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Abstract—In established network architectures, shortcut con-
nections are often used to take the outputs of earlier layers
as additional inputs to later layers. Despite the extraordinary
effectiveness of shortcuts, there remain open questions on the
mechanism and characteristics. For example, why are shortcuts
powerful? Why do shortcuts generalize well? In this paper, we
investigate the expressivity and generalizability of a novel sparse
shortcut topology. First, we demonstrate that this topology can
empower a one-neuron-wide deep network to approximate any
univariate continuous function. Then, we present a novel width-
bounded universal approximator in contrast to depth-bounded
universal approximators and extend the approximation result
to a family of equally competent networks. Furthermore, with
generalization bound theory, we show that the proposed shortcut
topology enjoys excellent generalizability. Finally, we corroborate
our theoretical analyses by comparing the proposed topology
with popular architectures, including ResNet and DenseNet, on
well-known benchmarks and perform a saliency map analysis
to interpret the proposed topology. Our work helps enhance
the understanding of the role of shortcuts and suggests further
opportunities to innovate neural architectures.

Impact Statement—Shortcuts are the key elements of many
well-performed neural network architectures and have achieved
huge success in many applications. However, over the past years,
why shortcuts are powerful was not so much investigated from
a theoretical point of view . To fill this gap, we present detailed
analyses on the power of a sparse shortcut topology in views
of expressivity and generalizability. Furthermore, our theoreti-
cal studies are corroborated by comprehensive prediction and
classification experiments. Our work is useful in understanding
the role of shortcuts and can inspire more research in neural
architecture design.

Index Terms—Theoretical deep learning, network architecture,
shortcut network, expressivity, generalizability

I. INTRODUCTION
Recently, deep learning [1] has been rapidly evolving and

achieved great success in many applications [2]–[6]. Since
AlexNet [7], more and more models were developed; for
example, Inception [8], Network in Network [9], VGG [10],
ResNet [11], DenseNet [12], and so on. These models play an
important role as backbone architectures, pushing the perfor-
mance boundaries of deep learning on the downstream tasks.
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Fig. 1. Comparison of sparse and dense shortcut topologies. (a) A novel
sparse shortcut topology; (b) the densely connected topology, where Hi
denotes a collection of common operations such as convolution, ReLU, and so
on. There are two aggregation methods: summation and concatenation marked
as + and ⊕, respectively. In this paper, the summation is used for expressivity
and concatenation for generalization purposes.

In these studies, great efforts were made to explore the use of
skip connections [13]–[17]. For instance, a shortcut topology
was searched in the framework of a lightweight network for a
super-resolution task [13]. Hypercolumn Network [14] stacked
the units at all layers as a concatenated feature descriptor to
obtain semantic information and precise localization. Highway
Network [16] achieved great success in training a very deep
network. Fractal Network [17] utilized a different skip connec-
tion design, by which interacting sub-paths were used without
any pass-through or residual connections.

In the 1990s, the universal approximation theorem was
proved to justify the representation power of a network. Given
a sufficient number of neurons, a one-hidden-layer network
can express any continuous function [18], [19]. Recently,
inspired by the success of deep learning, intensive efforts
were put to explain the advantages of depth over width of a
network. The basic idea behind these results is to construct a
particular class of functions that a deep network can efficiently
represent, but shallow networks cannot [20]–[24]. However,
despite incorporating shortcuts greatly empowers a neural
network in solving real-world problems, theoretical studies are
few to explain the representation and generalization abilities of
shortcuts. In this study, we present our theoretical findings on
a novel sparse shortcut topology, wherein shortcuts are used
to bridge all prior layers and the final layer in a block or the
whole network (see Figure 1(a)), thereby partially addressing
why shortcuts are effective types of machinery in a network.

First, we show that a one-neuron-wide network with the
proposed topology can approximate any univariate function,
while a one-neuron-wide feedforward network cannot. This
suggests that adding shortcuts can lead to a more powerful
network structure. Along this direction, we report an alterna-
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tive novel width-bounded universal approximator by using the
Kolmogorov-Arnold representation theorem [25], in contrast
to the depth-bounded universal approximator [26]–[28]. The
width-bounded universal approximator refers to the universal
approximators whose width is limited, but depth is arbitrarily
large, while the depth-bounded universal approximator has a
limited depth, but its width can be arbitrarily large. Given
the input of n dimensions, the required width is no more than
2n2+n per layer in our scheme. Then, we extend the result to a
family of networks such that given approximation ability, these
networks are equally competent. Furthermore, we analyze the
effect of concatenation shortcuts on the generalization bound
of deep networks. We show that the investigated topology en-
joys a tighter generalization bound compared with the densely
connected one, which suggests that the investigated topology
can generalize well. To verify the positive results from the
theoretical analyses, we prototype a network with the proposed
topology and evaluate its performance on some well-known
benchmarks. Finally, the experimental results demonstrate that
the constructed network can achieve competitive learning per-
formance compared to networks with residual topologies, the
densely connected network, and other state-of-the-art models.

In summary, our contributions are three-fold. 1) We demon-
strate the expressivity of the shortcut connections by present-
ing a univariate continuous function approximation theorem
and a width-limited universal approximator, which partially
addresses why networks with shortcuts are powerful. 2) To
the best of our knowledge, our work is the first to analyze
the generalizability of concatenation shortcuts based on the
generalization bound theory. In addition, we also show that
the generalization bounds of the proposed topology are tighter
than those of the densely connected topology. 3) We conduct
experiments to validate our theoretical analyses, and the in-
vestigated topology performs competitively in regression and
classification experiments on several well-known benchmarks.

To clarify, all our studies are based on the architecture
shown in Figure 1(a), which is a construction of skip connec-
tions. The central hypothesis of this paper is that the proposed
topology in Figure 1(a) enjoys good expressivity (Section III)
and generalizability (Section IV). Because the core of the pro-
posed topology is the employment of shortcuts, our work also
explains why shortcuts are essential in a network structure.
This hypothesis is validated by comprehensive experimental
comparisons (Section V).

II. RELATED WORK

There are studies to explain the success of summation short-
cuts. It was reported in [28] that with residual connections,
one neuron is sufficient for the ResNet to approximate any
Lebesgue-integrable function. In [29], it was showcased that
the residual networks demonstrate an ensemble-like behavior.
Liu et al. [30] studied the convergence behavior of a two-
layer network and proved that the optimization of a two-layer
ResNet can avoid spurious minima under mild restrictions.
He et al. [31] studied a spectrally-normalized margin bound
to discuss the influence of residual connections on the gen-
eralization ability of deep networks. They showed that the

margin-based multi-class generalization bound of ResNet is
of the same magnitude as that of chain-like counterparts.
Therefore, the generalizability of ResNet is not worse than
that of a feedforward network. Here, we not only justify
the representation ability of summation shortcuts but also
conduct the generalization bound analysis for concatenation
shortcuts, which systematically enrich our understanding of
the expressivity and generalizability of shortcuts.

The work closely related to ours was done in [32], [33],
which utilized the proposed network topology (Figure 1(a))
as a backbone for CT image denoising and super-resolution.
However, their studies were not theoretical and did not answer
why such a structure can work. In contrast, we approach the
utility of this shortcut topology through detailed mathematical
analyses and comprehensive experiments. In addition, the
investigated topology here is a sparsified version of the densely
connected shortcut topology. By setting the relevant weights
as zero, the densely connected topology will reduce into the
topology here. Our results somehow show that the densely
connected topology is redundant.

As far as the universal approximation is concerned, in Lu et
al. [26], giving at most n+ 4 neurons per layer and allowing
an infinite depth, a fully-connected deep network with ReLU
activation functions can accurately approximate a Lebesgue-
integrable n-dimension function in the L1-norm sense. As
an extension, Lin et al. [28] compressed n + 4 into 1 by
using residual connections. They also argued that because the
identity mapping should be counted as n units, the actual
width of their network is n + 1. Along this direction, we
exploit the Kolmogorov-Arnold representation theorem [25]
to derive a novel width-limited universal approximator with a
width no more than 2n2 + n per layer. Although the upper
bound of width in our universal approximator is greater than
those set by [26] and [28], our work is still valuable because
of the methodology novelty and the scarcity of width-bounded
universal approximators.

III. EXPRESSIVITY

In this section, we first study the representation ability
of the shortcut topology shown in Figure 1(a) that is based
on summation (+) aggregation by presenting its superior
approximation ability and then extend the results to more
shortcut topologies, thereby shedding light on the question
why shortcuts are powerful.

A. Univariate continuous function approximation

Our main result is that adding shortcuts, as shown in Figure
1(a), can make a one-neuron wide network approximate any
univariate continuous function in the sense of the L∞ distance.
It should be pointed out that our result is constructive, and
it is still an open problem to prove that the trained network
converges to our construction. Mathematically, we make the
following proposition:

Proposition 1: With ReLU activation functions for all
hidden neurons, for any continuous function g : [0, 1] → R
and any given precision δ > 0, there exists a neural network
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G of the proposed topology with one neuron in each layer
such that

sup
x∈[0,1]

|g(x)−G(x)| < δ (1)

The sketch of our constructive analysis: Any univariate
continuous function can be approximated by a continuous
piecewise linear function within any given closeness [34].
Therefore, the key of proof becomes how to implement this
piecewise approximation by a one-neuron-wide network of
the proposed topology. In our scheme, we use the ReLU as
activation functions for all neurons except the output neuron.
By the convention of regression tasks, the activation function
of the output layer is linear. Our construction is to make
each neuron represent a piecewise function, and then we use
shortcuts to aggregate these piecewise linear segments in the
output neuron.

Preliminaries: Without loss of generality, a continuous
function g(x) can be approximated by a continuous piecewise
linear function f(x) at any accuracy in the L∞ sense, provided
that the interval [0, 1] is partitioned into very tiny sub-intervals.
Therefore, to demonstrate the correctness of Proposition 1, we
just need to use a one-neuron-wide network of the investigated
topology to implement f(x). Suppose that there are N pieces
in f(x), we can construct an explicit expression of f(x) as
follows:

f(x) =


f0(x) x ∈ [x0, x1]

f1(x) x ∈ (x1, x2]
...

fN−1(x) x ∈ (xN−1, xN ]

, (2)

where x0 = 0, xN = 1, and

fi(x) =

{
f(xi+1)−f(xi)

xi+1−xi
(x− xi) + f(xi) x ∈ [xi, xi+1]

0 x /∈ [xi, xi+1]
(3)

for i = 0, 1, 2, · · · , N − 1, satisfying continuity. Hereafter, we
use Mi = f(xi+1)−f(xi)

xi+1−xi
for simplicity. By default, neighboring

segments should have different slopes; otherwise they will be
combined as one segment.

Analysis: Now, let us show how to select parameters of
a one-neuron-wide network to express f(x) in the form of
Eq. (2). The outputs of neurons are respectively denoted as
R0, R1, R2, ..., RN−1. For the ith neuron, its output Ri is
expressed as

Ri = (Wix+ bi)
+, (4)

where (·)+ denotes the ReLU operation, Wi and bi are the
weight and bias respectively. In the following, mathematical
induction is used to show that our construction can express
f(x) exactly.

Initial Condition R0: We use R0 to implement the linear
function in the first interval [x0, x1]. By setting W0 =
|M0| , b0 = − |M0|x0, the specific function of the first neuron
becomes R0 = (|M0| (x− x0))

+, where the ReLU keeps the
linearity when x > x0.

Recurrent Relation: Suppose that we have obtained the
desired ith neuron Ri, we can proceed to design the (i+ 1)th

neuron with the goal of expressing the function |fi+1(x) −
fi+1(xi+1)|, which is |fi+1(x)| over the interval (xi+1, xi+2]
without a constant lift. The tricky point is that the current
neuron basically takes in the output of the previous neuron
as the input, which is in the functional range instead of the
input domain. Therefore, we need to perform an inverse affine
transform:
Ri+1 =(
|Mi+1 −Mi| × (

1

|Mi −Mi−1|
Ri − xi+1 + xi)

)+ (5)

For notation completeness, M−1 = 0. The trick we use is
to invert Ri back to the input domain and set the new slope as
|Mi+1−Mi|, which cancels the effect of Ri imposed on x >
xi+1, equivalently limiting Ri to only work over (xi, xi+1]
once Ri and Ri+1 are added together. The parameters in the
(i + 1)th module are chosen as follows: Wi+1 = |Mi+1−Mi|

|Mi−Mi−1|
and bi+1 = (−xi+1 + xi)|Mi+1 −Mi|.

Thanks to the recurrent relation, we can compute each Ri
as (|Mi−Mi−1|(x−xi))+. We aggregate the outputs of those
N pieces in the final neuron through shortcut connections to
get the neural network G(x) as follows:

G(x) =

N−1∑
i=0

sgn(i)Ri + f(x0), (6)

wherein sgn(i) = 1 when Mi −Mi−1 > 0 and sgn(i) = −1
when Mi −Mi−1 < 0. Because Ri(x) = (|Mi −Mi−1|(x−
xi))

+, for any x ∈ [xk, xk+1],

G(x) =

N−1∑
i=0

sgn(i)Ri + f(x0)

=

N−1∑
i=0

sgn(i)(|Mi −Mi−1|(x− xi))+ + f(x0)

=

N−1∑
i=0

(Mi −Mi−1)(x− xi)+ + f(x0)

=

k∑
i=0

(Mi −Mi−1)(x− xi) + f(x0)

=

k∑
i=0

(Mi −Mi−1)x−
k∑
i=0

(Mi −Mi−1)xi + f(x0)

= Mkx−Mkxk +

k−1∑
i=0

Mi(xi+1 − xi) + f(x0)

= Mk(x− xk) +

k−1∑
i=0

(f(xi+1)− f(xi)) + f(x0)

= Mk(x− xk) + f(xk)

= fk(x),
(7)

which indicates that G(x) can exactly express f(x) in Eq. (2).
To illustrate the idea clearly, we exemplify∑2
i=0 sgn(i)Ri + f(x0) as R0 + R1 − R2 + f(x0), as

shown in Figure 2.
Based on the above derivation, for any f(x) consisting

of N piecewise linear segments, there will be a function
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f(x0) +
∑N−1
i=0 Ri constructed by a one-neuron-wide N -

layer network in the proposed topology that can exactly
represent f(x). Because f(x) can approximate any continuous
univariate function, Proposition 1 is verified.

Now, let us analyze the limit of N . Suppose g ∈ C1 :
[0, 1] → R, because |g(x) − g(y)| ≤

∫
|x−y|≤η |g

′(s)|ds ≤
η||g′||∞, where ||g′||∞ is the maximum absolute value of the
derivative of g, a continuous piecewise linear function f can
represent g: supx |g−f | < δ, as long as we partition [0, 1] into
intervals whose lengths are smaller than δ/||g′||∞. As a result,
the required number of pieces is 1/(δ/||g′||∞) = ||g′||∞/δ,
and the needed neuron number N for G is also ||g′||∞/δ.

Remark 1: An exciting question is whether the densely
connected topology in the DenseNet is necessary or not. Zhu
et al. [35] experimentally demonstrated that a sparse version
of DenseNet has been excellent in image classification. In
contrast, our Proposition 1 theoretically confirms that given
the sufficient depth, the densely connected topology has certain
redundancy given representation ability, since a one-neuron-
wide network with the proposed topology can already work
for general approximation.
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Fig. 2. An example of
∑2
i=0 sgn(i)Ri+f(x0) as R0 +R1−R2 +f(x0)

to illustrate how a one-neuron wide network can represent f(x).

B. Width-bounded universal approximator
Inspired by the feasibility of using a one-neuron-wide net-

work to approximate any continuous univariate function, here
we present an alternative width-bounded universal approxi-
mator, in analogy to a depth-bounded universal approximator.
Width-bounded networks mean that the width of a network is
limited, but the network can be arbitrarily deep. Our scheme
is based on the topology in Figure 1(a) and the Kolmogorov-
Arnold representation theorem. Specifically, we employ the
Kolmogorov-Arnold representation theorem to bridge the gap
between approximating univariate and multivariate functions.

Proposition 2: With ReLU activation functions, for any
continuous function f : [0, 1]n → R and any given precision
σ > 0, there exists a neural network W with width no more
than 2n2 + n per layer such that

sup
x1,x2,...,xn∈[0,1]

|f(x1, x2, ..., xn)−W (x1, x2, ..., xn)| < σ.

(8)
Kolmogorov-Arnold representation theorem [25]: For

any continuous function f(x1, · · · , xn) with n ≥ 2, there
exist a group of continuous functions: φq,p, q = 0, 1, · · · , 2n;
p = 1, 2, · · · , n and Φq such that

f(x1, x2, · · · , xn) =

2n∑
q=0

Φq

(
n∑
p=1

φq,p(xp)

)
. (9)

Scheme of analysis: The representation theorem implies
that any continuous function f(x1, · · · , xn) can be written
as a composition of finitely many univariate functions. As
shown in Figure 3, our scheme of approximating a multi-
variate continuous function f(x1, · · · , xn) is to first employ
2n2 + n single-neuron-wide sub-networks in the proposed
topology to represent φq,p(xp) in a parallel manner. Next,
suggested by the right side of Eq. (9), we summate the
group of functions {φq,1(x1), φq,2(x2), ..., φq,n(xn)} and feed∑n
p=1 φq,p(xp) into a new one-neuron-wide network whose

purpose is to approximate Φq . Finally, we summate the yields
of those 2n + 1 sub-networks as the ultimate output of the
overall network.
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𝑛

𝜙𝑞,𝑝(𝑥𝑝))

Fig. 3. The scheme of a width-bounded universal approximator.
Analysis: As we have shown in the Proposition 1, for every

function φq,p(xp), there exists a function Dq,p(xp) represented
by a one-neuron-wide network in the proposed topology such
that

sup
xp∈[0,1]

|φq,p(xp)−Dq,p(xp)| < δq,p, (10)

where δq,p > 0 is a given arbitrarily small quantity. After we
integrate {φq,1(x1), φq,2(x2), ..., φq,n(xn)}, for any selection
of x1, x2, ..., xn ∈ [0, 1], applying triangle inequality, we
obtain the error of adding Dq,p with respect to p from Eq.
(10):

sup
x1,x2,...,xn∈[0,1]

|
n∑
p=1

φq,p(xp)−
n∑
p=1

Dq,p(xp)|

≤ sup
x1,x2,...,xn∈[0,1]

n∑
p=1

|φq,p(xp)−Dq,p(xp)|

<

n∑
p=1

δq,p.

(11)

Given that Φq is continuous, we employ the ε−δ definition of
continuity: if g(x) is continuous at x0, for any positive number
ε, there exists δ(ε, g) > 0 satisfying that |g(x) − g(x0)| <
ε when |x − x0| < δ. Let ε = σ

4n+2 , correspondingly we
appropriately choose δq,p so that

∑n
p=1 δq,p < δ( σ

4n+2 ,Φq).
Thus, for every Φq , we have the following:

sup
x1,x2,...,xn∈[0,1]

|Φq(
n∑
p=1

φq,p(xp))− Φq(

n∑
p=1

Dq,p(xp))|

<
σ

4n+ 2
.

(12)
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Every continuous function Φq is supported on R instead of
[0, 1]. Without loss of generality, we can still find a one-
neuron-wide network in the proposed topology to approximate
Φq arbitrarily well. Let Dq(x) be the function expressed by
such a network that can approximate Φq in the precision of
σ

4n+2 , we have

sup
x∈R
|Φq(x)−Dq(x)| < σ

4n+ 2
. (13)

The above equation means that Dq(x) can represent Φq(x)
with an error no greater than σ

4n+2 over R. Introducing an in-
termediate term Φq(

∑n
p=1Dq,p(xp)) and applying the triangle

inequality to estimate the error of feeding the summation of
Dq,p into Dq , we have

sup
x1,x2,...,xn∈[0,1]

|Φq(
n∑
p=1

φq,p(xp))−Dq(

n∑
p=1

Dq,p(xp))|

= sup
x1,x2,...,xn∈[0,1]

|Φq(
n∑
p=1

φq,p(xp))− Φq(

n∑
p=1

Dq,p(xp))

+ Φq(

n∑
p=1

Dq,p(xp))−Dq(

n∑
p=1

Dq,p(xp))|

≤ sup
x1,x2,...,xn∈[0,1]

|Φq(
n∑
p=1

φq,p(xp))− Φq(

n∑
p=1

Dq,p(xp))|

+ sup
x1,x2,...,xn∈[0,1]

|Φq(
n∑
p=1

Dq,p(xp))−Dq(

n∑
p=1

Dq,p(xp))|

<
σ

4n+ 2
+

σ

4n+ 2
=

σ

2n+ 1
,

(14)
where we enforce Eqs. (12) and (13) to derive from the
second and third lines to the fourth line. Then, applying the
triangle inequality for the summation of Dq, q = 0, ..., 2n, we
immediately obtain the error of the total approximation scheme
of Kolmogorov-Arnold representation theorem from Eq. (9):

sup
x1,x2,...,xn∈[0,1]

|
2n∑
q=0

Φq(

n∑
p=1

φq,p(xp))−
2n∑
q=0

Dq(

n∑
p=1

Dq,p(xp))|

≤ sup
x1,x2,...,xn∈[0,1]

2n∑
q=0

|Φq(
n∑
p=1

φq,p(xp))−Dq(

n∑
p=1

Dq,p(xp))|

< (2n+ 1)× σ

2n+ 1
= σ.

(15)
Let W (x1, x2, · · · , xn) =

∑2n
q=0Dq(

∑n
p=1Dq,p(xp)), we

immediately get the validity of Proposition 2.
Remark 2: Here, we present a novel width-limited universal

approximator with a width of no more than 2n2 + n per
layer. This width bound is greater than those of other width-
bounded universal approximators, e.g., n + 4 in [26] and
n + 1 in [28]. In addition, this bound is also greater than
the width of common models. For example, the wide residual
networks (WRN) have a width of 192, smaller than our bound.
Despite that the width bound here is not pragmatic, due to
the scarcity of width-bounded universal approximators and
the novelty of our construction, it is still a valuable addi-
tion to the existing work. Moreover, the Kolmogorov-Arnold

representation theorem was revisited in [36]. The smooth-
ness property of interior functions φq,p of the Kolmogorov-
Arnold representation was enhanced by modifying the interior
functions as a mapping from digits of a binary expansion to
digits of a ternary expansion. Such a modification enables a
ReLU network to realize the modified Kolmogorov-Arnold
representation. However, the resultant network has 2K + 3
layers with {n, 4n, · · · , 4n, n, 1, 2Kn + 1, 1} neurons at each
layer, respectively, where K is a positive number whose value
is up to the pre-specified approximation precision. Such a
network is neither depth-bounded nor width-bounded.

C. A family of networks

Motivated by our constructive proof for the proposed
topology, we report that in the one-dimensional setting, the
aforementioned analysis is translatable to a rather inclusive
family of network topologies. This network family (denoted
as ΩM ) subsumes an extremely wide network, an extremely
deep network, and networks between them, where M is the
number of hidden neurons, not including the input and output
nodes. We argue that network topologies in ΩM are equivalent
in the sense of the approximation ability.

The input node is also considered as the neuron for simplic-
ity. Hence, we refer to neurons as three types: hidden neurons,
the input neuron, and the output neuron. A network in ΩM

shall satisfy the following three conditions:
1) Every hidden neuron has one inbound edge.
2) Every hidden neuron and the input neuron have one

outbound edge that links to the output neuron.
3) The input neuron is wired with at least one hidden

neuron.
The first condition can be trivially relaxed to that every

hidden neuron has multiple inbound edges by setting weights
of extra edges as zero. The examples that belong to Ω6 are
shown in Figure 4. For a topology in ΩM , the number of
required edges should be 2M + 1. One thing worthwhile to
highlight is that members in ΩM are mutually convertible
through one or more cutting-rewiring operations. A cutting-
rewiring process means cutting the current input edge of one
neuron and rewiring the one with another neuron. Regarding
the network belonging to a network family Ω, we have the
following proposition:

Proposition 3: With ReLU activation functions, for any
continuous function g : [0, 1] → R and any given precision
δ > 0, there is a network family ΩN in which any network
K, whose mapping is denoted as ΩNK(x), satisfies:

sup
x∈[0,1]

∣∣g(x)− ΩNK(x)
∣∣ < δ. (16)

The sketch of analysis: Similarly, the core of the problem
is how to represent a continuous piecewise function f(x) of
N pieces by a network from ΩN (x). The main difference is
that the hidden neuron in a network from ΩN (x) is allowed
to get the information from any previous neurons other than
just precisely from the last neighboring neuron.

Analysis: For convenience and without loss of generality,
we still use f(x) in Eq. (2). To prove Proposition 3, we need
to use ΩNK(x) to express f(x).
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Fig. 4. Six exemplary structures in Ω6 combined with ResNet setup are
used to test if the networks in Ω are truly equivalent or not.

Now we show how weights and bias in each neuron
are appropriately selected in ΩNK(x) to approximate f(x).
Without loss of generality, the neurons are denoted as
Qinput, Q0, ..., QN−1, Qoutput, where Qinput is the input
node, Q0 is connected to the input neuron directly and
Qi+1 is fed with either the input neuron or another neu-
ron Qt, t ≤ i, and Qoutput is the output neuron. Accord-
ingly, the outputs of neurons Q0, Q1, ..., QN−1 are also de-
noted as Q0, Q1, ..., QN−1 for convenience, and our goal is
to let Q0, Q1, ..., QN−1 to represent f0, f1, f2, ..., fN−1 at
[x0, x1], (x1, x2], ..., (xN−1, xN ] without a constant shift.

For Q0, similar to what we did before, we set that

Q0 = (|M0| (x− x0))
+
. (17)

For Qi+1, suppose that it connects with Qj , we set

Qi+1 =(
|Mi+1 −Mi| × (

1

|Mj −Mj−1|
Qj − xi+1 + xj)

)+. (18)

Thus, the output of each neuron fulfills Qi(x) = (|Mi −
Mi−1|(x − xi))

+. Similarly, we aggregate the output of all
N hidden neurons in the output neuron as

ΩNK(x) =

N−1∑
i=0

sgn(i)Qi + f(x0), (19)

which is equal to f(x) according to Eq. (7). Therefore, we
conclude Proposition 3.

Remark 3: Our representation ability analysis suggests that
the members of Ω are equivalently expressive. We want to
emphasize that such a finding is important in both theoretical
and practical senses. On the one hand, both a one-hidden-
layer but super wide network and a one-neuron-wide but super
deep network are demonstrated to have a strong expressive

ability. A natural curiosity is what about the networks in
between. Do they also permit a good approximation ability?
Here, we partially answer this question in the one-dimensional
setting by showing that a wide network, a deep network, and
networks in between from the network family Ω are equally
capable. On the other hand, network design is an important
research direction. The insight can be drawn from our finding
to network architecture design and search [13]. Since many
networks are actually equivalent to each other, the search and
design cost will be much reduced in principle.

IV. GENERALIZATION BOUND ANALYSIS
As mentioned earlier, for a shortcut topology, there are two

types of aggregations: summation (+) and concatenation (⊕).
The effect of summation connections on the generalizability
of deep networks has been studied in [31]. To fill the gap that
the effect of concatenation shortcuts is not explored, in this
section, we dissect the generalizability of concatenation short-
cuts by computing the generalization bounds. A generalization
bound quantifying the generalization ability of a model is the
upper bound of the generalization error. Recently, aimed at
explaining good generalizability of over-parameterized deep
networks, a plethora of norm-based generalization bounds
[37]–[39] that rely on weight matrices norms rather than
the number of weights have been developed. These bounds
have a better explanation because they eliminate the direct
dependence on the number of parameters.

Here, we derive the norm-based generalization bounds of
DenseNet, with an emphasis on the spectrally normalized
margin-based generalization bound [37]. To the best of our
knowledge, our study is the first to analyze the effect of
concatenation shortcuts on the generalization ability of deep
networks. Then, we show that the generalization bound of the
network using the proposed topology is tighter than that of
the DenseNet, which suggests that the proposed topology can
generalize well.

First, the data norm is set to the l2 norm and the operator
norm set to the spectral norm || · ||σ defined as ||A||σ =

sup
||Z||2≤1

||AZ||2. Furthermore, || · ||p,q is the matrix (p, q)-norm

defined as ||A||p,q = ||(||A:,1||p, ..., ||A:,m2 ||p)||q .
Next, we denote the model as F (x) and define the margin

operator M : Rk × {1, 2, ...k} → R for the k-class classifi-
cation task as F (x)z − max

j 6=z
F (x)j for the zth ground truth

class, where z is the class index, and the ramp function is

lγ(r) =


0 r < −γ
1 + r/γ −γ ≤ r ≤ 0

1 r > 0,

(20)

where γ is the margin controlling the slope of lγ(r).
Then, the empirical ramp loss over the dataset D =
{(x1, y1), ..., (xn, yn)} is

R̂γ(F ) =
1

n

n∑
i=1

(lγ(−M(F (xi), yi))). (21)

Minimizing the empirical ramp loss is equivalent to maxi-
mizing the margin of the predicted classes in the dataset. With
all notations and definitions, we have the following theorem:
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Theorem 1: Let us fix nonlinear activation functions
σ1, · · · , σL, where σi is ρi-Lipschitz and σi(0) = 0. Fur-
thermore, let the margin γ > 0, spectral norm bounds
(s1, · · · , sL), data bound B, and matrices (2, 1)-norm bounds
(b1, · · · , bL) be given. Then, with at least 1 − δ probability
over N samples {(xi, yi)}Ni=1 with xi ∈ Rd,

√∑
i ||xi||22 ≤ B

are drawn from identical and independent distribution, every
DenseNet in FA : Rd → Rk defined as

G0 = XT

F1 = A1X
T

Gi = σi(Fi)

Fi+1 = Ai+1 ⊕ik=0 Gk

FL = AL ⊕L−1k=0 Gk,

(22)

where X ∈ RN×d collects all data samples {xi}Ni=1, ⊕ is
the matrix concatenation along the row direction, ⊕ik=0Gk =
G1 ⊕G2 · · · ⊕Gk = [G0;G1; · · · ;Gk], Ai is of di × ni with
ni =

∑i−1
k=0 dk, the matrices A = (A1, · · · , AL) with Ai ∈

Rdi×ni , ni =
∑i−1
k=0 dk obey that ||Ai||σ ≤ si and ||ATi ||2,1 ≤

bi, and L is the number of layers, satisfies

Pr{arg max
i
FA(x)i 6= y} − R̂γ(FA)

≤ 8

n3/2
+ 3

√
In(1/δ)

2n
+

36BIn(n)
∏L
i=1(1 + ρisi)

γn

√√√√ L∑
i=1

ρ2i b
2
i

(1 + ρisi)2
In(2dini),

(23)

where In(·) is the natural logarithm. For conciseness, we put
the proof of Theorem 1 in Part A of supplementary materials.

Remark 4: Please note that our result is based on the proof
in [37], and is the first to apply the results on the chain-
like networks into the networks with concatenation shortcuts
to evaluate the impact of concatenation shortcuts on the
generalization bound of deep networks. As shown in Table
I, we compare the bounds of the DenseNet and chain-like
network. Incorporating dense concatenation shortcuts leads to
a higher generalization bound than the chain-like network due
to the increased matrix size ni =

∑i−1
k=0 dk > dmax. However,

the bounds of the DenseNet and chain-like network are close
when small weight matrices are used in each layer. This result
partially explains why the DenseNet performs well in a small
filter size because, in this situation, the concatenation shortcuts
only moderately elevate the generalization bound.

TABLE I
THE GENERALIZATION BOUNDS FOR THE DENSENET AND CHAIN-LIKE

NETWORK. dmax IS THE MAXIMUM WIDTH.

Models Generalization Bound

DenseNet O
(∏L

i=1(1 + ρisi)

√∑L
i=1

ρ2i b
2
i

(1+ρisi)2
In(2dini)

)
Chain-like O

(∏L
i=1(ρisi)

√∑L
i=1

b2i
s2i

In(2d2max)
)

Proposition 4: The margin-based multi-class generalization
bound of the network in the proposed topology is tighter than
that of the DenseNet.

Insight: The core of the derived bound in Eq. (23) is
the third term of the right side, which is mainly dependent
upon the spectral norm bound si and the matrix (2, 1)-norm
bound bi of weight matrices. Because by adding imaginary
shortcuts (setting the extra weight matrices as zeros), the
proposed topology becomes a particular case of the DenseNet,
the spectral norm bounds and matrix (2, 1)-norm bounds
of the proposed topology are no more than those of the
DenseNet. Consequently, the spectrally normalized margin-
based generalization bound of the network in the proposed
topology is tighter than that of the DenseNet.

Analysis: Let us derive the margin-based multi-class gener-
alization bound of the network in the proposed topology and
compare it with that of the DenseNet. To discriminate them,
in the following we use the superscript (S) for the parameters
pertaining to the former and the superscript (D) to the latter.
Then, Eq. (23) turns into

Pr{arg max
i
F

(D)
A (x)i 6= y} − R̂γ(F (D)

A )

≤ 8

n3/2
+ 3

√
In(1/δ)

2n
+

36BIn(n)
∏L
i=1(1 + ρis

(D)
i )

γn

√√√√ L∑
i=1

ρ2i b
(D)2
i

(1 + ρis
(D)
i )

2 In(2din
(D)
i ).

(24)

For a fair comparison, we set the output dimension of each
layer in the network of the proposed topology to the same as
that of the DenseNet. Also, we use di for both networks. Let
A

(S)
i be of di × n(S)i , where n(S)i = di−1, i ≤ L − 1, n

(S)
L =∑L−1

i=1 di and X ∈ Rn×d. The computational structure of the
network of the proposed topology is

G
(S)
0 = XT

F
(S)
1 = A

(S)
1 XT

G
(S)
i = σi(F

(S)
i )

F
(S)
i+1 = A

(S)
i+1G

(S)
i , i ≤ L− 2

F
(S)
L = A

(S)
L ⊕L−1k=0 G

(S)
k .

(25)

Without changing the final output, we can rewrite the above
structure by adding imaginary shortcuts and setting the extra
weight matrices as zeros,



G
(S)
0 = XT

F
(S)
1 = A

(S)
1 XT

G
(S)
i = σi(F

(S)
i )

F
(S)
i+1 = [A

(S)
i+1, 0

di+1×
∑i

k=0 dk ][G
(S)
i ; 0di×n; ...; 0d0×n]

F
(S)
L = A

(S)
L ⊕L−1k=0 G

(S)
k ,

(26)
where 0C1×C2 means the zero matrix of C1 × C2. The network
in the proposed topology is a special DenseNet with specific
weight matrices as zeros. We can estimate the generalization
bound for the above zero-padded network Eq. (26) by mim-
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icking the generalization bound of DenseNet:

Pr{arg max
i
F

(S)
A (x)i 6= y} − R̂γ(F (S)

A )

≤ 8

n3/2
+ 3

√
In(1/δ)

2n
+

36BIn(n)
∏L
i=1(1 + ρis

(S)
i )

γn

√√√√ L∑
i=1

ρ2i b
(S)2
i

(1 + ρis
(S)
i )2

In(2din
(D)
i ),

(27)

where n(D)
i is used because the matrix size has been enlarged

to the same to that of the DenseNet.
To verify Proposition 4, we need to compare the bounds of

DenseNet and the proposed topology (Eq. (24) vs Eq. (27)).
According to the definition of the spectral norm, we have

||A(S)
i ||σ

= sup
||Z||2≤1

||A(S)
i Z(S)||2

= sup
||Z||2≤1

||[A(S)
i , 0di×(n

(D)
i −n(S)

i )]||[Z; 0(n
(D)
i −n(S)

i )×n]||2

≤ sup
||Z||2≤1

||A(D)
i Z(D)||2

=||A(D)
i ||σ,

(28)

where zero padding is to make [A
(S)
i , 0] have the same size

as that of A(D)
i . Therefore, we derive that

s
(S)
i ≤ s(D)

i , i = 1, ..., L. (29)

In the same spirit, we can also derive that

b
(S)
i ≤ b(D)

i , i = 1, ..., L. (30)

Combining Eqs. (29) and (30), we have

L∏
i=1

(1 + ρis
(S)
i )

√√√√ L∑
i=1

ρ2i b
(S)2
i

(1 + ρ2i s
(S)
i )2

In(2din
(D)
i ) ≤

L∏
i=1

(1 + ρis
(D)
i )

√√√√ L∑
i=1

ρ2i b
(D)2
i

(1 + ρis
(D)
i )2

In(2din
(D)
i ),

(31)

which has validated Proposition 4.
Remark 5: Our representation and generalization analyses

suggest that DenseNet has certain redundancy in represen-
tation ability and a higher generalization bound. However,
the redundant structure of DenseNet may facilitate the over-
parameterization effect, which may cause optimization and
generalization merits. For instance, regarding merits in opti-
mization, stochastic gradient descent (SGD) can find the global
minimum in shallow or deep networks in the setting of over-
parameterization because there is a large set of global mini-
mizers in an overly parameterized network [40]–[42]. Over-
parameterization is also beneficial for generalization [43],
[44]. Recently, the deep double descent phenomenon (When
the model complexity increases, the generalization error goes
down first and then up. However, as the model complexity
keeps increasing and surpasses the so-called "interpolation

threshold", the generalization error starts going down) has
been widely observed in many deep models [44]. In light of
the double descent phenomenon, the complexity of DenseNet
likely lies beyond the interpolation threshold.

V. EXPERIMENTS

In this section, we conduct prediction and classification
experiments on well-known benchmarks to evaluate the ex-
pressivity, generalizability, and interpretability of the proposed
topology. The expressivity experiments use summation (+)
shortcuts, while other experiments use concatenation (⊕)
shortcuts. The competitive performance on prediction and clas-
sification tasks shows that the proposed topology is a desirable
architecture, as suggested by encouraging theoretical analyses.
In addition, we also demonstrate the superior interpretability
of the investigated topology given the saliency map.

A. Expressivity

We compare the expressivity of the proposed topology and
residual topology in the infinite-width limit, where the gradient
descent makes little change to the weights of a network. The
training of a neural network with infinite width in each layer
turns into a kernel ridge regression [45] process with the so-
called neural tangent kernel (NTK [46]). When one fixes the
type of activation functions, the neural tangent kernel of a
neural network is only determined by the topology and the
depth of the network [47]. Figure 5 shows the structures of
the proposed network and a residual network that uses pre-
activation features. In the proposed network, the output of each
dense layer is connected to a layer before the final dense layer
for summation. We denote the depth of both networks as K+2,
where K is the number of residual blocks or the number of
layers that constitute the proposed topology. Two networks are
the same except for shortcut architectures.

Let samples of the training dataset be {(xi, yi)}i=1, where
xi is the input and yi is the output, and assume that f(θ, x)
denotes the output of a neural network, where θ are all
parameters, the (i, j)-entry of the NTK kernel H∗ [47] is
defined by

ker(xi,xj) = E
θ∼Θ

〈
∂f(θ,xi)

∂θ
,
∂f(θ,xj)

∂θ

〉
. (32)

The inference process is deterministic:

f(x) = [ker(x,x1), ..., ker(x,xn)] · (H∗)−1y. (33)

Since the kernel in the inference process is only determined
by the topology, depth, and the activation function, the com-
parison in the NTK domain can avoid the impact of other
hyper-parameters such as the network width and learning rules
(learning rate, batch size, optimizer, epoch number, and so on),
which helps reveal the difference in the representation ability
between two topologies.

We use the Boston house prices dataset [48] as a testbed
that has 13 attributes including the average number of rooms,
pupil-teacher ratio, and so on. The task is to predict the
house price based on the attributes of a house. The dataset is
randomly split into a training set (90%) and a test set (10%).
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Fig. 5. "Dense" denotes a fully connected layer. (a) The network of the
proposed topology; (b) the network of residual topology.

The mean squared error between predictions and ground truth
is computed as the evaluation metric. We vary K from 4
to 10 to make a thorough comparison. The code is written
online in Google Colab based on Python neural tangent pack-
age (https://github.com/google/neural-tangents). For all K, the
inference time is no more than 10 seconds. Figure 6 highlights
the consistent improvement of the proposed topology over the
residual one. In addition, while the mean squared errors of
both models keep going down as K increases, the downward
momentum of the proposed topology is stronger.
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Fig. 6. Results of NTK kernel ridge regression of the residual topology and
the proposed topology on the Boston house prices dataset.

B. Generalizability

Here, we validate the generalizability of the proposed
topology with concatenations to see if it can truly deliver
competitive results as promised. Suppose that yl is the output
of the lth module in the network of L modules, we characterize
the workflow of the proposed topology in the following way:

yl+1 = Hl(yl),

yL = HL−1(y0 ⊕ y1 ⊕ y2 ⊕ ...yL−1),
(34)

where ⊕ is a concatenation operator. The operator module
H(·) can perform multiple operations including batch normal-
ization [49], convolution, dropout [50], and so on. While our
theoretical analysis revolves around the multiplication oper-
ation, it can also scale to the convolution operation because
a convolution between two vectors can be re-formulated as
matrix multiplication.

The network of the proposed topology is implemented as
a drop-in replacement for the DenseNet, which means that
the only difference between our network and DenseNet is the
shortcut topology. Our model comprises multiple blocks, and
each block employs the proposed topology. Like DenseNet,
the important hyperparameters for our model are the feature
growth rate k and the number of layers in each block. The
number of features of a layer in a block is referred to as
the growth rate, which regulates the capacity of informa-
tion passed to the final. We compare the proposed topology
with other advanced deep learning benchmark models on the
CIFAR-100, Tiny ImageNet, and ImageNet datasets.

CIFAR-100: We follow the initialization strategy in
DenseNet. The DenseNet utilizes stage training: Across the
stages, the number of filters is doubled, and the size of
feature maps is reduced at the scale of 2. The proposed
network includes four blocks. All model configurations for
the proposed model follow the protocol in [12]. The total
number of epochs is 250. The initial learning rate is 0.1 and
divided by 10 in every quarter of the total epoch number.
We use SGD for training with a weight decay of 0.0001 and
a momentum of 0.9. We run each of the proposed models
five times and compute the corresponding mean and variance
of errors. In Table II, we summarize the experimental results
on the CIFAR-100. The network of the proposed topology
achieves a slightly higher error rate of 23.52% with much
fewer parameters. The proposed model works better at larger
growth rates, which is quite different from the DenseNet.
Because of the memory constraint, a larger growth rate is
prohibitive for the DenseNet. Overall, the proposed topology
achieves competitive results over CIFAR-100.

TABLE II
COMPARISONS OF TOP-1 ERRORS (%) ON CIFAR-100 AMONG THE

PROPOSED MODEL AND OTHER MODELS.

Network Params Error(%)
NIN + Dropout [9] - 35.68
FractalNet with Dropout [17] 38.6M 35.34
ResNet (Stocatic Depth) [51] 1.7M 37.80
DIANet [52] - 23.02
SpinalNet [53] - 35.01
LP-BNN [54] - 23.02
DenseNet (k=12, depth=40) 1.0M 27.55
DenseNet (k=12, depth=100) 7.0M 23.79
DenseNet (k=24, depth=100) 27.2M 23.42
Proposed (k=12, depth=40) 0.4M 29.63± 0.017
Proposed (k=24, depth=40) 1.3M 26.21± 0.025
Proposed (k=40, depth=40) 3.6M 23.52 ± 0.037

The errors of compared models are reported by the official implementation.

Tiny ImageNet dataset: This dataset consists of 200 classes
with 500 training, 50 validation, and 50 test images per class.
The image size is 64 × 64, which are downsampled from
the full images of the ImageNet dataset. In the experiments,
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TABLE III
COMPARISONS OF TOP-1 ERRORS (%) AMONG VARIOUS ADVANCING

MODELS ON TINY IMAGENET.

Network l.r. Params Error(%)
MobileNetV2 (2018) [55] 0.1 3.5M 43.76
EfficientNet-B0 (2019) [56] 0.1 5.3M 42.91
OctResNet50 (2019) [57] 0.1 25.5M 47.45
Lambda Network (2020) [58] 0.1 15.0M 58.71
SE-Net (2018) [59] 0.05 28.1M 53.98
Scale-Net (2019) [60] 0.01 31.4M 48.59
Ghost-Net (2020) [61] 0.1 5.2M 44.01
RandomWire-WS (2019) [62] 0.01 31.6M 42.11
Proposed A (k=96, depth=41) 0.1 5.0M 42.82± 0.31
Proposed B (k=108, depth=41) 0.1 10.6M 42.04 ± 0.24

All models are implemented by us.

we select the following models for comparison: MobileNet-
V2 [55], EfficientNet-B0 [56], OctResNet50 [57], Lambda
Network [63], SE-Net [59], Scale-Net [60], Ghost-Net [61],
and Randomly Wired Network [62]. All these models are
well-known new benchmarks. We set the batch size to 64.
We adopt the standard learning rate decay approach. In every
30 epochs, the learning rate is divided by 10. The initial
learning rate is chosen from {0.01, 0.05, 0.1}. The momentum
is 0.9. All models are trained in two TITAN Xp and one
GeForce GTX 1080 GPUs. Among all models, it takes at
most 742.43 seconds to finish one epoch. Based on our tuning,
the appropriate hyperparameters for competitors are shown in
Table III. We verify two models (k=96, depth=41, init-nf=32
and k=108, depth=41, init-nf=32), each of which consists of
three blocks and "init-nf" means the number of features in the
first layer of each block. We run the proposed two models
five times and compute the mean and variance of errors.
Table III shows top-1 validation errors of all models, where
both proposed models achieve state-of-the-art performance.
Particularly, the proposed model at a high growth rate obtains
competitive accuracy over all the other models. One notable
thing is that given a target performance, the network of the
proposed topology uses three times fewer parameters than the
randomly wired network.

ImageNet dataset: The ImageNet dataset [64] consists
of 1.2 million images for training and 50, 000 images for
validation. No other augmentation techniques are employed
in our experiments. We follow the basic data augmentation
methods, as used in ShuffleNet, Randomly Wired Network,
DenseNet, ECANet, and SENet. For model configurations,
we follow those of DenseNet [12]. We set the batch size
as 156, the initial learning rate as 0.1, the weight decay as
0.0001, and the momentum as 0.9. In validation, we adopt the
standard 10-crop validation. To be fair, we compare our model
with others in the small size regime (< 10M parameters)
and regular size regime (∼ 20M parameters), respectively.
It takes the smaller model around 75 minutes and the larger
model around 90 minutes per epoch. We run the larger model
three times and the smaller model five times to compute the
average and variance of errors. Due to the computational
burden of searches, NAS-based models appear in the small
regime. Tables IV and V highlight the state-of-the-art results
achieved by the proposed model. Regarding the small size

regime, despite a moderately higher model complexity, the
proposed model achieves a performance superior or similar to
those of other advanced models. Very favorably, our model is
designed based on theoretical analyses. Compared to NAS, our
model is free of computationally expensive searches. While for
the regular model regime, our model is comparable to other
advanced models.

TABLE IV
THE TOP-1 ERROR (%) COMPARISONS IN SMALL MODEL REGIME ON

IMAGENET VALIDATION SET.

Network params Error(%)
MobileNetV2 (2018) [55] 6.9M 25.3
ShuffleNet (2018) [65] 5.4M 26.3
NASNet-B (2018) [66] 5.3M 27.2
NASNet-C (2018) [66] 4.9M 27.5
Amoeba-A (2018) [67] 5.1M 25.5
Amoeba-B (2018) [67] 5.3M 26.0
PNAS (2018) [68] 5.1M 25.8
DARTS (2019) [69] 4.9M 26.9
FBNet-A (2019) [70] 4.3M 27.0
RandWire-WS (2019) [62] 5.6M 25.3 ± 0.25
RegNetX-600MF (2020) [71] 6.2M 25.9 ± 0.03
DeiT-Ti (2020) [72] 5.0M 25.4
Proposed (k=96, depth=45) 9.4M 25.2 ± 0.07

The errors of compared models are reported by the official implementation.

TABLE V
THE TOP-1 ERROR (%) COMPARISONS IN REGULAR MODEL REGIME ON

IMAGENET VALIDATION SET.

Network params Error(%)
SENet (2018) [59] 26.8M 23.3
ACNet (2019) [73] 19.8M 23.8
DenseNAS-R2 (2020) [74] 19.5M 24.2
ECA-Net (2020) [75] 24.4M 22.5
Proposed (k=180, depth=41) 27.9M 22.9 ± 0.06

The errors of compared models are reported by the official implementation.

C. Interpretability

Interpretability is a fundamental problem for the develop-
ment of deep learning [76], [77]. Here, we also show the
superior interpretability of the proposed model in terms of
the saliency map.

Saliency map: Currently, saliency methods deriving a
saliency map by identifying relevance between features and
the prediction of a model are the mainstream interpretability
methods [78]. A myriad of saliency methods are based on gra-
dients [76], the idea of which is that the strength of gradients
can mirror the extent of how a feature can affect model output.
As we know, shortcuts can facilitate training by alleviating
gradient explosion and vanishing issues. The mechanism is
that shortcuts provide additional paths for straightforward
gradient propagation, improving the quality of saliency maps.
In the proposed topology, shortcuts directly connect the final
layer with all the prior layers, thereby conveying gradients
among them. Meanwhile, the proposed topology can general-
ize, ignoring pixels from the input not located in the object that
influences the image label, improving saliency maps as well.
Integrating these two aspects, the saliency map of the proposed
topology should be more accurate and sharper relative to the
network without shortcuts.
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Fig. 7. Saliency maps of different models by the FullGrad method. Visually,
regarding four images, saliency maps of the proposed model are sharper and
their brightest points more conform to the objects.
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Fig. 8. Dice scores between the segmentation of an object and a saliency
map as a function of the percentile. The segmentation of a saliency map is
obtained by setting the q-percentile brightest pixels as one and the rest as
zero.

We use the FullGrad method [79] to derive saliency maps
because it can satisfy two characteristics (dependence and
completeness) that the community has deemed important,
while other classic methods such as SmoothGrad [80], Inte-
gratedGrad [81], and so on cannot. Dependence describes that
a feature is important if it can substantially affect the model
output, while completeness is that the individual saliency
scores must add up to the model output, which ensures that the
total relevance corresponds to the extent of what is detected
by a model. We compare our model with classic deep learning

models: VGG19 [10] and SqueezeNet [82]. Both models have
no shortcuts. We have obtained three our models from three
runs in the ImageNet experiments in the regular model regime.
VGG19 and SqueezeNet are straightforwardly obtained from
the PyTorch library.

TABLE VI
THE MEAN DICE SCORES OF DIFFERENT MODELS FOR 30 IMAGES

BETWEEN SALIENCY MAPS AND SEGMENTATION. THE SEGMENTATION IS
OBTAINED BY REMOVING THE BACKGROUND FROM AN IMAGE.

Network Dice Score
VGG19 0.609

SqueezeNet 0.586
Proposed(1st run) 0.630
Proposed(2nd run) 0.629
Proposed(3rd run) 0.627

Proposed(mean±std) 0.6287±0.0015

Saliency maps for four randomly selected ImageNet images
from different models are shown in Figure 7. Visually, for all
images, the saliency maps of the proposed model are sharper,
and the brightest points more tightly conform to the objects,
compared to VGG19 and SqueezeNet. In addition, we also
quantify the quality of saliency maps. First, we threshold the
saliency map by setting the q-percentile brightest pixels as
one and the rest as zero to get a segmentation map. Then, we
use the Dice score ( 2|X∩Y |X∪Y ) [83] between the segmentation
of an object and a saliency map to measure their similarity.
This metric by and large can reflect the sharpness and accu-
racy of a saliency map. The higher the score is, the better
interpretability a model has. The obtained segmentation and
saliency maps are put in Part C of supplementary materials for
conciseness. Figure 8 shows the Dice scores for four objects
concerning different percentiles and models. The percentile
range is from top-1% to top-20% with a step of 1%. We
find that the proposed model achieves the highest Dice scores
over common-newt, brambling, and quail images. For the corn
image, the proposed model is comparable to VGG19 but much
better than SqueezeNet.

Furthermore, we make a dataset comprising 30 images
and their segmentation maps, by randomly selecting images
from the ImageNet validation set and manually removing their
background. For each pair, we record the maximum Dice
score associated with a certain percentile. The mean Dice
scores for 30 images are shown in Table VI. The detailed
Dice scores for each image are summarized in Table I of Part
D in supplementary materials. There are two highlights from
Table VI. First, the Dice scores of our models surpass those of
competitors with a considerable margin, which implies that the
saliency maps generated by our model are of higher quality
than those of competitors. The second highlight is that our
model results are pretty consistent with one another, where
the variance among models is only 0.0015. To highlight the
improvements made by the proposed model, we conduct the
paired t-test between the proposed model and the competitor.
The null hypothesis is that the pairwise difference in Dice
scores between two models has a mean equal to zero. The test
decisions for all pairs are shown in Table II in Appendix C),
where all decisions reject the null hypothesis at the default 5%
significance level. This suggests that the improvement by our
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model is significant.

VI. DISCUSSION

In [84], it was demonstrated that the ResNet topology is also
intrinsically the densely connected topology. Suppose Xl =
Hl(Rl−1), which is the output of the lth layer, and R0 = X0,

Xl = Hl(Rl−1) = Hl(Hl−1(Rl−2) +Rl−2)

= Hl(Hl−1(Rl−2) +Hl−2(Rl−3) +Rl−3)

= Hl(

l−1∑
i=0

Hi(Ri−1) +R0)

= Hl(

l−1∑
i=0

Xi +X0)

= Hl(X0 +X1 + · · ·+Xl−1).

(35)

Therefore, our theoretical results on the densely connected
topology can be somehow extended to the ResNet topology.

In [29], ResNet is interpreted as an ensemble of many paths
of different lengths, and an ablation study shows that deleting
a single layer does not affect the performance significantly.
In light of ensemble behavior, as shown in Figure 9, given
the depth L, there are 2L implicit paths connecting the input
and output in ResNet, while for the proposed network, the
number of implicit paths is L + 1. Furthermore, in ResNet,
every layer has an equal chance of being passed or not passed.
However, implicit paths of the proposed topology pass earlier
layers more than later layers. For example, in Figure 9(b), only
one path connects H2, but three paths connect H0. We conduct
the ablation study on the proposed network with k=180 and
depth = 41 from Table V. We set the outputs of the first and
fifth layers of each block as zeros respectively and examine
the performance of the network on the test set. Because we
have obtained three models from repetitive experiments, the
ablation is repeated three times. The results are shown in Table
VII. We can see that undoing the first layer of each block has
a significant impact, which causes only 31.84% accuracy. In
contrast, the model with the fifth layer of each block being
undone still has the classification accuracy of 61.91%.

𝑯𝟎 𝑯𝟏 𝑯𝟐
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𝑯𝟏

(a)

(b)

Fig. 9. (a) ResNet and its unraveled view; (b) the proposed topology and
its unraveled view. The operation at the joints of black lines is summation.

TABLE VII
PERFORMANCE BY UNDOING DIFFERENT LAYERS IN THE PROPOSED
MODEL TO MANIFEST THE RELATIVE IMPORTANCE OF EACH LAYER

Original Undo Layer 1 Undo Layer 5
Accuracy (%) 77.1± 0.06 31.84± 1.81 61.91± 5.52

VII. CONCLUSION

In this study, we have theoretically demonstrated the ex-
pressivity and generalizability of skip connections in deep
learning, with an emphasis on the proposed topology. Then,
we have performed comprehensive prediction and classifi-
cation experiments to corroborate our theoretical findings
that the networks of the proposed topology enjoy good ex-
pressivity and generalizability. Furthermore, we have also
shown that the proposed model embraces improved in-
terpretability in terms of saliency maps and layer im-
portance. We have shared our code and prepared images
in https://github.com/FengleiFan/SparseShortcutTopology. Fu-
ture research directions can be put into exploring the utility of
network equivalency in neural architecture search studies.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on audio, speech, and language processing, vol. 20,
no. 1, pp. 30–42, 2011.

[3] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in International
conference on machine learning, pp. 1378–1387, PMLR, 2016.

[4] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and
G. Wang, “Low-dose ct with a residual encoder-decoder convolutional
neural network,” IEEE transactions on medical imaging, vol. 36, no. 12,
pp. 2524–2535, 2017.

[5] G. Wang, “A perspective on deep imaging,” Ieee Access, vol. 4,
pp. 8914–8924, 2016.

[6] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and
S. Mougiakakou, “Lung pattern classification for interstitial lung dis-
eases using a deep convolutional neural network,” IEEE transactions on
medical imaging, vol. 35, no. 5, pp. 1207–1216, 2016.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2818–
2826, 2016.

[9] M. Lin, Q. Chen, and S. Yan, “Network in network,” International
Conference on Learning Representations, 2014.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[13] X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, “Fast, accurate and
lightweight super-resolution with neural architecture search,” arXiv
preprint arXiv:1901.07261, 2019.

[14] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns
for object segmentation and fine-grained localization,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 447–456, 2015.



FAN et al.: ON A SPARSE SHORTCUT TOPOLOGY OF ARTIFICIAL NEURAL NETWORKS 13

[15] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39,
no. 12, pp. 2481–2495, 2017.

[16] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Proceedings of the 28th International Conference on
Neural Information Processing Systems-Volume 2, pp. 2377–2385, 2015.

[17] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep
neural networks without residuals,” International Conference on Learn-
ing Representations, 2017.

[18] K.-I. Funahashi, “On the approximate realization of continuous map-
pings by neural networks,” Neural networks, vol. 2, no. 3, pp. 183–192,
1989.

[19] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[20] L. Szymanski and B. McCane, “Deep networks are effective encoders
of periodicity,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 10, pp. 1816–1827, 2014.

[21] D. Rolnick and M. Tegmark, “The power of deeper networks for
expressing natural functions,” International Conference on Learning
Representations, 2018.

[22] H. N. Mhaskar and T. Poggio, “Deep vs. shallow networks: An approx-
imation theory perspective,” Analysis and Applications, vol. 14, no. 06,
pp. 829–848, 2016.

[23] R. Eldan and O. Shamir, “The power of depth for feedforward neural
networks,” in Conference on learning theory, pp. 907–940, PMLR, 2016.

[24] S. Liang and R. Srikant, “Why deep neural networks for function approx-
imation?,” in International Conference on Learning Representations,
2017.

[25] V. Tikhomirov, “On the representation of continuous functions of several
variables as superpositions of continuous functions of one variable and
addition,” in Selected Works of AN Kolmogorov, pp. 383–387, Springer,
1991.

[26] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of
neural networks: a view from the width,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems,
pp. 6232–6240, 2017.

[27] F. Fan, J. Xiong, and G. Wang, “Universal approximation with quadratic
deep networks,” Neural Networks, vol. 124, pp. 383–392, 2020.

[28] H. Lin and S. Jegelka, “Resnet with one-neuron hidden layers is a
universal approximator,” Advances in Neural Information Processing
Systems, vol. 31, pp. 6169–6178, 2018.

[29] A. Veit, M. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
pp. 550–558, 2016.

[30] T. L. Liu, M. Chen, M. Zhou, S. Du, E. Zhou, and T. Zhao, “Towards
understanding the importance of shortcut connections in residual net-
works,” Advances in neural information processing systems, 2019.

[31] F. He, T. Liu, and D. Tao, “Why resnet works? residuals generalize.,”
IEEE transactions on neural networks and learning systems, vol. 31,
pp. 5349–5362, 2020.

[32] E. Kang, H. J. Koo, D. H. Yang, J. B. Seo, and J. C. Ye, “Cycle-
consistent adversarial denoising network for multiphase coronary ct
angiography,” Medical physics, vol. 46, no. 2, pp. 550–562, 2019.

[33] C. You, G. Li, Y. Zhang, X. Zhang, H. Shan, M. Li, S. Ju, Z. Zhao,
Z. Zhang, W. Cong, et al., “Ct super-resolution gan constrained by
the identical, residual, and cycle learning ensemble (gan-circle),” IEEE
transactions on medical imaging, vol. 39, no. 1, pp. 188–203, 2019.

[34] B. Hamann and J.-L. Chen, “Data point selection for piecewise linear
curve approximation,” Computer Aided Geometric Design, vol. 11, no. 3,
pp. 289–301, 1994.

[35] L. Zhu, R. Deng, M. Maire, Z. Deng, G. Mori, and P. Tan, “Sparsely
aggregated convolutional networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 186–201, 2018.

[36] J. Schmidt-Hieber, “The kolmogorov–arnold representation theorem
revisited,” Neural Networks, vol. 137, pp. 119–126, 2021.

[37] P. L. Bartlett, D. J. Foster, and M. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” in Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, pp. 6241–
6250, 2017.

[38] B. Neyshabur, R. Tomioka, and N. Srebro, “Norm-based capacity control
in neural networks,” in Conference on Learning Theory, pp. 1376–1401,
PMLR, 2015.

[39] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A pac-bayesian approach
to spectrally-normalized margin bounds for neural networks,” in Inter-
national Conference on Learning Representations, 2018.

[40] L. Wu, C. Ma, and W. E, “How sgd selects the global minima
in over-parameterized learning: A dynamical stability perspective,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 8289–8298, 2018.

[41] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” arXiv
preprint arXiv:1811.04918, 2018.

[42] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz, “Sgd
learns over-parameterized networks that provably generalize on linearly
separable data,” in International Conference on Learning Representa-
tions, 2018.

[43] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “The
role of over-parametrization in generalization of neural networks,” in
International Conference on Learning Representations, 2018.

[44] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,” in
International Conference on Learning Representations, 2019.

[45] V. Vovk, “Kernel ridge regression,” in Empirical inference, pp. 105–116,
Springer, 2013.

[46] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Advances in neural
information processing systems, pp. 8571–8580, 2018.

[47] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang,
“On exact computation with an infinitely wide neural net,” in Advances
in Neural Information Processing Systems, pp. 8141–8150, 2019.

[48] D. Harrison Jr and D. L. Rubinfeld, “Hedonic housing prices and
the demand for clean air,” Journal of environmental economics and
management, vol. 5, no. 1, pp. 81–102, 1978.

[49] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning, pp. 448–456, PMLR, 2015.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[51] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European conference on computer
vision, pp. 646–661, Springer, 2016.

[52] Z. Huang, S. Liang, M. Liang, and H. Yang, “Dianet: Dense-and-implicit
attention network.,” in AAAI, pp. 4206–4214, 2020.

[53] H. Kabir, M. Abdar, S. M. J. Jalali, A. Khosravi, A. F. Atiya, S. Naha-
vandi, and D. Srinivasan, “Spinalnet: Deep neural network with gradual
input,” arXiv preprint arXiv:2007.03347, 2020.

[54] G. Franchi, A. Bursuc, E. Aldea, S. Dubuisson, and I. Bloch, “Encoding
the latent posterior of bayesian neural networks for uncertainty quantifi-
cation,” arXiv preprint arXiv:2012.02818, 2020.

[55] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 4510–4520, 2018.

[56] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning, pp. 6105–6114, PMLR, 2019.

[57] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and
J. Feng, “Drop an octave: Reducing spatial redundancy in convolutional
neural networks with octave convolution,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 3435–3444, 2019.

[58] I. Bello, “Lambdanetworks: Modeling long-range interactions without
attention,” in International Conference on Learning Representations,
2020.

[59] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7132–7141, 2018.

[60] Y. Li, Z. Kuang, Y. Chen, and W. Zhang, “Data-driven neuron allocation
for scale aggregation networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 11526–11534, 2019.

[61] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet:
More features from cheap operations,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1580–
1589, 2020.

[62] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired
neural networks for image recognition,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 1284–1293, 2019.



14 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. XX, NO. X, NOV. 2021

[63] I. Bello, “Lambdanetworks: Modeling long-range interactions without
attention,” in Submitted to International Conference on Learning Rep-
resentations, 2021. under review.

[64] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

[65] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 6848–6856, 2018.

[66] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8697–8710,
2018.

[67] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, pp. 4780–4789, 2019.

[68] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision
(ECCV), pp. 19–34, 2018.

[69] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in International Conference on Learning Representations, 2018.

[70] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 10734–
10742, 2019.

[71] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10428–
10436, 2020.

[72] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International Conference on Machine Learning,
pp. 10347–10357, PMLR, 2021.

[73] G. Wang, K. Wang, and L. Lin, “Adaptively connected neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1781–1790, 2019.

[74] J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu, and X. Wang, “Densely
connected search space for more flexible neural architecture search,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10628–10637, 2020.

[75] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “Eca-net:
Efficient channel attention for deep convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11534–11542, 2020.

[76] F. Fan, J. Xiong, M. Li, and G. Wang, “On interpretability of artificial
neural networks: A survey,” arXiv preprint arXiv:2001.02522, 2020.

[77] B.-J. Hou and Z.-H. Zhou, “Learning with interpretable structure from
gated rnn,” IEEE transactions on neural networks and learning systems,
vol. 31, no. 7, pp. 2267–2279, 2020.

[78] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al.,
“Explainable artificial intelligence (xai): Concepts, taxonomies, opportu-
nities and challenges toward responsible ai,” Information Fusion, vol. 58,
pp. 82–115, 2020.

[79] S. Srinivas and F. Fleuret, “Full-gradient representation for neural
network visualization,” in Advances in Neural Information Processing
Systems, pp. 4124–4133, 2019.

[80] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smooth-
grad: removing noise by adding noise,” International conference on
machine learning, 2017.

[81] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” International conference on machine learning, 2017.

[82] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” International Conference on
Learning Representations, 2017.

[83] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[84] W. Wang, X. Li, T. Lu, and J. Yang, “Mixed link networks,” in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pp. 2819–2825, 2018.


	I INTRODUCTION
	II RELATED WORK
	III EXPRESSIVITY
	III-A Univariate continuous function approximation
	III-B Width-bounded universal approximator
	III-C A family of networks

	IV GENERALIZATION BOUND ANALYSIS
	V EXPERIMENTS
	V-A Expressivity
	V-B Generalizability
	V-C Interpretability

	VI DISCUSSION
	VII CONCLUSION
	References

