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Active Learning for Sound Event Detection
Zhao Shuyang, Toni Heittola, and Tuomas Virtanen

Abstract—This paper proposes an active learning system for
sound event detection (SED). It aims at maximizing the accuracy
of a learned SED model with limited annotation effort. The
proposed system analyzes an initially unlabeled audio dataset,
from which it selects sound segments for manual annotation.
The candidate segments are generated based on a proposed
change point detection approach, and the selection is based on the
principle of mismatch-first farthest-traversal. During the training
of SED models, recordings are used as training inputs, preserving
the long-term context for annotated segments. The proposed
system clearly outperforms reference methods in the two datasets
used for evaluation (TUT Rare Sound 2017 and TAU Spatial
Sound 2019). Training with recordings as context outperforms
training with only annotated segments. Mismatch-first farthest-
traversal outperforms reference sample selection methods based
on random sampling and uncertainty sampling. Remarkably, the
required annotation effort can be greatly reduced on the dataset
where target sound events are rare: by annotating only 2% of
the training data, the achieved SED performance is similar to
annotating all the training data.

Index Terms—Active learning, sound event detection, change
point detection, mismatch-first farthest-traversal, weakly super-
vised learning

I. INTRODUCTION

Sound event detection (SED) is a task of automatically
identifying sound events such as gunshot, glass smash, and
baby cry from an audio signal. It predicts the presence of each
target sound event and its onset/offset. SED has been applied
in various applications, including noise monitoring [1], health-
care monitoring [2], wildlife monitoring [3], urban analysis
[4], and multimedia indexing and retrieval [5].

Due to the large number and variability of sound events in
real-life acoustic environments, there does not exist a universal
SED model. Most SED applications require their own models.
The development of a SED model is commonly based on
supervised learning, which typically requires a large amount of
labeled data as training material. Compared to capturing audio,
annotating them is much more time-consuming in most cases.
Thus, a practical problem is to optimize the SED accuracy
with a limited annotation effort.

Recently, weakly supervised learning has been studied to
reduce the required annotation effort in the development of
SED models [6], [7]. Weak labels indicate the presence of
target event classes in an audio signal, without temporally
locating them. In most cases, assigning weak labels is much
simpler, compared to assigning strong labels, which requires
the onset/offset of each individual sound event.

Despite the existence of weakly supervised learning, anno-
tating a large amount of data is still time-consuming. Active

The research leading to these results has received funding from the
European Research Council under the European Unions H2020 Framework
Programme through ERC Grant Agreement 637422 EVERYSOUND.

learning has been used in various machine learning problems
[8], [9], where labels are difficult, time-consuming, or expen-
sive to obtain. An active learning algorithm controls a labeling
process by selecting the data to be labeled, typically based on
an estimate of the capability to improve an existing model.
In most cases, active learning targets the situation where
unlabeled data is abundant, but the amount of annotations that
can be made is limited. The total duration of audio that can
be manually labeled is called a labeling budget.

Active learning for SED has previously not been studied,
though a few active learning studies have been made on
sound classification [10], [11], [12], [13], [14]. All of these
studies are limited to single-label classification on sound
segment datasets [15], [16], where a sound segment contains
an isolated event. However, the situation is different in SED,
which typically deals with long signals containing many sound
events, possibly overlapping in time. In this paper, we propose
an active learning system for SED. The proposed system
includes the following novelties: (i) Variable-length sound
segments are generated as selection candidates using a change
point detection approach. To the best of our knowledge,
audio change point detection has previously not been used
for active learning. Change point detection is used to avoid
generating segments that contain only a part of an event,
which is sometimes hard to recognize either manually or
automatically. (ii) The selection of candidate segments is based
on the mismatch-first farthest-traversal principle, which has
been shown effective in sound classification [14]. In this study,
the selection principle is generalized to the whole labeling
process, without clustering in the first stage as is originally
proposed. As a result, the process does not require the cluster
number as a hyper-parameter, which is sometimes hard to es-
timate. Furthermore, the sample selection method is extended
to multi-label classification. (iii) We propose to use a partial
sequence loss during the training of SED models, to preserve
the temporal context of annotated segments: each recording is
used as training input and the training loss is computed based
on only the outputs within annotated segments. Previously,
segments generated from the same recordings are processed
independently in the training, such as in UrbanSound8K [16]
and AudioSet [17].

The structure of the rest of the paper is as follows. Related
works are discussed in Section II. The proposed system is
introduced in Section III. The evaluation of the proposed
system is presented in Section IV. The conclusions are drawn
in Section V.

II. RELATED WORKS

A. Weakly supervised learning
Weakly supervised learning has recently attracted lots of

research interests in the field of SED, especially after the
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release of a large publicly available sound event dataset,
AudioSet [17], which provides only weak labels. AudioSet
has been used to learn high-level representations in [18]. The
learned representation clearly outperforms hand-crafted fea-
tures such as log-mel spectrogram in an environmental sound
classification dataset [15] and an acoustic scene classification
dataset [19]. Furthermore, weakly supervised learning can be
also used to directly learn SED models, such as in Detection
and Classification of Acoustic Scenes and Events (DCASE)
2017 task 4 subtask B [20].

Previous weakly supervised learning studies [6], [7], [18],
[21], [22] use pooling functions to aggregate frame-level class
probabilities into segment-level. Among the studied pooling
functions, attention pooling [6], [21] appears to be the most
popular one [22]. Besides the class probability, an attention
neural network [6], [21] predicts a pooling weight for each
frame. The segment-level output is based on the weighted
average of the frame-level class probabilities. Besides attention
pooling, softmax pooling has also been shown effective in
[7], [22]. An adaptive pooling method, introducing a learnable
hyper-parameter to softmax pooling [7], achieved similar SED
performances compared to using strong labels, in three SED
datasets.

B. Sample selection

There are different problem setups defined in the field of
active learning. Previous studies on sound classification follow
the setup of pool-based sampling, where a large collection
of unlabeled data is available from the very beginning of a
labeling process. Uncertainty sampling method was studied in
[10], [11], [12], where the uncertainty to classify a sample with
an existing model was used for sample selection. One of the
problems with uncertainty sampling is the unreliable certainty
estimation unless a decent amount of data is labeled. In
many cases, uncertainty sampling does not outperform random
sampling when the labeling budget is low [10], [11]. Another
problem with uncertainty sampling is the low diversity in a
selection batch, since the samples uncertain to the same model
are often similar [8], [23].

Cluster-based active learning was proposed in [13].
Segment-to-segment similarities were measured based on the
distribution of MFCCs in each sound segment in the training
dataset. K-medoids clustering was performed on the sound
segments, and the centroids of clusters (medoids) were se-
lected for annotation. The method is called medoid-based
active learning (MAL). A label assigned to a medoid was
propagated to all segments within the same cluster. When all
the medoids were annotated, another round of clustering was
performed. Both the annotated labels and the propagated labels
were used in training acoustic models. MAL relies completely
on the similarity measurement. The advantage is that it enables
good performance with a low labeling budget, since it does not
require a reliable model. However, the method is not optimal as
the labeling budget grows, since the selection of samples does
not take previously annotated samples into account. Another
problem is that the choice of the number of clusters K requires
a prior knowledge about a dataset.

As an extension of MAL, mismatch-first farthest-traversal
was proposed in [14]. It performs only one round of K-
medoids clustering as the first stage. After annotating the
medoids, the sample selection is continued with mismatch-
first farthest-traversal as the second stage. The samples with
mismatched predictions were selected as the primary criterion.
They were further selected by their distances to previously
selected samples as the secondary criterion. The target is to
maximize the diversity of selected samples. The first stage
of the method is equivalent to MAL, and the second stage,
which starts at the labeling budget of k, clearly outperforms the
original MAL and other reference methods with all evaluated
labeling budget. In addition, an approach was proposed to esti-
mate the cluster number K. However, it assumed a relatively
balanced number of instances from each sound class. This
assumption can hardly be satisfied in SED problems.

In comparison to the previous active learning studies on
sound classification [12], [13], [14], the problem setup in
this study has the following differences. Firstly, generating
segments for annotation is considered as a part of the active
learning system in this study, whereas previous studies utilize
sound segments that are already generated before the active
learning process. Secondly, this study allows a set of classes
assigned to a segment, whereas the previous studies require
exactly only one class assigned to a segment. Thirdly, this
study predicts not only the event class as the previous studies,
but also the onset and offset of each individual event.

III. THE PROPOSED METHOD

The proposed active learning system aims at optimizing the
accuracy of a learned SED model, with a limited annotation
effort. The general overview of the proposed system is illus-
trated in Figure 1. It takes a set of unlabeled audio recordings
as input and outputs a SED model. A human annotator is
required to assign labels to sound segments that the system
selects from the recordings. The SED model is trained with
annotated sound segments.

At the beginning of the active learning process, change
point detection is performed, splitting each recording into
segments. Each segment, later called a sample, is used as a
candidate for being selected to be annotated. The definition
of sample, sampling, and training example follows [13]. The
active learning process is iterative, following batch mode
active learning scheme [8]. In each iteration, a batch of
samples is selected for annotation, and a SED model is trained
with annotated samples. The sample selection is based on
mismatch-first farthest-traversal. Mismatch-first as the primary
criterion targets on the samples that are previously wrongly
predicted. Farthest-traversal as the secondary criterion aims at
maximizing the diversity of selected samples.

In order to save annotation effort, the system requires
only weak labels that are assigned to individual segments.
In each recording, the annotated segments are visualized in
pink in Fig.1. During the training of SED models, original
recordings are used as training inputs, regarded as partially
labeled sequences. The training loss is derived from only the
annotated parts of each recording, and the unlabeled parts are
used to provide context information.
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Fig. 1: The overview of the proposed active learning system.
The three processing blocks correspond to the three subsec-
tions in Section II.

A. Change point detection

In the proposed system, recordings are first split into short
segments, as illustrated in Figure 2. Short segments have two
advantages over full recordings as basic units for annotation.
The temporal resolution of weak labels, indicating event pres-
ences in each recording, is sometimes insufficient to train SED
models, especially when sound events are dense. In addition,
the diversity of acoustic content in a recording is sometimes
limited, since the sounds are typically produced from the
same sources. In many cases, annotating only representative
segments within each recording is sufficient.

The segments are generated based on a change point detec-
tion approach, in order to obtain segments containing complete
sound events, since segments with only part of an event
are sometimes difficult to annotate. Aiming at discriminative
features for sound event activities, embeddings are extracted
per frame using a pre-trained model. The architecture of the
pre-trained model follows the network architecture used in
[21]. The details of the architecture is described in Section
III C. The training material and validation criterion used for
training the pre-trained model generally follows the setup in
[18]. Change point detection is performed on the embeddings
Y = [y1, ...,yT ], where each embedding vector yt corre-

Fig. 2: Panel (a) is the log-mel spectrogram of an example
audio signal, with the detected change points marked by white
vertical lines. Panel (b) visualizes the embeddings extracted
using a pre-trained model. Panel (c) illustrates the estimated
likelihood of change on each time step. The peaks in the
likelihood sequence are detected as change points, which are
marked with red crosses.

sponds to the time frame t = 1, 2, ...T . A likelihood of a
change δ(t) is measured for each time frame t by the cosine
distance between the means of the past M frames and the
future M frames. The M frames correspond to 0.5 seconds,
thus one second is the length of the analysis window for the
estimation of δ(t). Previous unsupervised audio segmentation
approaches are mostly proposed for speaker diarization [24],
[25]. These methods typically use a fixed or variable length
analysis window around two seconds, based on the expected
duration of speaker utterances [24]. This study uses an analysis
window of one second based on the expected duration of short
sound events such as gunshot or glass break.

The panel (c) in Figure 2 illustrates the likelihood of change
estimated at each frame in an example audio signal. A peak
in the likelihood is used as a change point. The change
points divide an audio signal into segments, which are used
as candidates for sample selection and annotation.

B. Sample Selection

Figure 3 illustrates the active learning process with the
generated candidate segments as samples. The sample selec-
tion method follows the principle of mismatch-first farthest-
traversal [14]. Detailed visualization of the sample selection
method is given online1.

When selecting the first batch of samples, no annotated
samples are available. In order to maximize the diversity of
selected samples, farthest-traversal is performed on the whole
training set. Farthest-traversal is explained later in this section.
An annotator assigns labels to the selected samples, with
which a SED model is trained.

Two types of predicted labels are generated for each unla-
beled sample. Based on a trained SED model, model-predicted

1https://github.com/zhao-shuyang/active_learning

https://github.com/zhao-shuyang/active_learning
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Fig. 3: A visualization of mismatch-first farthest-traversal on
an imaginary binary classification problem. In the bottom
panel, the range of label propagation is used to visualize
the area where an annotated data point propagates its label.
Farthest-traversal is first performed on samples where prop-
agated labels mismatch with model predictions, and then on
samples with matched predictions.

labels are generated. Based on the nearest neighbor prediction,
propagated labels are generated, according to a distance met-
ric. The similarity between the two types of predicted labels
is measured for each unlabeled sample. The measurement of
the prediction similarity is given in the subsection about the
mismatch-first criterion. The samples are primarily ranked by
the prediction similarities, lowest first. There are typically
multiple samples with the same prediction similarities. They

Fig. 4: An example of deriving model-predicted labels from
sound event detection output.

are further ranked by the distance to the previously selected
samples, farthest first. A batch of samples with the highest rank
is presented to the annotator and the active learning process
continues to the next iteration.

1) Mismatch-first criterion: At the beginning of each iter-
ation, except the first one, model-predicted labels and propa-
gated labels are generated for each unlabeled sample. Model-
predicted labels are derived from the SED outputs of each
recording as is illustrated in Figure 4. When a class of
sound event is detected within a candidate segment, a model-
predicted label is generated, associating the class of the sound
event to the segment. The classes associated with a sample
x according to the SED outputs are denoted as a set Ax.
Propagated labels are generated based on the nearest neighbor
prediction. Each unlabeled sample x is assigned the labels
of its nearest annotated sample. The distance between two
samples is measured by the cosine distance between the means
of embeddings within the two samples. These propagated
labels are denoted as a set Bx.

In a multi-label classification problem, the similarity be-
tween the propagated labels and the model-predicted labels
on a sample x is measured based on the Jaccard index as,

J(x) =

{
|Ax∩Bx|
|Ax∪Bx| , if Ax ∪ Bx 6= ∅
1 , if Ax ∪ Bx = ∅

. (1)

Samples are first selected within the set M, which consists
of the samples with the lowest prediction similarities among
the set of unlabeled samples.

The mismatch-first criterion is based on an assumption that
a model benefits more from a counterexample, where it makes
an error, in comparison to an example where it makes a
correct prediction. When the prediction results based on two
mechanisms mismatch, the sample is a counter example for
at least one of the mechanisms. Since the nearest neighbor
prediction and neural network prediction are two fundamen-
tally different mechanisms, their prediction results are usually
supplementary information to each other. In addition, the
two prediction mechanisms are based on different contexts.
The nearest neighbor prediction is based only on annotated
segments, whereas the SED model uses original recordings as
a context for annotated segments.

2) Farthest-traversal: Farthest-traversal aims at optimizing
the diversity of selected samples. It selects the sample farthest
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to the previously selected samples. The distance between
two samples is measured by the cosine distance between the
means of embeddings within the two samples. The previously
selected samples are denoted as a set S , which is the union of
annotated samples and the samples already selected in the cur-
rent iteration. As a result, a selected sample is neither similar to
annotated samples, nor to the ones to be annotated in the same
batch. The distance from a sample x to the set of previously
selected samples S is defined as d(x,S) = miny∈Sd(x, y).

With mismatch-first as the primary criterion and farthest-
traversal as the secondary criterion, a sample is selected as

s = argmax
x∈M

d(x,S), (2)

where M is the set of samples with the lowest prediction
similarities.

The selected samples are added one by one into a selection
batch and removed from the set of unlabeled samples until the
batch reaches a pre-defined batch size. After that, the batch
of selected samples is presented to the annotator, querying for
weak labels. Weak labels of a segment is a set of sound event
classes, that are present in the segment.

Previous active learning studies on sound classification
incorporate the idea of semi-supervised learning, where pre-
dicted labels on unlabeled data are also used in training [12],
[13], [14]. Since semi-supervised learning techniques have
been rapidly developed in recent years, this study considers
semi-supervised learning as a separate problem and focuses
only on active learning. The optimal combination with semi-
supervised learning is considered as future work.

C. Weakly supervised learning
Previous active learning studies [12], [13], [14] use support

vector machine to classify sound segments. This study uses
a neural network to perform SED, since neural networks
are commonly used for SED problems. The architecture of
the network follows an attention-based weakly supervised
learning system [21], which ranks the 1st in the audio tagging
subtask and the 2nd in SED subtask in a weakly supervised
learning challenge, DCASE 2017 task 4. In [21], each training
input is an annotated segment sliced from a YouTube video.
In comparison, this study uses each original recording as a
training input, preserving the context for annotated segments.

The network architecture is illustrated in Figure 5. The input
of the network is the log-mel spectrogram of a recording,
denoted as X = [x1, ...,xT ], where each vector xt represents
the log-mel band energies in a time frame t = 1, 2, ...T .
The target output is a vector τ , corresponding to the event
class activities. Each element in the target output vector
τ = [τ1, ..., τC ] represents the presence/absence of an event
class, 0 for absence and 1 for presence, and C denotes the
number of classes.

The network consists of six blocks of gated CNNs, each
of which consists of a linear CNN layer and a sigmoid
CNN layer. The element-wise product between the outputs
of the two CNN layers is fed to the next layer. Compared
to traditional CNNs that use rectified linear units as activa-
tion function, the gated CNNs reduce the gradient vanishing

Fig. 5: The diagram of the network architecture used in weakly
supervised learning. The frames marked red in the bidirec-
tional RNN outputs correspond to an annotated segment.

problem in a deep structure [26]. The gated CNNs transfer
the input log-mel spectrogram into a sequence of embeddings
Y = [y1, ...,yT ], where an embedding vector yt corresponds
to a time step t. In order to model a long-term temporal
context, three bi-directional gated recurrent unit (GRU) layers
are used. The GRUs process the embedding sequence, and
output a vector y′

t in each time step. A fully-connected
sigmoid layer is used to estimate the class probabilities in
each time step as pt = cla(y′

t). In parallel, a fully-connected
softmax layer estimates the pooling weights as wt = att(y′

t).
In order to derive the output for an annotated segment, the

weighted average of the class probabilities is computed across
all frames within the segment. Given the start time point of a
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segment as t and the length of it as l, the weak label output
of the segment is computed as

o =

∑t+l
i=t wi · pi∑t+l

j=t wj

, (3)

where · represents element-wise multiplication. Binary cross-
entropy is used to measure the loss between the prediction
output o and the target output τ for each annotated segment,
as

L(τ ,o) =

C∑
k=1

−(ok log(τk) + (1− ok) log(1− τk)), (4)

where C is the number of classes. The training loss for a
recording is the sum of the loss from each annotated segment
within it.

In this study, the gated CNNs that extract embeddings
are pre-trained with the balanced set of AudioSet [17]. The
embedding extraction function is considered as a general
knowledge, which can be transferred to different SED prob-
lems. During the pre-training, the GRU layers are not used,
and embedding vectors are directly fed to the fully-connected
layers. The output of the second last layer of a classification
network is used as embeddings. This follows the common
practice in previous transfer learning studies [18], [27] on
sound classification.

In the active learning process, the pre-trained embedding
extraction function e is fixed. The parameters of the GRU
layers gru, the sigmoid layer cla, and the softmax layer att are
trained with data annotated in the active learning process. With
a limited labeling budget, usually a small number of segments
are labeled in each recording. During the training, the log-
mel spectrogram of full recordings are used as input, but the
training loss is derived from only the frames corresponding
to labeled segments. When performing SED on test data, the
detection output is based on the class probabilities, the output
of cla, without using the layer att.

Previous studies [16], [17], [13], [14] use each annotated
segment as input, instead of the original recordings. As a
result, they lose the contextual information in the original
recordings. The contextual information may benefit the SED
performance from different aspects. Firstly, given background
sounds as contextual information, a model can learn the
unique characteristics of an event out of the background.
Secondly, the contextual information can be used to model
the dependencies between acoustic events and scenes. For
example, it is common to hear key rattling before door opening
and it is common to hear a bird chirping in a forest.

IV. EVALUATION

In order to evaluate the performance of the proposed system,
two sets of experiments are made on two different datasets.
The first one focuses on the training input and annotation unit.
The second one focuses on the sample selection method.

A. Datasets and settings

In order to evaluate active learning performances with
different SED scenarios, two SED datasets are used in the
evaluation. The statistics comparing the two datasets are shown
in Table I. The first dataset is TUT Rare Sound Events
2017 [20], which is used in the challenge of Detection and
Classification of Acoustic Scenes and Events (DCASE) 2017,
as task 2. The second dataset is TAU Spatial Sound Events
2019 - Ambisonic, which is used in the challenge of DCASE
2019 [28], as task 3.

Both datasets consist of synthetic mixtures created by
mixing isolated sound event clips with background sounds.
Previous sound event detection studies [29], [30] use synthetic
datasets as primary evaluation datasets, since the timestamps
of sound events in these datasets are precise and consistent.
In contrast, real-life recordings use manual annotation, where
the subjectivity may lead to inconsistency and possible errors
in the labels. The two datasets in this study are chosen to
represent scenarios with different sound event densities, which
largely affects the active learning performance.

Dataset TUT Rare
Sound Events
2017

TAU Spatial
Sound Events
2019

Total duration 25 h 6 h 40 m
Training set duration 12 h 30 m 5 h
Target event classes 3 11
EBR [-6 db, 0 db, 6 db] 30 db
Recording length 30 s 1 m
Events per minute 1 55

TABLE I: A Summary of datasets used in the evaluation,
explained in Section IV.A.

1) TUT Rare Sound Events 2017: TUT Rare Sound Events
2017 dataset, referred to as rare sound dataset later, is cre-
ated by mixing isolated target sounds from Freesound with
background audio in TUT Acoustic Scenes 2016 dataset [19].
There are three target event classes: baby cry, gunshot, and
glass breaking. Most gunshot and glass breaking sounds are
short, lasting around 200 milliseconds. In comparison, baby
cry events are longer, typically ranging from one to four
seconds. The background consists of sounds from 15 classes
of real acoustic scenes, 78 instances each class. The acoustic
scenes are bus, cafe/restaurant, car, city center, forest, grocery
store, home, lakeside beach, library, metro station, office,
residential area, train, tram, and urban park.

All the background audio tracks last 30 seconds. The
sampling rate is 44100 Hz. An audio signal in the rare
sound dataset might be either pure background or a target
event mixed with a background. The event-to-background ratio
(EBR) in dB is randomly chosen from {−6, 0, 6}, and the
positioning of the target sound in a mixture is also random.
The sound events are rare in this dataset, on average one event
per minute.

The original rare sound dataset is split into a development
training set, development test set, and evaluation set. Each split
of the dataset contains mixtures created with a separate set of
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background and target sounds. In this study, the development
training set is used for training, and the development test set
is used for evaluation. Both the training and test set contains
approximately 1500 audio signals, with 250 target events of
each class.

2) TAU Spatial Sound Events 2019: The dataset TAU
Spatial Sound Events 2019 dataset, is originally a spatial audio
dataset, which is used for sound event detection and spatial
localization task in DCASE 2019 challenge. The dataset is
synthetic, and the source of the mixtures are sound events from
11 classes, with 20 instances in each class. Each recording
in the spatial sound dataset has around one-minute duration,
which is mixed with target sound events. On average, each
minute of the signal contains 55 events, randomly positioned,
with possibly overlapping in time. The background is relatively
quiet and the EBR of the mixtures is about 30 dB.

The original sampling rate of the dataset is 48 kHz. In
the experiments, the recordings are resampled to 44.1 kHz,
to match the sampling rate of the pre-trained embedding
extraction model. The audio in this dataset has four channels,
however, only the first channel is used in this study, since this
study does not deal with multi-channel audio.

Similar to the usage of the rare sound dataset, this study
uses only the development set, ignoring the evaluation set in
the challenge. Four-fold cross-validation is used, following the
original setup of the dataset.

B. Evaluation metric

In this study, a segment-based error rate (ER) is used to
evaluate the performance of a SED model [31]. The segment
length in the segment-based evaluation is one second, which
is a common setup in sound event detection studies, such as
DCASE 2017 task 3.

The aim of active learning is to optimize the accuracy of
learned SED models with a limited labeling budget. Thus, the
active learning performance is evaluated by ER as a function
of the labeling budget, which is given in proportion to the
whole training set.

C. Basic experimental setups

Experiments are made to evaluate each component in the
proposed active learning system. This section describes com-
mon setups used through all the experiments in the evaluation.

When computing the spectrogram, the frame length is
40 ms and hop length is 20 ms. In each frame, the signal
is windowed with the Hanning window and then log-mel
energies in 128 bands are calculated. The gated CNN pre-
trained with AudioSet maps a log-mel spectrogram into an
embedding sequence with the same number of frames and
256 dimensions.

The likelihood of change is estimated for each frame based
on the past 24 frames and the future 24 frames, aggregating
to an analysis window of one second. Detected change points
can be closer than one second, for example, the second and
third change point in Fig 2. However, annotating very short
segments can be difficult in practice. The actual annotation
effort is underestimated, when the annotator needs to listen

to the extra context of a candidate segment for annotation. In
order to avoid very short segments, the change points detected
within one second to the previous ones are skipped when
generating the candidate segments. As a result, the minimum
length of the generated segments is one second.

In the simulation of the labeling process, the ground truth
labels are initially hidden to the system. Upon the label query
on a segment, annotated labels are simulated according to
the ground truth. When a ground-truth sound event overlaps
a queried candidate segment with more than 0.1 seconds, a
weak label is generated, associating the event class with the
segment. It is presumed that an event shorter than 0.1 seconds
cannot be perceived by an annotator.

A SED model is trained with simulated annotations
and the performance is benchmarked when the number
of simulated labels reaches an evaluated labeling
budget. In this study, the following proportions of
the training data as labeling budget are evaluated:
1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 100%.
During the training of a SED model in each iteration, one-
third of the labeled data is randomly chosen for validation.

The experiments on the TUT Rare Sound dataset are re-
peated five times, and the average performance is reported.
The 4-fold validation experiments on the TAU Spatial sound
dataset are repeated twice, and the average of the eight results
is reported.

In all the experiments with reported results, the same
network architecture is used. A preliminary study was made
to investigate the effect of the model complexity with low
labeling budget: we tested using a single GRU layer instead
of three when only 1% of the training data was labeled. As a
result, the performances are similar among the tested models
with different number of layers.

D. Experiments

In order to evaluate each component in the proposed active
learning system, four experiments have been made, as is
summarized in Table II.

The proposed system uses variable-length segments as can-
didate segments for annotation. In order to preserve the context
for the annotated segments, the original recordings are used
as training inputs, regarded as partially labeled sequences.
Experiment A evaluates the effect of preserving the context.
Experiment A1 investigates the training input. System 1 uses
full recordings as training inputs as is proposed, whereas
System 2 uses only annotated segments as training inputs.
Experiment A2 investigates the annotation unit. System 3 uses
variable-length segments as an annotation unit as is proposed,
whereas System 4 uses a full recording as an annotation
unit. Strong labels are used in experiment A2 since weak
labels are not informative for full recordings in the TAU
Spatial Sound dataset, where most recordings include all the
11 sound event classes. During the model training with strong
labels, the attention layer is not used and the training loss
is directly computed as the binary cross-entropy between
the target and the class probability output on a frame basis.
Random sampling is used in all the systems in Experiment A.
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System Annotation unit Label type Sample selection method Training input

Experiment A1 1 variable-length segment weak label random sampling recordings
2 variable-length segment weak label random sampling segments

Experiment A2 3 variable-length segment strong label random sampling recordings
4 recording strong label random sampling recordings

Experiment B
1 variable-length segment weak label random sampling recordings
5 variable-length segment weak label mismatch-first farthest-traversal recordings
6 variable-length segment weak label uncertainty sampling recordings

Experiment C 5 variable-length segment weak label mismatch-first farthest-traversal recordings
7 fixed-length segment weak label mismatch-first farthest-traversal recordings

TABLE II: A summary of experiments. Bold font is used to highlight the investigated aspect in each experiment.

Experiment B focuses on the sample selection method. It
compares mismatch-first farthest-traversal, with two reference
methods based on random sampling and uncertainty sampling.
Random sampling is used in System 1, which is also used
in Experiment A1. System 5 uses mismatch-first farthest-
traversal, and System 6 uses uncertainty sampling. In random
sampling, each candidate segment has an equal probability
of being selected. In uncertainty sampling, the certainty of
predicting a class c is measured as 2 × |oc − 0.5|, where oc
is the weak label output or segment-wise class probability.
The overall prediction certainty on a sample is defined as
the minimum prediction certainty over all the classes. Since
uncertainty sampling and mismatch-first farthest-traversal are
batch mode active learning, the performance depends on the
size of a selection batch. Typically a smaller batch size leads
to better accuracy, but it requires more training time. In this
experiment, the selection batch size is set to 0.5% of the whole
trained set, which is about 150 segments in the TUT Rare
Sound dataset and 60 segments in the TAU Spatial Sound
dataset. The batch size is chosen for convenience, since the
performance of the learned SED model is reported after every
two selection batches, according to the evaluated labeling
budget.

Experiment C focuses on the proposed segmentation method
based on change point detection. System 5 is a combination
of all proposed components in this study. In comparison to
System 5, System 7 uses segments with a fixed-length of two
seconds. The total number of fixed-length segments is similar
to the total number of variable-length segments generated
using change point detection.

E. Experimental results

The results of experiment A1, illustrated in Figure 6, show
that preserving original recordings as the context clearly
outperforms training with only annotated segments. In some
cases, more than 60% of the labeling budget can be saved
to achieve the same accuracy. A sound event is sometimes
detected not only based on the audio signal where the event
happens but also the difference compared to the background
sounds in the temporal context, preserved in the original
recordings. The results of experiment A2, illustrated in Fig-
ure 7, show that annotating segments is more efficient com-
pared to annotating full recordings. The segments randomly
sampled from all the recordings have typically higher diversity,
in comparison to a small amount of fully annotated recordings.
In addition, by comparing the results of System 1 and System

3, close performance is achieved by using attention pooling
with weak labels, compared to using strong labels.

The experimental results comparing the sampling methods
are illustrated in Figure 8. The results show that the proposed
method outperforms reference methods with all evaluated
labeling budgets.

In the experiments on the TUT Rare Sound dataset, the
proposed method outperforms reference methods to a large
extent. Most of the training data have little relevance to the
target problem since the target sound events are rare in this
dataset. Therefore, the annotation effort can be greatly reduced
by selective sampling, if irrelevant data can be ruled out in
the sample selection. In addition, uncertainty sampling also
outperforms random sampling to a large extent.

Remarkably, the proposed active learning method requires
only 2% of the training data to be annotated to achieve similar
performance, compared to annotating all the data. Surprisingly,
the best performance is achieved by annotating only 5% of the
training set. The sound events are rare in the dataset, and most
of the segments containing target events are selected within
the first 5% of the training set. By the time when 5% of
the training data is labeled in a typical case, the segments
containing a target event comprise 35% of the labeled data,
whereas, only 1.25% of the unlabeled data contains a target
event. Although more labeled data is available when labeling
budget increases, the high label distribution bias has a negative
effect on the accuracy of learned models. As a result, the
accuracy does not improve with increasing labeling budget.

In the experiments on the TAU Spatial Sound dataset,
The proposed method slightly outperforms the two reference
methods. In the TAU Spatial Sound dataset, target sound events
are dense. In principle, little improvement can be made with
selective sampling, when majority of the dataset are relevant
to the target SED problem. In this case, the proposed method
cannot save much annotation effort.

Combining the effect of sample selection and training with
original recordings as context, a clear improvement in perfor-
mance can be made with the proposed system. This can be
evaluated by comparing System 5 with System 2. To achieve
ER of 0.55 in the TUT Rare Sound dataset, System 2 requires
20% of the training set as a labeling budget. In comparison,
the proposed method, System 5 requires annotating only 1%
of the training set. To achieve ER of 0.5 in the TAU Spatial
Sound dataset, System 2 requires 6% of the training set as
labeling budget. In comparison, System 5 requires annotating
only 4% of the training set.

The experimental results comparing the two segmentation
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Fig. 6: Error rate of learned models as the function of labeling budget for methods that use different training inputs,
corresponding to experiment A1.
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Fig. 7: Error rate of learned models as the function of labeling budget for methods that use different annotation units,
corresponding to experiment A2.

methods are illustrated in Figure 9, when mismatch-first
farthest-traversal is used. The experiments show that variable-
length segments lead to better performance. Mismatch-first
farthest-traversal largely depends on the similarity analysis.
Since fixed-length segments often contain part of events, the
similarities between fixed-length segments are less relevant
to their labels, compared to the similarities between variable-
length segments, which is targeted to contain complete events.

V. CONCLUSION

In this study, we propose an active learning system for sound
event detection (SED), which targets on optimizing the accu-
racy of a learned SED model with limited annotation effort.
The proposed system analyzes an initially unlabeled audio
dataset, querying for weak labels on selected sound segments
from the dataset. A change point detection method is used
to generate variable-length audio segments. The segments are
selected and presented to an annotator, based on the principle
of mismatch-first farthest-traversal. During the training, full

recordings are used as input to preserve the long-term context
for annotated segments.

Experimental results show that training with original record-
ings as a context for annotated segments clearly outperforms
training with only annotated segments. Mismatch-first farthest-
traversal clearly outperforms reference sampling methods
based on random sampling and uncertainty sampling. The per-
formance of mismatch-first farthest-traversal depends on the
segmentation method that generates the candidate segments.
Variable-length segments generated by change point detection
lead to clearly better performance than fixed-length segments.

Overall, the proposed method effectively saves annotation
effort to achieve the same accuracy, with respect to reference
methods. The amount of annotation effort can be saved de-
pends on the distribution of target sound events in the training
dataset: a larger amount of annotation effort can be saved
when the target sound events are rare. On the dataset with
rare events, more than 90% of labeling budget can be saved
by using the proposed system, with respect to a system that



10

0.05 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 1

0.3

0.4

0.5

0.6

0.7

0.8
Er

ro
r R

at
e

TUT Rare Sound Events 2017

Random sampling (System 1)
Mismatch-first farthest-traversal (System 5)
Uncertainty sampling (System 6)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 1

0.3

0.4

0.5

0.6

0.7

0.8 TAU Spatial Sound Events 2019

Random sampling (System 1)
Mismatch-first farthest-traversal (System 5)
Uncertainty sampling (System 6)

Fig. 8: Error rate of learned models as the function of labeling budget for different sampling methods, corresponding to
experiment B.
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Fig. 9: Error rate of learned models as the function of labeling budget for different segmentation methods, corresponding to
experiment C.

uses random sampling and annotated segments only for model
learning. Notably, by annotating 2% of the training data, the
proposed method achieves the same accuracy as training with
all the data.

In future work, the optimal combination of active learning
and semi-supervised learning methods can be studied for
SED. Recent semi-supervised learning studies, particularly
those based on the mean-teacher method [32], have been
shown effective for SED problems in DCASE 2019 task 4
[33]. We expect that more annotation effort can be saved, by
incorporating semi-supervised learning to further utilize the
unlabeld part of the dataset.
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