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Abstract—The use of deep neural networks (DNNs) in medical
images has enabled the development of solutions characterized by
the need of leveraging information coming from multiple sources,
raising the Multimodal Deep Learning. DNNs are known for their
ability to provide hierarchical and high-level representations of
input data. This capability has led to the introduction of methods
performing data fusion at an intermediate level, preserving the
distinctiveness of the heterogeneous sources in modality-specific
paths, while learning the way to define an effective combination
in a shared representation. However, modeling the intricate
relationships between different data remains an open issue. In
this paper, we aim to improve the integration of data coming
from multiple sources. We introduce between layers belonging to
different modality-specific paths a Transfer Module (TM) able to
perform the cross-modality calibration of the extracted features,
reducing the effects of the less discriminative ones. As case of
study, we focus on the axillary lymph nodes metastasis evaluation
in malignant breast cancer, a crucial prognostic factor, affecting
patient’s survival. We propose a Multi-Input Single-Output 3D
Convolutional Neural Network (CNN) that considers both images
acquired with multiparametric Magnetic Resonance and clinical
information. In particular, we assess the proposed methodology
using four architectures, namely BasicNet and three ResNet
variants, showing the improvement of the performance obtained
by including the TM in the network configuration. Our results
achieve up to 90% and 87% of accuracy and Area under ROC
curve, respectively when the ResNet10 is considered, surpassing
various fusion strategies proposed in the literature.

Impact Statement—In the context of breast cancer, the
metastatic involvement of axillary lymph nodes (ALN) stands out
as a crucial prognostic factor, reflecting the intrinsic behavior
of the primary tumor. Multiparametric Magnetic Resonance
Imaging (MRI) enables a comprehensive examination, providing
both physiological and morphological characteristics through
sequences involving pre-contrast and post-contrast agent ad-
ministration. This highlights the necessity of integrating diverse
information, particularly when considering histological data in
conjunction with images. However, current state-of-art solutions
typically exploit features extracted from the post-contrast series,
neglecting the use of the others. The methodology presented
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in this paper harnesses Multimodal Deep Learning (MDL) to
overcome this limitation, efficiently integrating clinical informa-
tion and features from multiple image modalities. Demonstrating
an accuracy of 90% in the metastatic evaluation of ALN, our
algorithm has the potential to support radiologists in their daily
analysis of breast MRI.

Index Terms—Axillary lymph node, Brest Cancer, Convolu-
tional Neural Networks, Cross-modality Calibration, Medical
imaging analysis, Multimodal Deep Leaning

I. INTRODUCTION

Artificial Intelligence (AI) has been applied in medical
image analysis with very promising results. Its use provides
an efficient way of finding non-invasive and quantitative as-
sessments of diseases, highlighting pattern changes or intrin-
sic characteristics hidden from the human eye, and offering
the opportunity to better understand disease processes [1].
Radiomics is one of the most advanced applications for AI
in medical imaging. Initially, it extracts a large amount of
quantitative, reproducible information, called features from
medical images [2] which may reflect the pathophysiology of
the analyzed tissues. Then, after a careful features selection
step, it uses Machine Learning (ML) models to provide tools
to predict different outcomes all with predictive horizons.
Recently, Deep Learning (DL) approaches have improved the
handcrafted pipeline by automatically learning from images
the set of features that well fits the specific task to solve. A key
role is played by Convolutional Neural Networks (CNNs), a set
of Deep Neural Networks (DNNs) commonly applied in image
processing, for their ability to capture spatial dependencies.
The use of DNNs has also enabled the development of DL-
based solutions in medical applications characterized by the
need of leveraging information coming from multimodal data
sources [3], raising the Multimodal Deep Learning (MDL) [4],
[5], [6]. Despite the presence of techniques to perform the
integration at data-level (early fusion) or decision level (late
fusion), the characteristic of the DNNs to transform raw inputs
into hierarchical and higher-level representations has encour-
aged the implementation of methods that integrate information
at an intermediate stage. These methods aim to preserve the
distinctiveness characteristics of the heterogeneous sources,
while providing an effective way for their combination. To
this end, the intermediate fusion (IF) technique represents a
very flexible approach merging in shared representations units
coming from multiple modality-specific paths [4], namely,
modality-specific DNNs. Since in DL approaches it is possible
to implement end-to-end training, the resulting architecture
autonomously learns the shared representation well-suited for
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the given task. However, the effectiveness of the integration
of multiple modalities depends on the ability to accurately
account for the intricate relationships between data obtained
from diverse sources. Different data-acquisition methods may
highlight features that are not equally important, which re-
quires reducing the impact of unnecessary information and
reinforcing relevant patterns.

In this paper, we leverage the flexibility of the IF approach,
proposing an innovative Transfer Module (TM) to model
the complex interaction of multiple sources. When inserted
between layers belonging to the different modality-specific
DNNs, the TM acts on the extracted features maps and
performs the cross-modality calibration taking into account the
complementary nature of the inputs. The implemented gating
mechanism autonomously highlights the effects of the most
discriminative characteristics while reducing the less useful
ones. The result is a module that improves the IF strategy
considering the inherent relationships between heterogeneous
data sources before their combination.

We consider the axillary lymph node status (ALNS) as-
sessment in breast cancer (BC) as a case of study, since it
represents one of the most important independent prognostic
factors, affecting patients’ survival. Currently, the radiolo-
gists who are faced with the evaluation of the axilla are
led to consider some characteristics of the primary tumor
itself, whose intrinsic behavior, morphology, and angioinva-
sivity reflect the metastatic involvement of the axillary lymph
node. They rely on the multiparametric Magnetic Resonance
Imaging (MRI), always performed for primary BC stage
definition [7], [8], [9], together with histological examina-
tion resulting from core-biopsy or surgery. Pre-contrast, such
as T2-weighted (T2) and Diffusion weighted (DWI), and
post-contrast agent administration image sequences, such as
the Dynamic-Contrast Enhanced (DCE), highlight useful and
complementary information for tumor evaluation [7], [10],
[11], [12], [13], such as morphology and associated edema,
tissue organization at the microscopic level and perfusional
behavior. This makes the ALNS multimodal by its nature,
especially in addition with the histological data. The majority
of work in the literature have exploited handcrafted features
[14] computed from DCE images and shallow ML algorithms,
neglecting the use of the other MRI sequences. Conversely,
in this paper, we aim to include the complementary infor-
mation provided by multiparametric MRI and histological
examination. In particular, we consider image acquisitions and
histological data as specific input modalities, since each source
provides a different perspective of the same disease. As a
consequence, the multimodal evaluation of the primary BC
for ALNS assessment becomes an interesting case of study
for our proposal, including three MRI sequences (DCE, T2,
and DWI), and clinical and histological characteristics of the
primary tumor. It is worth noting that, although we assess
the proposed methodology in a case of study involving a
multiparametric MRI, there is nothing preventing the use of the
TM in scenarios exploiting heterogeneous acquisition tools.

The rest of the paper is organized as follows: Section II
introduces the main concepts of multimodal learning while
Section III describes the radiomic-based approaches proposed

in the literature for ALNs evaluation; Section IV reports the
proposed methodology with the Transfer Module; Section V
details the involved dataset; Section VI describes the experi-
mental setup; Section VII discusses the obtained results; finally
Section VIII provides some conclusions.

II. MULTIMODAL DEEP LEARNING

The presence of multiple sources allows a deeper under-
standing of the system under analysis, improving the decision-
making process, and identifying the existent relations between
data modalities [15]. Despite the potential benefits, how to
exploit diverse information is still a challenging task [16], [17],
[18]. Data modalities reflect the inherent characteristics of
the heterogeneous and complex acquisition tools, making the
diversity of the sources the key aspect for complete knowledge,
but, at the same time, one of the main complexities to manage
[16], due to conflicts and inconsistencies that may occur [18].
The presence of multiple sources requires the introduction
of approaches able to preserve the distinctiveness of each
modality while providing efficient fusion methods [16].

Multimodal Deep Learning (MDL) exploits DL techniques
to implement methods allowing the fusion of complementary
information coming from heterogeneous sources. Deep neural
networks aim to learn high-level representations of the input
data, from simple to complex abstractions, making MDL able
to model nonlinear relationships between modalities [17].
Among all deep neural networks, CNNs are widely used in
medical imaging with surprising results [19], [20]. A typical
CNN consists of stacked relatively complex layers [21], with
each of them usually having a convolutional stage, a non-
linearity function (i.e., ReLU), and a pooling operation. The
set of complex layers constitutes the Convolutional Core
(Conv-C), responsible for the features extraction step, while
the classification is performed by a Classification Core (CC),
typically including fully connected layers.

In recent years, several data fusion techniques have been
investigated in the research community [6], [22], [23], [5]
resulting in three main categories: early fusion or data-level,
late fusion or decision-level, intermediate or joint fusion.

Early fusion consists of the integration of different and
heterogeneous sources of data in a single structure that is
then used as input to a learning model. In the case of
medical image analysis using CNNs, the simplest strategy
involves concatenating the acquisitions in a single volume
[24]. However, the inherent characteristics of each imaging
modality, such as different resolutions or sampling times, may
make the creation of a single structure very complex [4],
[16], causing the early fusion not fully take into account the
complementary nature of the images, generating vectors with
redundancy.

Late fusion integrates the decision from different models,
each trained on a specific image modality. In other words,
this technique combines the decision of independent ”experts”,
exploiting the fact that errors from multiple models should
be uncorrelated. There are different combining strategies such
as majority voting, averaged fusion, Bayes’rule, or those
exploiting the use of a meta-model [4].
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Intermediate fusion (IF) leverages the ability of DNNs to
transform raw inputs into higher-level representations, aiming
to create a shared representation [4], [16]. In a basic IF
approach, the features maps extracted from Conv-Cs related
to different image modalities (modality-specific paths) are
merged into a single structure before feeding the CC, as shown
in Figure 1, where the symbols ⃝ represents a generic fusion
operation.

Fig. 1: Basic schema for Intermediate Fusion approach: j is a
generic image modality, with j from 1 to M , representing the
number of modalities; ConvCj is the Conv-C of the modality
j; and Li

j indicates the i − th layer in the ConvCj with i

from 1 to Nj that is the number of layers in ConvCj ; FNj

j

is the resulting image-specific features map for each Conv-C

Let j be one of the M modalities, ConvCj be the Conv-C
of the modality j, and Li

j indicate the ith layer in ConvCj ,
with i ranging in [1, Nj ], where Nj that is the number of
layers in ConvCj . Denoting with xj the input image, the
resulting image-specific features map F

Nj

j for each modality
is formalized as follows:

F
Nj

j = ConvCj(xj) = L
Nj

j (...Li
j(...L

2
j (L

1
j (xj))...)...) (1)

The fusion operation ⃝ processes the extracted features maps
F

Nj

j , resulting in

Fimg = [FN1
1 ⃝ FN2

2 ...⃝ F
Nj

j ...⃝ FNM

M ] (2)

where Fimg is the shared features map, that represents the
input for the shared path, specified by the Ls block in Figure 1,
and the classification core. In the literature, common strategies
to implement ⃝ include the concatenation (⌢), the element-
wise summation (+) and product (×), combinations of these
operations [17], other functions such as Kronecker product
[25], [26], or more complex methods consisting in tensor-
based operations or attention mechanisms [27]. Equation 1
highlights that each image-specific features map is computed
by only considering a single modality. As a consequence, the
complementary information coming from different sources is
exploited after the fusion operation (⃝) reported in Equation
2, without affecting the features extraction process. During

the training phase, the loss is back-propagated to all the
convolutional cores so that the CNNs can provide a shared
representation that is well-suited to the task to be solved.

It is not easy to understand when the modality-specific
representation should be merged into a shared representation.
In the literature, while different solutions proposed a single
fusion layer, several approaches [28], [29] implement a gradual
fusion strategy. The choice of which modality to fuse at which
depth of representation can be very challenging, especially
in cases where more than two sources are present. In [30]
authors proposed a search algorithm called Multimodal Fusion
Architecture Search spanning different fusion architectures.
The search time depends on the size of the space to be
analyzed together with the dimension of the dataset and the
complexity of the involved networks. This makes hardware
with multiple Graphics Processing Units necessary and limits
the applicability of the strategy in diverse scenarios. Moreover,
different works in the literature [31], [32] create rich repre-
sentations concatenating the features maps extracted from the
involved CNNs, without taking into account the dependency
and the correlation of the extracted features.

The effectiveness of the integration of multiple modalities
is affected by the ability to model the complex interactions
of data coming from heterogeneous sources [18]. Indeed,
different acquisition tools may reveal characteristics that are
not equally useful for the specific task to be solved, resulting
in the need to reduce the contribution of superfluous or
redundant information while enhancing the important patterns
[18]. The methodology reported in [33] aims to further in-
tensify the dependency of the modality-specific paths, with
the proposal of a Multimodal Transfer Module (MMTM).
When inserted between layers belonging to the sub-networks
of different sources, the MMTM improves the integration of
the features maps, emphasizing the most important features
while suppressing the contribution of the less important ones
through an excitation process inspired by [34]. In [35], au-
thors proposed a framework for multimodal image synthesis,
artificially producing the missing modality for each patient.
To exploit the relation between different acquisition tools a
Mixed Fusion Block (MFB), an adaptive module designed
to integrate heterogeneous information, is proposed. Finally,
the methodology described in [36] introduced a Correlation-
based Attention Feature Fusion (CAFF) module that is inserted
in a neural network to modify the extracted features maps
exploiting the correlation among channels.

Taking into account the need of providing an efficient
integration of heterogeneous sources, the contributions of our
work in the definition of an IF strategy can be summarised as
follows:

• We propose an innovative Transfer Module (TM) that
can be inserted between layers belonging to different
modality-specific paths to model the complex interaction
of heterogeneous data.

• We make our TM able to modify the extracted features
maps in each modality-specific path taking into account
the complementary nature of the inputs. We will refer to
this procedure as cross-modality calibration.

• We implement in the TM a specific operation, denoted
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as gating mechanism, that reduces the importance of
the least discriminative characteristics in each modality-
specific features maps exploiting the descriptors of all the
inputs.

• We include the TM in the training process, making the
definition of the most relevant features well-suited for the
specific task to solve.

III. RADIOMIC-BASED APPROACHES FOR ALN
EVALUATION

The application of radiomics for axillary lymph node status
prediction from primary tumor is relatively recent, resulting
in a small number of papers in the literature [14], which are
highly heterogeneous in terms of features extraction/selection
and trained classifiers. Most of the proposals extract hand-
crafted features considering morphological [37], [38], [39],
[40], [41], [42], [43], [44], first-order [40], [41], [42], [45],
[44], and textural characteristics [37], [40], [41], [43], [46],
[39], [45], [47], [44]. To predict ALN metastasis, several
solutions consider shallow learners such as Support Vector
Machines [40], [41], [42], [37], [48], [44], Logistic Regression
[43], [46], [47], Linear Discriminant Analysis [38], [39] and
Random Forest [45], [49], [50]. It is interesting to note that
there is an almost exclusive use of the post-contrast sequence,
that is the DCE, representing the most sensitive imaging
modality in comparison to the T2 and DWI acquisitions [51].
However, in the cases where the pre-contrast volumes are
also used, the solutions get better performance [52], [13]. As
a consequence, recent works started to propose multimodal
approaches exploiting multiparametric MRI data. For example,
authors in [42], [38] extracted handcrafted features from DCE,
T2, and DWI sequences, while the methodology in [44]
also added the Positron Emission Tomography (PET) in the
analysis.

The application of DL to ALN evaluation is relatively
recent, with only a few works using MR images of the primary
tumor. In particular, Gao et al. [53] evaluated DCE-MRI of
941 patients and proposed a model containing a 3D Deep
residual network (ResNet) architecture and a convolutional
block attention module, showing values of area under the ROC
curve (AUC) equal to 90.7% and 85.2% in the internal and
test cohorts, respectively. Similarly, the solution proposed in
[54] involved the fine-tuning of ResNet18 [55], considering
the cross-sectional slice with the largest portion of primary
lesion as input. Moreover, in our previous work [56], [57], we
investigated the role of the tissue surrounding the tumor area,
proposing different bounding options. The classification is
performed by CNNs, obtaining 74% of sensitivity in a dataset
with 153 BC patients. More recently, Zhou et al. [58] proposed
an ensemble of three state-of-art networks (ResNet101 [55],
DenseNet [59], and ResNetXt101 [60]) for the ALN metastasis
prediction in DCE-MRI, obtaining a value of AUC equal to
91.7% in the external test set.
The first attempt to exploit heterogeneous sources of data is
proposed in [61] by Nguyen et al. who studied the preoperative
DCE MRI of 357 patients from two hospitals. The authors in
[61] implement 2D, 3D, and 4D CNNs that integrate histolog-
ical information of the primary tumor to prevent lymph node

metastases, achieving values of sensitivity and AUC equal to
72% and 71% respectively. Then, the presence of different
sequences in the multiparametric MRI has prompted recent
works in investigating DL-based approaches that consider
both pre and post-contrast sequences. In particular, Chen et
al. [62] used the ResNet50 [55] pre-trained on ImageNet
[63] to extract features from the second and fourth post-
contrast volumes, the DWI sequence and the Apparent dif-
fusion coefficient (ADC) map, performing the prediction with
the Logistic Regression. Moreover, authors in [64] leveraged
the DCE, T2, and DWI acquisitions, fine-tuning a ResNet50
[55] architecture for each data modality and then aggregating
the predictions with a weighted voting rule. Similarly, Wang et
al. [65] considered the pre-contrast T1, T2, and DWI volumes,
adopting the Support Vector Machines model as meta-learner
for the aggregation of the results.

It is worth noting that, to the best of our knowledge, the
solution in [61] represents the first work in the literature
exploiting the IF strategy and integrating in the CNN archi-
tecture one image modality, that is the DCE sequence, and
the histological information of the primary tumor. Although
other approaches [62], [64], [65] consider different MRI ac-
quisitions, they extract features from each modality separately,
thus implementing methods based on EF and LF strategies in
the case of [62] and [64], [65] respectively.

Taking these aspects into consideration, the contributions of
our work for ALN metastasis prediction from primary tumor
analysis can be summarised as follows:

• We propose an innovative IF strategy that integrates
histological information of the primary tumor, patients’
clinical data, and multiparametric MRI (DCE, T2, and
DWI sequences) and is able to provide a shared data
representation well suited for the specific task to solve.

• We rely on Multi-Input Single-Output 3D CNN archi-
tectures to exploit the volumetric and complementary
characteristics of the primary tumor.

• We enhance the integration of heterogeneous data by
introducing in the IF strategy a Transfer Module that
highlights the most discriminative features.

IV. TRANSFER MODULE (TM)

Among all MDL fusion techniques, the intermediate fusion
is the most flexible solution. It exploits the layers in a deep-
based architecture and enables the integration of the learned
representations at various levels of abstraction [4], overcoming
the limitation of the early fusion method where the shared data
structure is determined before the use of a model. Moreover,
in contrast to the late fusion, in IF, the heterogeneous sources
simultaneously contribute to the decision, avoiding the imple-
mentation of a final decision step. However, the combination
of the extracted features is still challenging due to the intrinsic
characteristics of the different sources [16], [18].

In this section, we now introduce our Transfer Module
(TM). It improves the integration of heterogeneous modalities,
making the specific-modality paths influence each other while
extracting the features maps. In particular, TM is able to
perform a cross-modality calibration by taking into account
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the complementary nature of the inputs. In particular, the
gating mechanism reduces the importance of the least discrim-
inative characteristics in each modality-specific features maps,
exploiting the descriptors of all the inputs, and thus allowing
them to influence each other during the training.

TM can be inserted between layers belonging to different
convolutional cores to take into account the complementary
characteristics of the images. Formally, for each modality j,
we denote the output of the Li

j as F i
j ∈ RXi

j×Y i
j ×Zi

j×Ci
j ,

where Xi
j×Y i

j ×Zi
j is the spatial dimension, while Cj

i is the
number of channels. The TM inserted in the layer i is a multi-
input multi-output module that considers as input M features
maps F i

j and provides M outputs F̃ i
j , corresponding to the

calibrated versions of the features maps, which are obtained
by applying the gating procedure. TM is organized in two
different steps, namely the shared vector computation and the
multimodal calibration, as shown in Figure 2.

Fig. 2: Architecture of the proposed TM module for three
different image modalities. The input consists of the features
maps coming from the modality-specific paths, that are further
processed by considering two steps acting in a pipeline,
namely the Shared vector computation and the Multimodal
calibarion. It is worth noting that the index i of the layer
in which the module is inserted is omitted to avoid overly
complex notation in the image.

The first computes the shared representation zis of the i −
th layer considering the vectors computed from the features
maps. The channel descriptor vector sij ∈ R1×Ci

j for each
features map is obtained by using a Global Average Pooling
operation [66] G(·), which provides a channel-wise descriptor
by computing the average value. This operation is formalized
as follows:

sij = G(F i
j ) ∈ R1×Ci

j (3)

In other words, the presence of the average operator makes all
elements belonging to the same channel equally contribute to
its characterization. The concatenation of all the sij make up
zi ∈ R1×Ci

as follows:

zi = [si1 ⌢ si2... ⌢ sij ⌢ siM ] (4)

where Ci =
∑M

j=1 C
i
j . Then, zi is further processed by

considering it as input for the fully connected layer fc,
followed by the ReLU function R(·):

zis = R(fc(z
i)) (5)

where zis ∈ R1×Ct

is the shared representation, Ct = Ci/r,
with r representing the reduction ratio, defined according to
the work proposed in [33]. The ReLU function makes the
TM able to model the complex and nonlinear map between
the elements of the input vector zi, consisting of descriptors
relating to the different image modalities.

The multimodal calibration uses the shared representation
zis to calibrate the features maps F i

j , thus exploiting informa-
tion coming from different data sources. zis is considered as
input for M fully connected layers fj , each for a specific
modality j. The sigmoid activation function σ(·) is used
to constraint the output in [0,1], resulting in M calibration
vectors cj ∈ R1×Ci

j , that aim to reduce the contribution of the
selected channels. This step is formalized as follows:

cj = σ(fj(z
i
s)) (6)

It is worth noting that the number of elements in cj corre-
sponds to the number of channels Ci

j of the features map of
the modality j (F i

j ) and each value of the calibration vector
represents the significance of the corresponding channel in
F i
j . As a consequence, the calibrated features maps F̃ i

j are
obtained by implementing a channel-wise product (⊙) between
the input F i

j and the corresponding cj , weighting each channel
of F i

j by its significance level:

F̃ i
j = cj ⊙ F i

j (7)

where F̃ i
j ∈ RXi

j×Y i
j ×Zi

j×Ci
j . This creates a gating mech-

anism, where the contribution of the filters selected by cj
is reduced. Moreover, the dependence of the M calibration
vectors on the shared representation zis, as reported in Equation
6, allows each F i

j to be influenced (calibrated) by the others
during the features extraction step.

In the Multimodal calibration step, we obtain a self-gating
mechanism, emphasizing the most informative characteristics
while suppressing the less useful ones. The implemented gat-
ing mechanism acts on the channels of the extracted features
maps, leveraging the shared representation to highlight in each
data source the characteristics that contribute the most to the
task under consideration. When it is inserted between the
i − th layers of the convolutional cores, each F̃ i

j is affected
by the other M − 1 modalities, allowing the integration of
information from the first levels of the network and enhancing
the modality-specific paths dependency.

V. MATERIALS

We retrospectively evaluated all the MRI examinations of
the breast performed at the Central Radiology Department of
Policlinico Umberto I, from January 2017 until January 2020
performed for tumor staging. A total of 153 subjects (average
age 55 years; range 30–85), with 155 malignant BC lesions,
were included in the study. For each patient/exam, we collected
personal anamnestic information, histological and molecular
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characteristics from the main tumor, MRI data, and definitive
lymph node status.

A. Patient anamnestic-clinical data
Patients were divided into groups, based on collected in-

formation, as follows: age; menopausal status (pre- or post-
menopausal); hormonal therapy (patients who have performed
at least 3 continuous months of hormone therapy of any type,
namely contraceptive, replacement therapy, or therapeutic);
familiarity (patients with at least 2 female or male family
members affected by breast cancer at any age).

B. Tumor histological data
The histological examination was performed on tumor ma-

terial obtained through core-biopsy or surgery and analyzed
by a pathologist with more than 15 years of experience. The
tumor histological grade value was assigned in accordance
with the Next-generation Sequencing (NGS) for which a score
from 1 to 3 was given. The immunohistochemical analysis
was conducted, evaluating the estradiol (ER), the progesterone
(PgR), the herceptin2 receptor (HER2), and the proliferation
index Ki67.

C. MRI imaging
The MRI investigations were performed with a 3 Tesla

magnetic field using a Discovery 750 machine (by GE Health-
care, Milwaukee, WI, USA), using an 8- channel coil (8
US TORSOPA) dedicated for breast study, with the patient
in prone position. T2-weighted, diffusion-weighted (DWI),
and axial T1-weighted 3D dynamic contrast-enhanced (DCE)
sequences are performed for each subject. The images were
analyzed by two radiologists with 10 and 3 years of experience
and the following characteristics were recorded: tumor local-
ization based on breast quadrant; tumor distribution (unifocal,
multifocal, multicentric); diameter of the target lesion; tumor
margins (regular, irregular, lobulated, or spiculated); lesion
intensity signal timing curve (IS/T curve) on DCE sequence;
visibility on T2 of the lesion; visibility on DWI of the lesion;
ADC values.

Bilateral tumors were considered as two different cases. For
each case, the subtracted post-contrast T1-MRI was selected.
The second phase (60–120 s) was selected for ROI segmenta-
tion, due to its higher contrast resolution. The lesions were
manually drawn through manual and assisted thresholding
segmentation techniques on the axial projection, reproducing
the same technique of our previous works [56], [50]. When
present, necrosis was avoided by segmentation. For multifocal
or multicentric tumors, all lesions, even the smallest, were
segmented.

D. Lymph Node Status (LNS)
The state of the axillary cavity was histologically deter-

mined after the diagnosis of breast cancer. The patients in
our study were classified as positive (LN+) or negative (LN-),
depending on whether there was, in the former case, at least
one lymph node involved, or, in the latter case, no positive
lymph nodes. On this basis, the dataset accounts for 27 positive
and 128 negative samples.

E. Pre-processing

In MRI examination, the DCE sequence consists of the in-
travenous injection of a contrast agent (CA), whose absorption
and release determine the specific wash-in and wash-out times
respectively. Indeed, the DCE involves the acquisition of 3D
volumes at different times, considering MRI images taken
before (pre-contrast) and after (post-contrast) CA injection.
The result is a 4D data with three spatial and one temporal
dimension, that can be interpreted as a 3D image with several
channels. Following the methodology proposed in [56], [57],
we select four subtractive volumes: the first, the second, the
last volume, and the median index volume between the third
and the second-to-last volume, with the aim of preserving
information about the wash-in and wash-out of CA flowing.

Differently from DCE, T2 and DWI scans consist of the
acquisition of a 3D volume without the temporal information,
which can be considered as a 3D image with 1 channel.
Since the breast lesion is segmented considering the second
subtractive volume, the T2 and DWI acquisitions are aligned
to the segmentation mask generated from the T1 volume.
Moreover, before applying the information about the lesion
localization, the DWI scan is co-registered to the DCE
volume considering the second post-contrast acquisition as a
reference and using mutual information as a similarity metric
[67], [68].

Based on the studies proposed in [56], [57], which evaluate
how the amount of the included non-tumor tissue impacts the
ALN assessment, we select the Single Isotropic-size Box (SIB)
as tumor bounding option. In particular, all the DCE, T2, and
DWI volumes are re-sampled to obtain isotropic voxels with
dimension 1 × 1 × 1mm3, before selecting the smallest box
surrounding the tumor area.
Finally, information coming from images needs to be merged
with the clinical features (CL) that include age, familiarity,
hormone therapy, menopausal status, dimensions, ER, PgR,
HER2, ki-67, and grading, resulting in a set of 10 features.

VI. EXPERIMENTAL SET-UP

This paper aims to propose a TM to improve the integration
of heterogeneous sources of data, modeling the complex
relations between them and implementing the calibration of the
extracted features maps. As already mentioned in the previous
section, we focus on ALN status assessment considering mul-
tiparametric breast MRI of the primary tumor with different
sequences, namely DCE, T2, DWI , and patients’ clinical
features. Consequently, the number of image modalities M is
3, with j ∈ {DCE,DWI, T2}.
Our experimental set-up not only deals with IF technique,
where we introduce our TM, but we also compare our proposal
against several competitors, i.e the unimodal (U) approach and
the other multimodal fusion strategies, namely Early Fusion
(EF) and Late Fusion (LF).

A. CNN Architectures

To deal with the presence of multiple data modalities, we
propose a Multi Input - Single output network architecture,
implementing the fusion at an intermediate level. In particular,
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we exploit two different CNNs, that in turn reflect in two
different convolutional (Conv-C) and classification (CC) parts.
Such two networks are named in the following as BasicNet
and ResNet.

The Conv-C of the BasicNet, responsible for features maps
extraction, consists of five reduction layers, including blocks
with a 3D-convolutional operation, followed by batch normal-
ization and ReLU function. Each convolutional layer consists
of a 3D operation with 4 × 4 × 4 kernels and a stride set
to 2 in order to extract features from the input volume while
having a gradual dimensionality reduction. The padding is set
to 1 in each layer, excluding the last one where it is set to 0.
Moreover, each layer doubles the number of channels, while
the convolutional operation in the first block presents 8 output
channels. Finally, the classification core consists of two fully
connected layers.

The ResNet is inspired by the state-of-art network proposed
in [55], considering the 3D ResNet variants described in [69]
which also offers a set of architectures pre-trained with medi-
cal images for segmentation tasks. The architecture consists of
a Conv-C, which is an encoder with residual layers, and a set
of decoders for the generation of the segmentation masks. In
particular, the Conv-C consists of a first convolutional layer,
followed by batch normalization, ReLU and Max Pooling
layers, and a chain on four blocks containing the layers
implementing the residual network as proposed in [55]. Hence,
To adapt the ResNet we retain the encoder while the set of
decoders is replaced with a CC consisting of a global average
pooling and a fully connected layer.

B. IF approach for ALN status assessment

The network proposed for the specific task to solve is
a Multi Input - Single output CNN, whose architecture is
presented in Figure 3 and consists of 3 convolutional cores, the
Multilayer Perceptron (MLP) for the clinical features, and two
concatenating operations (⌢). The architecture implemented
in this paper exploits for each ConvCj only the convolutional
part of BasicNet or ResNet. The number of input channels of
the first convolutional layer in the ConvC depends on the imag-
ing modality. In particular, the first layer in the ConvCDCE

presents 4 channels, while ConvCT2 and ConvCDWI con-
sider 1 channel volumes as input. The MLP used to process the
CL set presents a fully connected layer with 10 input neurons
and 4 output features, followed by the ReLU function. The
aim is to project the tabular data in a space that allows it
to be combined with the features extracted from the images.
As described in Figure 3, the first concatenation operation
integrates FNDCE

DCE , FNT2

T2
, FNDWI

DWI , obtaining the Fimg features
map, with C channels (C = CDCE + CT2

+ CDWI ). Then,
the shared image features map Ḟimg is generated by the block
Ls that includes a convolutional operation with a number of
input and output channels set to C, a 1× 1× 1 kernel, values
of stride and padding set to 1 and 0 respectively, followed
by batch normalization and ReLU function. In particular,
this set of operations aims to further process the integration
between the features maps modeling a nonlinear relation.
Moreover, when the ResNet architecture is exploited for the

ConvC, Ls also includes a Global Average Pooling layer to
obtain a features vector. The second concatenation operation
merges the Ḟimg with features vector Fcl coming from the
MLP that processes the clinical information. The resulting
representation Fs ∈ R1×(C+4) is considered as input for the
CC, which consists of two fully connected layers spaced by
ReLU function. In particular, the first layer in the classification
core considers an input features vector of C + 4 elements,
with C/3 output features, implementing a map between the
elements of Fs while performing a dimensionality reduction. It
is worth noting that if the convolutional cores are implemented
exploiting the same architecture, CDCE is equal to CT2 , and
CDWI , making the quantity C/3 integer. However, we argue
that this aspect does not introduce a limitation in the proposed
methodology since when the assumption is not assumed a
ceiling or floor function can be applied. The second fully
connected layer is responsible for the prediction, presenting
two output neurons.
In the definition of TM, as suggested in [33], the reduction
ratio r is set to 4, even if, as reported by the experiments
conducted in [34], different values do not seem to influence
the results. Although the TM can be inserted at any level
of the convolutional cores, two simple rules are applied
to decide the number of modules to be included, avoiding
the implementation of a large number of experiments. As
suggested in [33], in the case of BasicNet the TM is applied
in the second half of the network, after the third, fourth,
and fifth reduction layers. When the ResNet architecture is
exploited, the TM is inserted after each block containing the
layers implementing the residual network, resulting in the
use of 4 transfer modules. It is possible to note that the
implemented rules prevent the calibration of features maps
that strongly depend on the specific image modality. Indeed,
the first convolutional layers usually learn features such as
edges and shapes that are inherent to input volumes, increasing
the generalization in the following levels. For the sake of
completeness, we also conducted additional experiments to
evaluate the effects of varying the number of transfer modules.
Moreover, the influence of the TM is studied by considering
solutions in which that module is excluded. In IF experiments,
fine-tuning is exploited by initializing the convolutional cores
with the weights determined in the U approach.

C. Unimodal Approach

In the Unimodal (U) approach, the heterogeneous image
modalities and the clinical features are exploited to build
different models that do not cooperate for the determination of
a single prediction. Indeed, the result is a set of 4 classifiers,
each of them trained on a specific source of data. The aim is to
separately evaluate each sub-component of the proposed Multi
Input network. In the case of MRI sequences, the BasicNet
and the ResNet are trained considering the DCE, the T2,
and the DWI volumes separately. In particular, in the case
of BasicNet, the CNN is trained from scratch, while when the
ResNet is exploited, transfer learning is used, considering the
pre-trained Conv-C [69] as a starting point and implementing
the fine-tuning for adapting the network for the specific task
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Fig. 3: Architecture of the IF approach including TM between
layers belonging to different convolutional cores.

to solve. On the other hand, the classification core is trained
from scratch. As described in Section V, clinical information
is reported in the form of tabular data representing the set
CL with 10 features, that are considered as input for a MLP,
consisting of two fully connected layers, spaced by ReLU
function. The first hidden layer presents 4 output features,
while the output consists of two neurons, responsible for the
classification.

D. Early Fusion approach

In the Early Fusion (EF) the different image modalities are
organized in a single structure before being considered as an
input for the single classifier. The simplest strategy involves
concatenating the acquisitions in a multi-channels volume.
However, the described fusing approach can not be applied
in this work for two main reasons: i) it is not possible to
integrate clinical features, ii) the characteristic of the DCE to
be an image in which the temporal information is concatenated
on the channels makes the idea of concatenating all the images
along the channels unfeasible. As a consequence, a higher-
level representation is extracted from each imaging modality
by using the networks trained in the unimodal approach as
features extractors. In particular, the features maps FNDCE

DCE ,
F

NT2

T2
, FNDWI

DWI coming from the convolutional cores of the
networks trained for each imaging modality are considered,
resulting in the architecture represented in Figure 4 where
the classification is performed by a neural network (NN),
exploiting the block Ls and the MLP introduced for the set
CL.

Fig. 4: Architecture of the EF approach, where the classifica-
tion is performed by a neural network.

E. Late Fusion approach

The late fusion (LF) completely relies on the unimodal
approach since it aggregates the prediction coming from the
classifiers implemented for each data source. To this goal,
the predictions coming from the three networks and the
MLP trained with the CL set are combined using Weighted
Majority Voting (WMV), in which a weight is assigned to each
prediction according to the model output probability. However,
in LF each classifier acts independently, not taking advantage
of the complementary characteristics of the image modalities
and clinical data that do not influence each other during the
prediction.

F. Implementation Details

As reported in Section V-E, the selected tumor bounding op-
tion (SIB) considers a box whose size varies according to each
patient’s region of interest. Moreover, the presence of multiple
image modalities with different resolutions causes the creation
of volumes with different dimensions. As a consequence, a
resize stage is used to give the volumes a common size of
64× 64× 64, before feeding them to the involved CNNs. In
experiments involving ResNet, the ResNet10, the ResNet18,
the ResNet34, and the ResNet50 architectures are used, ex-
ploiting transfer learning [69]. Data augmentation is used in
the training stage by applying random rotations and flips,
while the dataset is balanced by replicating some randomly
chosen volumes belonging to the minority class. Moreover, the
greyscale intensity in each extracted volume is normalized in
[0; 1] to ensure that, in the classification step, the CNNs operate
with volumes having the same scale across different patients.
During the experiments, the maximum number of epochs is
set to 500, the batch size is set to 32 for BasicNet and all the
ResNet architectures. The learning rate for the cross-entropy
loss was set to 10−6. Adam optimizer is used with a weight
decay set to 10−4. To find the appropriate hyper-parameters,
a grid search is implemented by varying the batch size in [8,
64], the learning rate in [10−7, 10−3] and the weight decay
in [0, 10−4].

Performance is evaluated in terms of Accuracy (ACC),
Sensitivity (SENS), Specificity (SPE), and Area under ROC
curve (AUC). All the experiments were run in a 10-folds Cross
Validation (CV) setting, to better assess the generalization
ability of each approach. In particular, patient-based cross-
validation is performed, to reliably compare the performance
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of different models by avoiding the use of volumes from the
same patient during the training and evaluation phase. All the
DL experiments were carried out using Pytorch (version 1.10),
while the pre-processing step was implemented in MATLAB
2020b. A Linux workstation equipped with Intel(R) Core(TM)
i7-10700KF CPU, 64 GB of DDR4 RAM and a Nvidia RTX
3090 GPU is used. The source code of the implemented
experiments is available at this link. 1

VII. RESULTS AND DISCUSSIONS

This section reports in Table I the results of the implemented
experiments, considering both the proposed solution and dif-
ferent fusion techniques. In particular, each configuration is
detailed according to the fusion approach, the used data
modalities, and the model involved for the classification in
columns App., Mod., and Model respectively. Moreover, the
performance is evaluated in terms of ACC, Sens, Spe, and
AUC, reporting the average rate computed adopting a 10-
fold CV and the standard deviation after the ± symbol.
For readability, we denote the involved networks, namely
BasicNet, ResNet10, ResNet18, ResNet34, and ResNet50 as
Ba and Re10, Re18, Re34, and Re50 respectively.
Table I is organized into four main sections where different
fusion approaches are exploited. In the configurations consid-
ering the IF, the involvement of the proposed transfer module
is highlighted by the presence of TM in the name of the
network architecture (i.e. Ba-TM, in the case of BasicNet).
In the EF, all data modalities are considered, exploiting the
CNN as a features extractor, the MLP for the clinical features,
and performing the classification using NN. The solution with
the LF merges the predictions coming from the CNNs trained
with the unimodal approach and the experiment considering
the CL set and the MLP. In the U approach, the network is
trained for each imaging modality, leveraging the fine-tuning
in the case of ResNet [69].

The first section focuses on the IF approach, showing the
results obtained by varying the CNNs and reporting the effect
of the transfer module. When TM is considered, ResNet10
presents the best performance in terms of accuracy, and
specificity, achieving 90.91% and 92.91% respectively while
obtaining 81.48% in sensitivity together with ResNet18-TM,
and BasicNet-TM that also reports the highest value in terms
of AUC (90.14%). In the configuration without the transfer
module, each network reports a slight decrease in performance.
Indeed ResNet10 achieves 90.26% in accuracy, 92.13% in
specificity, 87.43% in AUC, and the same sensitivity as
BasicNet, that is 81.48%. To assess the statistical significance
of the comparison between the experiments with and without
the TM for each CNN, we perform a Wilcoxon rank-sum
test with a significance level of 0.05. This analysis consid-
ers the probability distributions of predictions from different
networks as paired observations. In particular, in the case of
BasicNet, we compare the configurations involving Ba and
Ba-TM (i.e. the first two rows of Table I), that report a
significant difference with a p-value equal to 0.0023. Similarly,

1https://github.com/Michela94CE/Cross-Modality-Calibration-with-
Transfer-Module

TABLE I: Performance of the implemented experiments eval-
uated in 10-fold CV setting considering different models and
multimodal data fusion techniques. In each section, the best
values are reported in bold.

App. Mod. Model Acc Spe Sens AUC

IF

ALL Ba-TM 87.01±0.08 88.19±0.08 81.48±0.17 90.14±0.10
ALL Ba 84.42±0.11 85.04±0.12 81.48±0.17 81.28±0.15
ALL Re10-TM 90.91±0.08 92.91±0.07 81.48±0.17 87.17±0.14
ALL Re10 90.26±0.08 92.13±0.08 81.48±0.17 87.43±0.12
ALL Re18-TM 89.61±0.06 91.34±0.06 81.48±0.17 85.04±0.14
ALL Re18 86.36±0.10 88.19±0.10 77.78±0.16 84.54±0.14
ALL Re34-TM 87.66±0.10 89.76±0.09 77.78±0.16 83.79±0.15
ALL Re34 87.01±0.07 88.98±0.05 77.78±0.16 84.49±0.12
ALL Re50-TM 84.42±0.11 85.83±0.11 77.78±0.16 83.96±0.16
ALL Re50 81.82±0.11 82.68±0.12 77.78±0.16 81.31±0.13

DCE+CL-4 CNN[61] 68.18±0.15 70.87±0.21 55.56±0.33 67.07±0.20
ALL Ba-MMTM[33] 82.47±0.09 82.68±0.10 81.48±0.17 86.56±0.13
ALL Re10-MMTM[33] 89.62±0.10 91.34±0.07 81.48±0.17 85.42±0.13
ALL Re18-MMTM[33] 85.71±0.08 87.40±0.09 77.78±0.15 80.78±0.12
ALL Re34-MMTM[33] 87.02±0.09 88.98±0.08 77.78±0.15 80.84±0.13
ALL Re50-MMTM[33] 83.12±0.10 84.25±0.09 77.78±0.16 81.69±0.14

EF

ALL Ba+MLP+NN 79.87±0.13 81.10±0.14 74.07±0.15 80.87±0.15
ALL Re10+MLP+NN 84.42±0.09 86.61±0.09 74.07±0.15 85.62±0.11
ALL Re18+MLP+NN 83.12±0.10 85.04±0.10 74.07±0.15 84.60±0.12
ALL Re34+MLP+NN 83.77±0.08 86.61±0.09 70.37±0.15 77.72±0.14
ALL Re50+MLP+NN 79.87±0.09 81.89±0.10 70.37±0.15 81.16±0.12

LF

ALL Ba+MLP 83.23±0.11 87.50±0.11 62.96±0.14 82.29±0.15
ALL Re10+MLP 89.03±0.07 92.19±0.07 74.07±0.05 93.14±0.10
ALL Re18+MLP 86.45±0.08 90.63±0.08 66.67±0.10 90.16±0.10
ALL Re34+MLP 83.23±0.10 85.94±0.11 70.37±0.14 84.69±0.19
ALL Re50+MLP 82.58±0.11 85.16±0.11 70.37±0.11 87.18±0.15
IMG Re50+WV [64] 80.52±0.13 84.25±0.09 62.96±0.17 83.03±0.12
IMG Re50+SVM [65] 78.57±0.12 94.49±0.10 0.04±0.45 49.10±0.33

U

CL MLP 75.97±0.11 78.74±0.10 62.96±0.22 75.61±0.17

DCE

Ba 78.06±0.11 78.91±0.12 74.07±0.15 78.53±0.09
Re10 85.16±0.07 87.50±0.07 74.07±0.17 81.34±0.12
Re18 84.52±0.08 86.72±0.08 74.07±0.15 80.93±0.10
Re34 78.71±0.10 80.47±0.12 70.37±0.15 74.13±0.12
Re50 78.06±0.08 79.69±0.08 70.37±0.20 82.26±0.11

CNN[61] 63.76±0.16 69.67±0.19 41.67±0.38 65.21±0.22
RF[49] 84.52±0.08 96.10±0.06 29.63±0.42 62.86±0.20

T2

Ba 74.84±0.11 78.13±0.11 59.26±0.28 62.36±0.21
Re10 85.16±0.08 89.84±0.09 62.96±0.08 76.71±0.14
Re18 78.71±0.13 82.03±0.16 62.96±0.08 72.60±0.16
Re34 76.77±0.10 80.47±0.13 59.26±0.19 67.85±0.16
Re50 67.10±0.10 68.75±0.13 59.26±0.11 64.06±0.09

DWI

Ba 79.87±0.13 85.04±0.12 55.56±0.25 66.00±0.23
Re10 83.77±0.08 88.98±0.09 59.26±0.11 71.60±0.15
Re18 81.17±0.11 85.83±0.12 59.26±0.11 71.30±0.13
Re34 74.03±0.08 77.95±0.10 55.56±0.20 64.36±0.13
Re50 72.08±0.12 75.59±0.13 55.56±0.25 64.01±0.17

ResNet10, ResNet18, and ResNet50 differ significantly from
ResNet10-TM, ResNet18-TM, and ResNet50-TM respectively,
reporting p-values equal to 0.0038, 0.0048 and 0.0113, while
the comparison between the experiments with ResNet34 and
ResNet34-TM do not show a statistical difference with a p-
value equal to 0.0518.

As reported in Section VI-B, the reduction ratio r is defined
as 4 in the transfer module. However, we investigate the
impact of different values of r on performance. To do so,
we choose the experiment with the BasicNet, representing the
configuration with the lowest computational cost, and repeat
executions with reduction ratios set to 8 and 16. The results
show AUC values of 90.03% and 90.11% for r set to 8 and
16, respectively. There is no statistically significant difference
compared to the case where r is equal to 4, as confirmed by
the Wilcoxon rank-sum test with significance levels of 0.05
(p-values equal to 0.5574 and 0.4892 for r set to 8 and 16,
respectively). It is worth noting that the obtained results are
in line with the work proposed in [34], according to which
different values of r do not seem to influence the performance
of the model.

We compare our methodology with the solution proposed
in the literature by Nguyen et al. [61] that represents the first
attempt to apply an approach based on IF for ALN metastasis
prediction. The authors proposed a solution that exploits a
CNN, DCE sequence of the primary tumor and four clinical
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features, namely age, ER, ki-67, and HER2, that in this paper
represent the CL-4 set. The authors implemented a 3D CNN
to process DCE-MRI images using a subtractive approach that
works with the third, fourth, and fifth post-contrast volumes. A
3D cuboidal bounding box of size 50×50×50, encompassing
the tumor region, is used to crop each DCE-MRI data. The
CL-4 set is inserted in the first fully connected layer of the
classification core of the implemented network. It is possible
to note that our methodology with the Transfer Module
outperforms by a wide margin the approach described in [61].
We argue that different aspects contribute to explaining this
result. First, in [61] the authors used a dataset consisting of
357 patients, and hence the performance can be reasonably
affected by the size of the dataset involved in our work (153
patients). Moreover, the fixed-size bounding box used in [61]
could reduce the generalization capability of the implemented
model as reported in [56], [57]. In this paper we also exploit
different complementary imaging modalities that contribute
to the characterization of the primary tumor, leveraging the
transfer module to improve the integration of data, while
authors in [61] only consider the DCE sequence and four
clinical information.
Although the implemented experiments show the effectiveness
of the proposed TM, we also compare our module with
other fusion strategies presented in the literature. In particular,
we followed the description reported in [33], adapting the
MMTM for a task involving three modalities. We replaced
the TM with the MMTM in each CNN, showing that our
proposal outperforms the approach described in [33], even
if it obtains good results. Indeed, we argue that in contrast
with the MMTM, the presence of the ReLU function in the
Shared vector computation step makes our TM able to model
the complex and nonlinear map between the different images.
In addition, another difference can be noted in the Multimodal
Calibration stage where we do not change the output range of
the sigmoid function with the multiplication by a scalar value,
allowing the network automatically to learn how to select
the most discriminative features, reducing the contribution of
less significant ones. Taking into account other state-of-art
methods, it is worth noting that in comparison with the CAAF
module proposed in [36], which considers the correlation
among features as a measure of redundancy, our TM consists
of trainable parameters, making the calibration well suited for
the specific task to solve. Furthermore, the presence of the
correlation measure in [36] requires two features maps with
the same spatial dimensions, while the methodology proposed
in this paper does not place any limitations on the number
of image modalities and the characteristics of the extracted
features maps. Then, similarly to the work proposed in [35],
the fusion is defined in the course of the training. However, the
MFB defined in [35] only affects the network implemented for
the image synthesis, learning the underlying correlation among
data, without disturbing the modality-specific paths, thus the
extracted features maps.

The second part of Table I focuses on EF, where the CNNs
are used as features extractors, the MLP is exploited to process
the clinical features, and the classification is performed by
a NN, as described in Section VI-D. The configuration with

the ResNet10 achieves the highest performance in terms of
accuracy, specificity, and AUC, reporting 84.42%, 86.61%, and
85.62% respectively while obtaining the same sensitivity as
experiments exploiting BasicNet and ResNet34 (74.07%).

The third section focuses on the LF method, which inte-
grates predictions from four models trained independently on
DCE, T2, DWI sequences, and the CL set, respectively. In
particular, the column Model differs for the CNN architecture
used to process the image modalities. The configuration ex-
ploiting the ResNet10 outperforms the others in each metric,
achieving a value of accuracy equal to 89.03%, 92.19% in
terms of specificity, a value of sensitivity equal to 74.07%,
and 93.14% in AUC. In the last two rows of the section, we
also report the results obtained implementing the state-of-art
approaches presented in [64] and [65] that exploit the fine-
tuning a ResNet50 [55] architecture for each data modality.
Then, they aggregate the predictions with a weighted voting
(WV) and Support Vector Machines (SVM) model in [64]
and [65], respectively. In these experiments, the configuration
of the involved data modalities is denoted as IMG, since
the solutions in [65] and [64] do not consider clinical and
histological information.

The U approach is reported in the fourth section of Table
I, consisting of experiments involving a single data modality.
In particular, the CL set is processed with the MLP, achieving
values equal to 75.97%, 78.74%, 62.96%, and 75.61% in terms
of accuracy, specificity, sensitivity, and AUC respectively.
When the image modalities are considered, the configurations
with different CNNs are explored. In the case of the DCE se-
quence, the BasicNet, the ResNet10, and the ResNet18 achieve
the highest values of sensitivity (74.07%). Moreover, the
ResNet10 presents the best performance in terms of accuracy
85.16%, while the ResNet50 reports the best AUC (82.26%)
among all the experiments in the fourth section. When the
T2 sequence is considered, the ResNet10 achieves the best
performance in each metric, compared with the configurations
exploiting the same modality, and it is confirmed as the best-
performing network also in the case of the DWI modality.
In line with the current state-of-art, the DCE represents
the most discriminating series, thus confirming its use in
the majority of the works in the literature, as reported in
Section III. For comparison, we consider again the solution
proposed in [61], where authors presented a version of the
CNN exploiting only the DCE sequence. Moreover, we report
the results obtained with the methodology proposed in our
previous work [49], where we extracted several characteristics
from the second post-contrast volume, including first-order,
gray level co-occurrence matrix, three orthogonal planes-Local
binary patterns features, and then rely on Randon Forest (RF)
to perform the classification.

To assess the positioning of the TM within both the Basic-
Net and ResNet architectures, we conducted a series of experi-
ments by varying the number of transfer modules. Specifically,
these modules are strategically placed after each group of
layers – the reduction layer for BasicNet and the residual
block for ResNet. The placement follows the reverse direction,
starting from the last group. In the case of ResNet, we
focused on ResNet50 due to the significant impact observed
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on performance metrics in terms of ACC and AUC. Indeed, as
highlighted in the initial section of Table I, the configurations
with Re50 and Re50-TM present the biggest gaps among all
the experiments involving the ResNet architecture (+2.60 and
+2.65 in ACC and AUC, respectively). This choice is also
motivated by the observation that, in comparison with smaller
architectures (i.e., ResNet10, ResNet18, and ResNet34), each
residual block in ResNet50 comprises numerous layers that
contribute to a more profound feature extraction stage, making
the cross-modality calibration more meaningful.
Table II presents the outcomes of experiments involving the
variation of the number of TMs, detailed in the #TM column.
The table encompasses two sections dedicated to BasicNet and
ResNet50, respectively. It’s important to note that when #TM
is set to 0, we present the results of the configuration where
the transfer module is not utilized. As emphasized in the initial
section of Table II, the optimal performance across all metrics
is achieved with the presence of three TMs when the BasicNet
architecture is considered. This configuration effectively pre-
vents the calibration of feature maps that might strongly rely
on specific image modalities. In the case of ResNet50, the
best results emerge when a transfer module is inserted after
each residual block, excluding the first convolutional layer.
This strategic placement leverages the chain of multiple layers
within each residual block, enhancing the extraction of high-
level representations from the input data.

TABLE II: Performance of the implemented experiments
evaluated in 10-fold CV setting and obtained by varying the
number of transfer modules. In each section, the best values
are reported in bold.

Model #TM Acc Spe Sens AUC

Ba

4 81.17±0.07 81.10±0.10 81.48±0.15 82.15±0.12
3 (Proposed) 87.01±0.08 88.19±0.08 81.48±0.17 90.14±0.10

2 86.36±0.08 87.40±0.12 81.48±0.17 81.51±0.14
1 79.87±0.13 81.10±0.14 74.07±0.18 80.87±0.15
0 84.42±0.11 85.04±0.12 81.48±0.17 81.28±0.15

Re50

4 (Proposed) 84.42±0.11 85.83±0.11 77.78±0.16 83.96±0.16
3 83.12±0.10 84.25±0.10 77.78±0.15 81.69±0.11
2 83.77±0.13 86.61±0.09 70.37±0.11 77.72±0.17
1 79.87±0.14 84.10±0.12 74.07±0.10 79.24±0.13
0 81.82±0.11 82.68±0.12 77.78±0.16 81.31±0.13

The results reported in Table I highlight that, for each
network, the solutions exploiting the TM component achieve
the best performance, outperforming by a wide margin, the
experiments involving a single data modality (U). Moreover,
the LF performs better than the EF approaches, thus supporting
the preference of the former over the latter. Indeed, the LF
leverages different models, each trained for a specific data
modality. As a consequence, the four classifiers learn to extract
features that reflect the distinctive characteristics of each
modality, delaying the combination of the results in a post-
processing step and also exploiting the uncorrelated nature
of errors performed by models. In solutions involving the IF
configuration, the shared representation is created by concate-
nating features from the convolutional cores at an intermediate
level, thus preserving the distinctiveness of the different image
modalities, which is then exploited in the classification core.
Moreover, the training strategy exploiting the backpropagation
algorithm allows the definition of a representation well suited

for the specific task to solve, improving the integration of
heterogeneous data compared to the EF and LF experiments. In
particular, the presence of the proposed transfer module makes
the layers of the convolutional cores influence each other
during the features extraction step, enabling the CNN to self-
select the characteristics in each modality that best contribute
to the problem to be solved. Indeed, the gating mechanism
reduces the impact of the selected features according to a
shared representation that considers all data sources. This
results in a more focused and context-aware representation
of the input data. Furthermore, the TM contributes to the
mitigation of the domain gap between heterogeneous modal-
ities, calibrating the features at an intermediate level. The
inclusion of the transfer module in the training process allows
the definition of an integrated set of features specifically suited
for the specific task under analysis. This characteristic leads,
therefore, to an improvement in performance, as reported in
Table I, speeding up the convergence of the network. We focus
again on BasicNet and ResNet50, providing in Figure 5 the
loss curves obtained in the configuration with and without
the proposed transfer module. As aforementioned in Section
VI-F, we conducted a 10-fold cross-validation, resulting in ten
curves for both the training and validation sets. To provide a
more concise representation for each classification task, we
calculated the mean value and standard deviation of the loss
function for each epoch. The bold lines represent the average
training and validation curves, while the shaded areas indicate
the region defined by the standard deviation. It is worth
noting that for both CNNs, the inclusion of TM improves
the convergence, reducing the gap between the training and
validation curves.

Finally, Table I also reveals that performance decreases for
each approach when the ResNet architectures are exploited: we
deem that this happens since the complexity of the network
increases, and it can be further explained by the limited amount
of data used in the study. Although fine-tuning is exploited,
the small number of MR images may affect the convergence
of the CNNs, limiting their generalization ability.

VIII. CONCLUSION

In this work, we presented a novel methodology for the inte-
gration of heterogeneous sources of data. We proposed an ap-
proach based on the intermediate fusion method that involves
the use of a transfer module for cross-modality calibration. TM
modifies the features extracted in the convolutional cores, em-
phasizing the most relevant features and minimizing the impact
of less informative ones. To demonstrate the effectiveness of
our approach, we implemented a Multi Input-Single Out CNN
that utilizes both multiparametric breast MRI sequences and
patients’ clinical information to predict the presence of axillary
lymph node metastasis. Despite the role of magnetic resonance
imaging of primary tumors in predicting the involvement of the
axillary state has been strongly demonstrated in the literature,
it still remains unused in international guidelines [70], [71],
[72]. The results presented in this work intend to highlight not
only, as previously demonstrated in other works [61], [73], the
importance of the role of DL approaches in predicting the state
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Fig. 5: Training and validation loss curves for the experiments involving the BasicNet and the ResNet50 with and without the
presence of TM. The lines in bold represent the average training and validation curves computed considering the 10-fold CV,
while the underlying area determines the region identified by the standard deviation

of the axillary lymph node, but also the contribution that pre-
contrast sequences can offer. In particular, the T2w sequence
allows highlighting the morpho-structural characteristics of the
tumor while the DWI describes the intrinsic properties and
tumor aggressiveness. As demonstrated in our previous works
[13], [74], both the peritumor edema evaluated in the T2w
sequences and the ADC value, a quantitative expression of the
cellular restriction of the tumor lesion, correlate significantly
with the state of the axilla.
Despite the promising results, we argue that our work presents
some limitations. In particular, the reduced size of the popula-
tion and the involvement of a single medical center may affect
the evaluation of the generalization ability of the proposed
methodology. Additionally, the presence of a multiparametric
MRI dataset might be viewed as a constraint when contemplat-
ing the applicability of our solution within a truly multimodal
context. Although the number of patients is similar to that
used in [43], [46], [47], future efforts will concentrate on
evaluating the proposed methodology on data collected from
different centers, thereby expanding the size of the considered
population. Moreover, we plan to assess the proposed approach
in diverse tasks involving heterogeneous medical imaging
procedures, such as PET-MRI. This will leverage the inherent

flexibility of the proposed TM, which, by definition, can
manage a variable number M of image modalities, adapting
to different applications. Finally, the integration of uncertainty
quantification in our solutions stands out as a critical avenue
for our future research. Indeed, acknowledging and quantifying
uncertainties associated with model predictions are crucial
for enhancing the robustness, interpretability, and real-world
applicability of DL systems. To this aim, we will explore
the development of an uncertainty-aware version of the TM,
drawing inspiration from approaches proposed in [75], [76].
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