1

x1(t)
− sinx2(t)

x1(t)
+
c1
rd

cosx2(t)

)
, (36)

where the last equality is obtained by substituting ω(t) in (7).
If x2(t) ∈ [0, π/2], we have that cosx2(t) ≥ 0 and 1 −

sinx2(t) ≥ 0. It follows from (36) that V̇ (x) ≤ 0.

If x2(t) ∈ (π/2, π], then cosx2(t) < 0. To determine the
sign of V̇ (x), the following three cases are considered.

(i) For x1(t) ≥ rd, it follows from c1 > 1 in (11) that
c1/rd · cosx2(t) < 1/rd · cosx2(t) ≤ 1/x1(t) · cosx2(t).
Then, it holds that

V̇ (x) <− v cosx2(t)

x1(t)
(1 + cosx2(t)− sinx2(t))

=− v cosx2(t)

x1(t)

(
1 +
√

2 cos(x2(t) + π/4)
)

≤ 0,

where the last inequality follows from that 3π/4 <
x2(t) + π/4 ≤ 5π/4.

(ii) For v/(c1ωc) < x1(t) < rd, it holds that x1(t) >
− (v(1− sinx2(t))) / (c1ωc cosx2(t)) . Then

1/x1(t)− 1/x1(t) · sinx2(t) + c1/rd · cosx2(t) < 0.

Jointly with (36), it can be easily verified that V̇ (x) < 0.
(iii) For 0 < x1(t) ≤ v/(c1ωc), it follows from (30) that

ẋ2(t) ≤ ωc +
c2
rd

(d(t)− rd) + c1ωc(cosφ(t)− sinφ(t))

< ωc − c1ωc + c2/rd · (d(t)− rd)

< (1− c1)ωc < 0.

This implies that x2(t) will enter the interval [0, π/2] in
a finite time. Moreover, x2(t) = π/2 leads to that

ẋ2(t) < 0, if x1(t) ∈ (0, rd),

ẋ2(t) = 0, if x1(t) = rd,

ẋ2(t) > 0, if x1(t) ∈ (rd,∞).

Thus, the vehicle states never return to 0 < x1(t) ≤
v/c1ωc and π/2 < x2 ≤ π. Eventually, V̇ (x) ≤ 0.

However, V̇ (x) is not negative definite, and V̇ (x) = 0 if
x2(t) = π/2. Let S = {x|V̇ (x) = 0}, and suppose that x̃e is
an element of S except xe. Then

ẋ2|x=x̃e
= ωc − v/x1(t) + c2sat (e(t)) 6= 0.

That is, no solution can stay identically in S other than the
trivial solution x(t) ≡ xe. Clearly, V (x) is nonnegative, and
V (x) > 0, ∀x 6= xe. By the LaSalle’s invariance theorem [32,
Corollary 4.1], xe is an asymptotically stable equilibrium of
the closed-loop system (10) under the controller (7).

If a closed-loop system is locally exponentially stable near
the equilibrium, this system is robust against perturbations [32,
Chapter 9.2].

Proof of Proposition 1: By Lemma 3, the closed-loop system
(30) has a globally stable equilibrium xe. Then, its model near
this equilibrium is written as follows

ẋ1(t) = v cosx2(t),

ẋ2(t) = ωc + c1ωc cosx2(t) +
c2
rd

(x1(t)− rd)− v sinx2(t)

x1(t)
.

(37)

Clearly, the linearized system of (37) at xe is given by

ẋ(t) = F (x(t)− xe) (38)

where F =

[
0 −v

1
rd

(c2 + ωc) −c1ωc

]
has two eigenvalues with

negative real parts, i.e., F is Hurwitz. Let D = {x|V (x) ≤ b},
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where b > 0. If b is sufficiently small, then d(t) is sufficiently
close to rd and φ(t) is sufficiently close to π/2. Moreover,
the closed-loop system in (37) is continuously differentiable
in D. By [32, Corollary 4.3], xe is an exponentially stable
equilibrium for the closed-loop system in (10). Thus, there
exists a finite time instant t1 such that x(t) ∈ D for all t > t1.

Let F = QΛQ−1 and Λ = diag(λ1, λ2) where λi, i = 1, 2
are the eigenvalues of matrix F . Then, it holds that

‖x(t)− xe‖ = ‖Q exp(Λ(t− t1))Q−1(x(t1)− xe)‖
≤ C‖x(t1)− xe‖ exp(−ρ(t− t1)), ∀t ≥ t1

where C = ‖Q‖‖Q−1‖, ∆ = (c1ωc)
2 − 4(c2ωc + ω2

c ), and

ρ =

{
(c1ωc −

√
∆)/2, if ∆ > 0,

c1ωc/2, if ∆ ≤ 0.

Thus, the proof is completed.

B. Proof of Proposition 2

Lemma 4: Under the conditions in Proposition 2, there is
a finite time instant t1 ≥ t0 such that φ(t1) ∈ [arccos((q1 +
v̄o)/v), π−arccos(−v∗−v̄o−q1)/v)] and d(t1) > 2rd, where
q1 = c2rd/c1 and 0 < v∗ < v − v̄o − q1.

Proof: If φ(t0) ∈ [arccos((q1 + v̄o)/v), π −
arccos((−v∗ − v̄o − q1)/v)], the proof is finished. Thus, we
only need to analyze the case that φ(t0) does not belong to
this interval.

When d(t) ≥ 2rd, it follows from (18) that

φ̇(t) = ωc + c1/rd · (v cosφ(t)− v1(t) + q1)

− v sinφ(t)/d(t) + v2(t)/d(t). (39)

(i) If φ(t) ∈ (− arccos((v̄o− q1)/v), arccos((q1 + v̄o)/v)),
then (39) leads to that φ̇(t) > (v − v̄o)/2rd + c1/rd ·
(v̄o − v1(t)) > 0.

(ii) If φ(t) ∈ (π−arccos((−v∗− v̄o−q1)/v), π]∩(−π,−π+
arccos((−v∗− v̄o−q1)/v)], then it follows from (18) and
the conditions in Proposition 2 that φ̇(t) < −c1/rd ·v∗+
ωc + ωo < 0. Moreover, the maximum time for φ(t) to
cross the boundary of π − arccos((−v∗ − v̄o − q1)/v) is
given as

T3 =
2 arccos((−v∗ − v̄o − q1)/v)

c1/rd · v∗ − ωc − ωo
.

(iii) If φ(t) ∈ (−π + arccos((−v∗ − v̄o −
q1)/v),− arccos((v̄o − q1)/v)), it follows from (39) and
Lemma 2 that φ(t) either reduces to case (i) or case (ii)
in a finite time. That is

T4 = max

{
π

c1/rd · v∗ − ωc − ωo
,

π

c2 − c1ωo

}
.

Thus, there is a finite time instant t1 ≥ t0 such that φ(t1) ∈
[arccos((v̄o + q1)/v), π − arccos((−v∗ − v̄o − q1)/v)].

Moreover, case (i) implies that ḋ(t) > 0 by (12), and only
cases (ii)-(iii) may result in the decrease of d(t). Thus, it holds
that d(t1) > 2rd by d(t0) > 2rd + (v + v̄o)T1 where T1 =
T3 + T4.
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