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Abstract—Diffusion models have gained significant popular-
ity in the field of image-to-image translation. Previous efforts
applying diffusion models to image super-resolution (SR) have
demonstrated that iteratively refining pure Gaussian noise using
a U-Net architecture trained on denoising at various noise levels
can yield satisfactory high-resolution images from low-resolution
inputs. However, this iterative refinement process comes with
the drawback of low inference speed, which strongly limits its
applications. To speed up inference and further enhance the per-
formance, our research revisits diffusion models in image super-
resolution and proposes a straightforward yet significant diffusion
model-based super-resolution method called ACDMSR (accel-
erated conditional diffusion model for image super-resolution).
Specifically, our method adapts the standard diffusion model
to perform super-resolution through a deterministic iterative
denoising process. Our study also highlights the effectiveness of
using a pre-trained SR model to provide the conditional image
of the given low-resolution (LR) image to achieve superior high-
resolution results. We demonstrate that our method surpasses
previous attempts in qualitative and quantitative results through
extensive experiments conducted on benchmark datasets such
as Set5, Set14, Urban100, BSD100, and Manga109. Moreover,
our approach generates more visually realistic counterparts for
low-resolution images, emphasizing its effectiveness in practical
scenarios.

Index Terms—Diffusion Models, Image-to-Image Translation,
Conditional Image Generation, Image Super-resolution.

I. INTRODUCTION

S INGLE IMAGE SUPER-RESOLUTION (SISR) has
drawn active attention due to its wide applications in

computer vision, such as object recognition, remote sensing
and so on [1], [2], [3], [4], [5], [6], [7], [8]. SISR aims to obtain
a high-resolution (HR) image containing great details and tex-
tures from a low-resolution (LR) image by a super-resolution
method, which is a classic ill-posed inverse problem [9], [10].
To establish the mapping between HR and LR images, lots of
CNN-based methods have emerged [11], [12], [13], [14], [15],
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[16], [17], [18], [19]. These methods focus on designing novel
architectures by adopting different network modules, such as
residual blocks [20], [21], attention blocks [22], [23], non-local
blocks [24], [25], transformer layers [26], [27], and contrastive
learning [28], [29], [30]. For optimizing the training process,
they prefer to use the MAE or MSE loss (e.g., L1 or L2) to
optimize the architectures, which often leads to over-smooth
results because the above losses provide a straightforward
learning objective and optimize for the popular PSNR (peak
signal-to-noise-ratio) metric [31], [32], [33], [34], [35].

With deep generative models of all kinds exhibiting high-
quality samples in a wide variety of data modalities, ap-
proaches based on the deep generative model have become
one of the mainstream, mainly including GAN-based meth-
ods [36], [37], [38] and flow-based methods [39], [40], [41],
which have shown convincing image generation ability. GAN-
based SISR methods [36], [37], [38] often introduce a gener-
ator and a discriminator in an adversarial way to push the
generator to generate realistic images. The generator can gen-
erate an SR result for the input LR, and the discriminator aims
to distinguish if the generated SR result is true. The training
process is optimized by combining content loss and adversarial
losses, which have strong learning abilities [38], [42], [43].
While GAN-based methods have an obvious drawback in that
they easily fall into mode collapse, the training process is
challenging to converge with complex optimization [44], [45],
[46]. Furthermore, adversarial losses often introduce artifacts
not present in the original clean image, leading to large dis-
tortion [47], [35]. Flow-based SR methods are another famous
line based on the deep generative model. They directly account
for the ill-posed problem with an invertible encoder [48], [49].
The flow-based operation transforms a Gaussian distribution
into an HR image space instead of modeling one single output
and inherently resolves the pathology of the original ”one-to-
many” SR problem. Optimized by a negative loglikelihood
loss, these methods avoid training instability. Still, they suffer
from enormous footprints and high training costs due to the
strong architectural constraints to keep the bijection between
latents and data [48].

Lately, the broad adoption of diffusion models has
shown promising results in image generative tasks [50]. In
SRDiff [51], the authors propose a two-stage SR framework.
First, they design a super-resolution structure and pre-train
it to obtain a conditional image for the diffusion process.
Then they redesign the U-net structure in diffusion models.
The training process of this method is relatively complicated,
and it does not consider combining existing pre-trained SR
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models, such as EDSR [20], RCAN [12], and SwinIR [26].
Similarly, SR3 [48] directly applies the bicubic up-sampled LR
image as the conditional image. Nevertheless, the stochastic
sampling style in the inference phase makes the reconstruction
process complex and slow. Unlike them, we propose a simple
but non-trivial method for image super-resolution based on
the conditional diffusion model,i.e., ACDMSR (accelerated
conditional diffusion model for image super-resolution). Our
work shares some similarities with SRDiff, which first applies
diffusion models to the SR tasks. Different from the existing
technique [51], [48], our ACDMSR adopts the current per-
tained SR methods to provide the conditional image, which
is more plausible than the one in [48], [51]. Moreover, it
helps to significantly improve perceptual quality over existing
state-of-the-art methods across multiple standard benchmarks.
Furthermore, to accelerate the inference steps, we build a
n-th order sampler that decreases the 1000-step- to 40-step
inference and keeps the good quality. Compared with previous
diffusion model-based methods SR3 and SRDiff, which need
1000 inference steps, ours significantly shortened the acqui-
sition of final results. By simply concatenating a Gaussian
noise and the conditional image with L1 loss optimizing the
diffusion model, our method makes the training process more
concise compared with [48], [51]. The main contributions of
this work are listed as follows:

• To the best of our knowledge, we are the first to combine
diffusion models and the existing pre-trained SR models
to conduct image super-resolution, which can also be
taken as a post-process framework.

• Compared with existing diffusion model-based SR meth-
ods, our ACDMSR adopts a deterministic sampling way
in the inference phase. It can effectively reduce the infer-
ence steps from 1000 to just 40, achieving an improved
equilibrium between distortion and perceptual quality.

• Compared to existing SOTA SR methods, our ACDMSR
achieves superior perceptive results and can generate
more photo-realistic SR results on various benchmarks.

II. RELATED WORK

A. Single Image Super-resolution Methods

CNN-based methods. CNN-based methods are a trendy
line for image super-resolution, and much great work is
coming out. For example, [11] employs the ResNet archi-
tecture from [52] and solves the time and memory issues
with good performance. Then [20] further optimizes it by
analyzing and removing unnecessary modules to simplify the
network architecture and produce better results. After them,
RCAN [12] and MCAN [13], and EMASRN [53] adopt
the attention mechanism [54] and design new residual dense
networks. Then MLRN [17], SRNIF [18], and BSRT [55]
proposed multi-scale fusion or internal and external features
fusion architecture to solve the problem that the existing SISR
could not make full use of the characteristic information of
the middle network layer and internal features. In addition,
SwinIR [26] and ESRT [27] apply transformer technology
to improve the performance further. While these methods
aim at pursuing higher PSNR (peak signal-to-noise-ratio) by

designing novel architectures and using the MSE or MAE loss
(e.g., L1 or L2) to optimize the architectures, which often
leads to smooth results because the above losses provide a
straightforward learning objective [31], [33], [34], [35].

Generative model-based methods.
Because deep generative models have recently exhibited

promising results in generating images with rich details, it has
become popular to adopt generative models to conduct image
super-resolution, such as GAN-based methods [11], [36], [37],
[38] and flow-based methods [39], [40], [41]. SRGAN [11]
is the first GAN-based SISR method. It adopts the GAN
technology to push the generator to produce results with
better Visual effects. Compared with SRGAN, ESRAGN [36]
trains the discriminator to predict the authenticity of the
generated image instead of predicting if the generated image
is valid. NatSR [37] proposes a Naturalness Loss based on
a pre-trained natural manifold discriminator to improve the
ability of the discriminator and achieve comparable results to
recent CNNs. However, GAN-based methods have an obvious
drawback that is jointly optimizing the whole training process
by combining MAE or MSE makes the model easy to fall
into mode collapse, and the training process is not easy to
converge with complex optimization [44], [45]. Furthermore,
adversarial losses often introduce artifacts not present in the
original clean image, leading to large distortion [47], [35].
Flow-based SR methods are another famous line based on
the deep generative model. They directly account for the ill-
posed problem with an invertible encoder [48], [49]. The
flow-based operation transforms a Gaussian distribution into
an HR image space instead of modeling one single output
and inherently resolves the pathology of the original ”one-
to-many” SR problem. Optimized by a negative loglikelihood
loss, these methods avoid training instability. Still, they suffer
from enormous footprints and high training costs due to the
strong architectural constraints to keep the bijection between
latents and data [48].

B. Diffusion Models

Diffusion models have achieved promising results in image
generation [50], [56], [57]. It aims to use a Markov chain to
transform latent variables in simple distributions (e.g., Gaus-
sian) to data in complex distributions. The core technology
for the success of diffusion models is their iterative sampling
process. It progressively removes noise from a random noise
vector. This iterative refinement procedure repetitively evalu-
ates the diffusion model, allowing for the trade-off of compute
for sample quality: by using extra compute for more iterations,
a small-sized model can unroll into a larger computational
graph and generate higher quality samples [58], [59], [60].
Inspired by the above works, some researchers apply diffusion
models in low-level vision tasks [35], [51], [48]. In [35],
authors propose a novel framework for blind image deblur-
ring based on conditional diffusion models, which employs
a stochastic sampler to refine the output of a deterministic
predictor and produces a diverse set of plausible reconstruc-
tions for a given input, leading to a significant improvement
in perceptual quality over existing state-of-the-art methods.
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SRdiff [51] also discuss the drawbacks of current generative
models-based SR methods. It designs a novel single-image
super-resolution model based on diffusion models, which can
provide diverse and realistic super-resolution predictions while
avoiding issues with over-smoothing, mode collapse, or large
model footprints. At the same time, it has to combine the coun-
terpart output from the pre-trained SR model for the LR input,
which makes the whole training process and forward diffusion
process very complex and may struggle with images that
contain complex textures or patterns. Unlike SRdiff, SR3 [48]
presents a straightforward style to introduce diffusion models
to help image super-resolution. It just takes the bicubic low-
resolution image as the conditional image and uses denoising
diffusion probabilistic models to perform stochastic denoising
and achieve super-resolution through iterative refinement using
a U-Net model trained on denoising at various noise levels,
achieving strong performance on super-resolution tasks on
faces and natural images, as well as effective cascaded image
generation. Though these methods have achieved plausible
visual quality, they have an obvious drawback: the sampling
speed needs to be improved in the inference time.

III. PERLIMINARIES: OVERVIEW OF DIFFUSION MODELS

In diffusion models, a Markov chain of diffusion steps gen-
erates data by progressively perturbing the data with Gaussian
noise. Subsequently, these models aim to learn how to reverse
the diffusion process and reconstruct desired data samples
from the noise. This section begins by revisiting the standard
denoising diffusion probabilistic model (DDPM) [50] to pro-
vide a basic understanding. A typical probabilistic diffusion
model consists of four main components: the forward process,
the reverse process, the optimization of the diffusion model,
and the inference stage. We will now introduce each of these
components in the following sections:

A. Forward process

Suppose we have a real data distribution x0 ∼ q(x). The
forward process gradually adds noise into a sampled image x0

using a variance (noise) schedule β1, . . . , βT (βt ∈ (0, 1), 1 ≤
t ≤ T ) to generate noised versions x1,x2, . . . ,xT from
the original image x0. This process can be defined with a
Markovian structure:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), 1 ≤ t ≤ T. (1)

By leveraging the properties of the Gaussian distribution and
marginalizing the intermediate steps, we can sample xt at any
given time-step t using the following formulation:

q(xt|x0) = N (xt;
√

α̂tx0, (1− α̂t)I), (2)

where αt = 1−βt and α̂t =
∏t

s=1 αt. This formulation allows
us to express xt using the reparameterization trick:

xt(x0, ϵ) =
√

α̂tx0 +
√
1− α̂tϵ, (3)

where ϵ is a Gaussian noise vector with ϵ ∼ N (0, I).

B. Reverse process

In order to acquire a real sample x0 from a Gaussian noise
input xT ∼ N (0, I), the reversal of the preceding forward
process is required. This involves the construction of the
inverse of Eq. 1 and the iterative reversal using q(xt−1|xt). It
is worth highlighting that if βt is sufficiently small, q(xt−1|xt)
will also follow a Gaussian distribution. However, estimating
q(xt−1|xt) presents a challenge as it requires the utilization
of the complete dataset. Furthermore, when conditioned on x0

it becomes tractable:

p(xt−1|xt,x0) = N (xt−1;µ(xt, x0), σ(xt,x0)), (4)

where µ(xt,x0) :=

√
α̂t−1βt

1−α̂t
x0 +

√
αt(1−α̂t−1)

1−α̂t
xt and

σ(xt,x0) := 1−α̂t−1

1−α̂t
βt. By substitution Eq. 3, x0 =

(xt −
√
1− α̂tϵ)/

√
α̂t, into the µ(xt,x0), we can have

µ(xt,x0) =
1
√
αt

(xt −
1− αt√
1− α̂t

ϵ). (5)

Following the choice of [50], if we train a model
qθ(xt−1|xt) = N (µθ(xt, t),

∑
θ(xt, t)I) to learn the

above reverse process, p(xt−1|xt,x0), and set
∑

θ(xt, t) as∑
θ(xt, t)) = σ(xt,x0), we can use network fθ to predict

the noise ϵ ≈ fθ(xt, t) so that the reverse process becomes
learnable:

qθ(xt−1|xt) =

N (
1
√
αt

(xt −
1− αt√
1− α̂t

fθ(xt, t)),
1− α̂t−1

1− α̂t
βtI).

(6)

C. Optimize the diffusion model

In [50], it has been demonstrated that reweighted evidence
lower bound proves to be an effective loss function in practical
applications:

L(θ) = Et,x,ϵ∥fθ(xt, t)− ϵ∥2, (7)

where the model learns to predict the added noise ϵ. The
pseudocode for the training is shown in the training part of
Algorithm 1.

D. Inference

After training, the inference becomes trivial now, since
given the start point xT , we can get the formulation of
next step image xt−1 with the reparametrization trick for
Equation 6 as follows:

xt−1 ←−
1
√
αt

(xt −
1− αt√
1− α̂t

fθ(xt, t)) +
√

1− α̂tϵt, (8)

where ϵt ∼ N (0, I) is the random noise added in each denoise
step. We can sample the final image x0 by iteratively applying
the above equation. The pseudocode for the inference is shown
in the inference part of Algorithm 1.
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Fig. 1: Illustration of our method. The model contains a stochastic forward diffusion process, gradually adding noise to an
IHR image. And a deterministic denoise process is applied to recover high-resolution and realistic images ISR corresponding
to ILR images.

Algorithm 1 DDPM
Input: Dataset D, noise predictor fθ , noise schedule α̂t, total
timestep T
Training: train fθ

1: repeat
2: x0 ∼ D
3: t ∼ [1, ..., T ]
4: ϵ ∼ N (0, I)
5: Take a gradient descent step on
6: ∇θ∥ϵ− fθ(

√
α̂tx0 +

√
(1− α̂t)ϵ, t)∥2

7: until converged
Inference: sampling x0

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ϵt ∼ N (0, I), if t > 1, else ϵt = 0
4: xt−1 = 1√

αt
(xt − 1−αt√

1−α̂t
fθ(xt, t)) + βtϵt

5: end for.

IV. METHODOLOGY

Our method can be seen as a post-process for single image
super-resolution (SISR). As shown in Fig. 1, our ACDMSR
consists of a stochastic diffusion process forward procedure
that gradually adds noise to an image until a fully normal
Gaussian noise and a deterministic denoising reverse process
that conditions on IC to reconstruct the image from noise.
Algorithm 2 shows the whole process of our ACDMSR. The
following section introduces our method in detail.

A. Stocatic Diffusion Process

Given a SISR dataset (IHR, ILR) ∼ D, we adopt the
diffusion model [50], [57] to map a normal Gaussian noise
xT ∼ N (0,1) to a high-resolution image x0 = IHR with
a corresponding conditional image xC = ILR. We will talk
about the choice of the conditional image later. The diffusion
model contains latent variables x = {xt|t = 0, 1, ..., T},
where x0 = IHR, xT = N (0,1). The same noise schedule
with [50] is used for our method, β1, . . . , βT where 1 ≤
t ≤ T .

Forward stochastic diffusion process. We define the forward
process q(xt|IHR) := q(xt|x0) of diffusion model with a
Gaussian process by the Markovian structure:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

q(xt|x0) = N (xt;
√

α̂tx0, (1− α̂t)I).
(9)

Same with DDPM [50], the forward process gradually adds
noise into an image x0 to generate latent variables x1, ...,xT

for the original image x0. With the Gaussian distribution
reparameterization trick, we can write the latent variable xt

as Eq. 3, xt(x0, ϵ) =
√
α̂tx0 +

√
1− α̂tϵ.

Model training. According to [61], our findings demonstrate
that predicting the image, rather than focusing on the noise,
yields superior outcomes when applied in super-resolution
tasks. We have proved it in Sec. V-C. Therefore, the optimiza-
tion target of our diffusion model is denoising xt ∼ p(xt|x0)
to get estimated x̂0 with a U-Net fθ(xt, t,x

C) := x̂0 ≈ x0.
We use the following loss function to train the model:

L := Et,(x0,IC),ϵ[∥x0 − fθ(αtx0 + σtϵ, t,x
C)∥2], (10)

where t is uniformly sampled between 1 and T . With Eq. 3,
ϵ = (xt −

√
α̂tx̂0)/

√
1− α̂t, we can easily predict the added

noise to the image xt.
Here, different with [50], we add an additional input xC as

the conditional image to guide the model fθ to keep the same
content with xC during the denoising process.

B. Conditional image choice

To get realistic super-resolution images, [51], [48] also
introduced diffusion models with conditional denoising on a
pre-trained feature extractor or a bicubic upsampled image
on a low-resolution image. In this work, we leverage the
power of the current development of SISR to provide a better
conditional image. Specifically, given a low-resolution image
ILR and a pre-trained super-resolution model ϕθ, we generate
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Algorithm 2 ACDMSR
Training : train denoising model fθ
Input: Dataset D, schedule αt, σt, timesteps T , pre-trained super-

resolution model ϕθ

1: repeat
2: (IHR, ILR) ∼ D, t ∼ Uniform({1, ..., T}),

ϵ ∼ N (0, I)
3: x0 = IHR,xC = ϕθ(I

LR)
4: xt = αtI

HR + σtϵ
5: Take a gradient descent step on

∇θ∥IHR − fθ(xt, t,x
C)∥2

6: until converged

Inference: super resolve ILR

Input: trained denoising model fθ , pre-trained super-resolution model
ϕθ , diffusion sampler F(fθ,xt, t,x

C)

1: xC = ϕθ(I
LR)

2: xT ∼ N (0,1)
3: for t = T, ..., 1 do
4: xt−1 = F(fθ,xt, t,x

C)
5: end for

our conditional image by xC = ϕθ(I
LR), which has been

proved to be more plausible for obtaining results with better
perceptual quality in ablation study V-C.

C. Sampling Process

Diffusion models are known to be slow and need thousands
of forward evaluation steps to achieve the generated image
with good quality. Similarly, the diffusion model-based super-
resolution method inherited this drawback. To remedy this
issue, we propose a n-th order sampler that adapts two acceler-
ating sampling strategies from existing work, i.e., DDIM [56]
and DPM-solver [62]. These two sampling strategy has been
shown to help the diffusion model achieve good image quality
and keep a short sampling time. In this section, we first define
what a sampler is. Then we describe the proposed super-
resolution sampler in detail.

Iterative super-resolution sampler. Given a pre-trained
model fθ with objective Eq 10, and a low-resolution condi-
tional image xC , we define a iterative super-resolution sampler
from t = T to t = 0 as:

xt−1 = F(fθ,xt, t,x
C) (11)

where xt is the ancestor of xt−1.
First order deterministic sampling. Different from SR3

and SRdiff sampling via a stochastic way, we use a determin-
istic sampling method to conduct the iterative reverse process
xt−1 = F(fθ,xt, t,x

c) in a DDIM-like manner which has
been shown achieve a high-quality image in limited inference
steps. Given the image xt at step t, we can write the generation
process of xt−1 as follows:

xt−1 = F1st(fθ,xt, t,x
c)

=
√
α̂t−1x̂0 +

√
1− α̂t−1

xt −
√
α̂tx̂0√

1− α̂t

,
(12)

where x̂0 is predicted with trained denoising model x̂0 =
fθ(xt, t,x

C). Compared to the DDPM sampling process in
Eq. 8, the above sampling does not add noise in each step,

making it a deterministic method. Since, in each step, we need
only one forward model evaluation, we call this method a first-
order method.

Second order deterministic sampling. [63] view the diffu-
sion model as a stochastic differential equation (SDE), which
has the same transition distribution q(xt|x0) as in Eq 2 for
any t ∈ [0, T ]:

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0), (13)

where wt ∈ RD is the standard Wiener process, and

f(t) =
d log

√
α̂t

dt
, g(t) =

1− α̂t

dt
− 2f(t)

√
α̂t. (14)

With some regularity, [64] shows that the above forward
SDE Eq.13 has an quivalent reverse process starting from the
marginal distribution q(xT ) at time T to time step 0:

dxt

dt
= f(t)xt−

1

2
g2(t)∇x log q(xt), xT ∼ N (0, I), (15)

where score function ∇x log q(xt) can be replaced with the
noise prediction of a model ϵθ(xt, t), such that:

dxt

dt
= f(t)xt −

g2(t)

2
√
1− α̂t

ϵθ(xt, t), xT ∼ N (0, I). (16)

This probability flows ordinary differential equation (ODE)
has the same marginal distribution at each time t as that of the
SED in Eq. 13. Sampling can be done by solving the integral
of the above ODE from T to 0. [62] identifies the integral
of the above ODE Eq. 16 has a linear part f(t)xt which can
be solved exactly and a nonlinear part g2(t)

2
√
1−α̂t

ϵθ(xt, t) which
needs a black-box ODE solver to approximate. Compared
to solving the whole ODE using a black-box solver, this
semilinear property enables the elimination of the approxi-
mation error of the linear part. We build our second-order
deterministic sampler in a DPM-Solver [62] way. To this end,
define λt = λ(t) = log

√
(α̂t(1− α̂t)) and its inverse function

tλ(·) such that t = tλ(λ(t)), we formulate our second-order
sampling method on image xt as follows:

s = tλ(
λt + λt−1

2
),

u = F1st(fθ,xt, s,x
C),

xt−1 = F1st(fθ,u, t,x
C).

(17)

Since there uses first order two times, we call the above
iterative sampler a second order deterministic sampler and
denote it as F2ed(fθ,xt, t,x

C).
We conducted experiments to compare these three sampling

methods. As shown in Fig. 2, the PSNR of the original DDPM
sampling method is below 20dB in 500 forward steps, which
is due to the nature of the stochastic reverse process. DDPM
requires many steps to remove the randomness added during
each step during the reverse process. First-order and second-
order deterministic sampling methods perform much better
in small sampling steps. As shown in Fig. 2, the first-order
and second-order methods demonstrate a trade-off between
visual quality and image distortion in the low sampling steps
region. As the number of sampling steps increases, the PSNR
decreases while the NIQE visual quality measure improves.
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Fig. 2: Sampling steps comparison for DDPM sampling method, first-order deterministic, and second-order deterministic
sampling method. (Conducted on Urban100 under ×4 scale.)
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Fig. 3: Qualitative comparison with SOTAs performed on image ‘head’ from Set5 (×4 scale, best view in zoomed-in.)

Fig. 2 shows that the second-order sampler can achieve the
lowest NIQE scores in just 40 steps. Therefore, we chose
second-order sampling as our sampling method and set T = 40
during inference because we can achieve good perception
quality from 40 feedforward steps.

V. EXPERIMENTS

A. Experimental Settings

Dataset. We use 800 image pairs in DIV2K as the training
set. We take public benchmark datasets, i.e., Set5, Set14,

Urnban100, BSD100, and Manga109 as the test set to compare
with other methods.

Setups. We set T = 1000 for training and T = 40
during the inference time for the diffusion model. We take
the pre-trained super-resolution models ( EDSR [20], and
RCAN [12], SwinIR [26]) to provide the initial super-
resolution image, i.e.the conditional image. The conditional
diffusion model is trained with Adam optimizer and batch
size 16, with a learning rate of 1× 10−4 for 400k steps. The
architecture of the model is the same as that in [48].

Metrics. The previous study has shown that distortion and
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Fig. 4: Qualitative comparison with SOTAs performed on image ‘184026 ’ from BSD100 (×4 scale. Cropped and zoomed in
for a better view.)

perceptual quality are at odds with each other, and there is
a trade-off between them [31]. Since our work focuses on
the perceptual quality, except the distortion metrics: PSNR
and SSIM, we also provide perceptual metrics: LPIPS [65]
and NIQE [66] to show that our method can generate better
perceptual results than other methods. LPIPS is recently in-
troduced as a reference-based image quality evaluation metric,
which computes the perceptual similarity between the ground
truth and the SR image. NIQE is a no-reference image quality
score built on a “quality aware” collection of statistical features
based on a simple and successful space domain natural scene
statistic model.

B. Quantitative and Qualitative Results

To verify the effectiveness of our ACDMSR, we select
some SOTA generative methods to conduct the compara-
tive experiments, including ESRGAN [36], SRFlow [39],
SRDiff [51], SR3 [48]. We selected EDSR [20], RCAN [12],
and SwinIR [26] to provide the conditional image, respec-
tively. Therefore, we report three cases for our cDPMASR, i.e.,
EDSR+, RCAN+, and SwinIR+. In addition, we also compare
our method with some SOTA tradition CNN-based SR meth-
ods to verify further the effectiveness of our ACDMSR, in-
cluding EDSR [20], RCAN [12], EMASRN [53], SwinIR [26],
ESRT [27], and BSRN [55]. All the results are obtained from
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Fig. 5: Qualitative comparison with SOTAs performed on image ‘42012’ from BSD100 (×3 scale, best view in zoomed-in.)
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Fig. 6: Qualitative comparison with SOTAs performed on image ‘AkkeraKanjinchou’ from Manga109 (×8 scale, best view in
zoomed-in.)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE I: Results on Set5, Set14, BSD100, Urban100, and Manga109. The best and the second-best results are highlighted
in red and green.

Method ESRGAN SRFlow SRDiff SR3 Ours
EDSR+ RCAN+ SwinIR+

Set5

×4

LPIPS↓ 0.0596 0.0767 0.0770 0.1084 0.0619 0.0606 0.0564
PSNR↑ 30.459 28.35 30.938 27.314 30.830 30.838 31.031
SSIM↑ 0.8516 0.8138 0.8738 0.7844 0.8684 0.8645 0.8676

Set14

LPIPS↓ 0.0867 0.1318 0.1009 0.1284 0.0883 0.0865 0.0827
PSNR↑ 26.282 24.97 27.230 25.475 26.996 27.015 27.039
SSIM↑ 0.6980 0.6908 0.7432 0.6889 0.7316 0.7257 0.7341

BSD100

LPIPS↓ 0.0834 0.1831 0.1041 0.1392 0.0935 0.0953 0.0834
PSNR↑ 25.288 24.654 25.948 25.208 25.743 25.865 25.947
SSIM↑ 0.6495 0.6573 0.6833 0.6498 0.6681 0.6706 0.6743

Urban100

LPIPS↓ 0.0944 0.1279 0.1077 0.1993 0.0997 0.0997 0.0934
PSNR↑ 24.349 23.652 25.340 22.489 25.452 25.587 25.852
SSIM↑ 0.7327 0.7312 0.7661 0.6336 0.7649 0.7681 0.7796

Manga109

LPIPS↓ 0.0420 0.0660 0.0473 0.1100 0.0409 0.0396 0.0374
PSNR↑ 28.476 27.14 28.668 24.691 29.072 29.385 29.601
SSIM↑ 0.8595 0.8244 0.8851 0.7568 0.8791 0.8816 0.8874

Set5

×8

LPIPS↓ 0.2626 0.2304 0.3129 0.1872 0.2988 0.1813 0.1669
PSNR↑ 24.830 22.604 20.074 25.394 24.955 27.026 27.165
SSIM↑ 0.6843 0.6062 0.5852 0.6897 0.6897 0.7834 0.7842

Set14

LPIPS↓ 0.2536 0.2965 0.2929 0.1983 0.2740 0.2083 0.2108
PSNR↑ 23.496 21.261 21.149 23.959 23.648 25.136 25.133
SSIM↑ 0.5854 0.4894 0.5393 0.5850 0.5864 0.6487 0.6485

BSD100

LPIPS↓ 0.2503 0.3236 0.2879 0.1975 0.2734 0.2202 0.2219
PSNR↑ 23.868 21.619 19.162 23.918 24.015 24.983 24.944
SSIM↑ 0.5518 0.4634 0.4560 0.5345 0.5572 0.6054 0.6052

Urban100

LPIPS↓ 0.3062 0.2968 0.3494 0.2722 0.3384 0.2177 0.2245
PSNR↑ 20.977 19.383 19.659 21.538 21.164 22.947 22.932
SSIM↑ 0.5359 0.4999 0.5155 0.5546 0.5390 0.6428 0.6413

Manga109

LPIPS↓ 0.2364 0.2185 0.2660 0.1820 0.2564 0.1239 0.1322
PSNR↑ 22.166 20.480 18.757 23.003 22.145 25.097 25.019
SSIM↑ 0.6858 0.6434 0.6311 0.7126 0.6790 0.7984 0.7931

the provided codes or publicized papers.

Tab. I reports the PSNR, SSIM, and LPIPS values for
those generative methods. Our method achieves superior per-
formance under these quantitative metrics in terms of both
distortion and perceptual quality across multiple standard
datasets. ESRGAN is a typical GAN-based SR method, which
includes an SR image generator and an SR image discriminator
to push the generator to generate more realistic images. It
achieves better LPIPSs, lower PSNRs, and lower SSIMs on
different datasets under different scales compared with SRDif.
It seems the results generated by ESRGAN in Fig. 3, Fig. 4 and
Fig.6 include more details than other methods, but it introduces
too many false artifacts compared to the ground truth. SRFlow
adopts the flow model to obtain reasonable high-resolution
images by learning a conditional distribution when given
low-resolution images. But the flow model needs invertible
parameterized transformations with a tractable Jacobian de-
terminant, which limits their expressiveness [48] and obtains
worse LPIPSs, lower PSNRs, and lower SSIM compared with
SRdiff and our method. And the results of SRflow seem noisy.
To our knowledge, SRDiff and SR3 are state-of-the-art SR
methods based on the diffusion model. SRDiff employs a
two-stage structure, first pre-training an SR model and then
optimizing the diffusion model. SR3 proposes an intuitive SR
diffusion model based on the standard diffusion model in [50].
Our method is similar to these two methods. However, we use

existing SR methods to provide the conditional image instead
of pretraining a new conditional-provided model and adjusting
the optimization method by predicting the original image
instead of the noise, which is more suitable for the SR task.
With better conditional image, our method exhibits superior
performance on both quantitative and qualitative results than
SR3 [48]. Though SRdiff obtains some comparable numeric
results in Tab.I, the visual results of our ACDMSR are closer to
ground truths (Especially the forehead in Fig.3, the plants and
the building in Fig.4). In Sec.V-C, we have further conducted
ablation studies to prove that a better conditional image indeed
helps improve the SR performance of the diffusion model.

Tab. II reports the PSNR, SSIM, LPIPS, and NIQE values
for those traditional CNN-based SR methods. Because these
methods are PSNR-directed and they all focus on obtaining
results with good distortion [31], they can perform well on
PSNR and SSIM, which are well-known to only partially
correspond to human perception and can lead to algorithms
with visibly lower quality in the reconstructed images [48].
The SR results of these PSNR-oriented methods are obviously
so over-smooth that some details are missing. Though the
PSNR and SSIM numbers of our method are slightly lower
than theirs, it performs better when considering the metrics
more in line with the human visual system.

In addition, we present Fig. 3, Fig. 4, Fig. 5, and Fig. 6
to illustrate the SR visual results on different datasets with
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TABLE II: Results of different scales on Set5, Set14, BSD100, Urban100, and Manga109. The bold represents the best result.

Method EDSR RCAN EMASRN SwinIR ESRT BSRN Ours
EDSR+ RCAN+ SwinIR+

Set5

×2

LPIPS↓ 0.0322 0.0321 - 0.0316 0.0609 0.0611 0.0121 0.0121 0.0125
NIQE↓ 5.3005 5.2721 - 5.3325 5.3226 5.3824 4.3374 4.4035 4.4151
PSNR↑ 38.193 38.271 - 38.357 38.088 38.072 36.241 36.255 36.462
SSIM↑ 0.9609 0.9614 - 0.9620 0.9598 0.9597 0.9404 0.9399 0.9431

Set14

LPIPS↓ 0.0458 0.0446 - 0.0433 0.0968 0.0937 0.0275 0.0262 0.0252
NIQE↓ 5.0109 4.9893 - 4.9729 5.2071 5.1882 3.8002 3.8680 3.8216
PSNR↑ 33.948 34.126 - 34.141 33.690 33.642 32.073 32.315 32.277
SSIM↑ 0.9202 0.9216 - 0.9227 0.9183 0.9186 0.8834 0.8858 0.8863

BSD100

LPIPS↓ 0.0623 0.0615 - 0.0608 0.1463 0.1458 0.0281 0.0278 0.0283
NIQE↓ 4.9536 4.9673 - 4.9238 5.1657 5.1902 3.3873 3.5461 3.4376
PSNR↑ 32.352 32.389 - 32.448 32.272 32.221 30.176 30.293 30.346
SSIM↑ 0.9019 0.9024 - 0.9030 0.8993 0.8987 0.8544 0.8572 0.8588

Urban100

LPIPS↓ 0.0359 0.0346 - 0.0333 0.0619 0.0619 0.0273 0.0269 0.0272
NIQE↓ 4.5070 4.4983 - 4.4880 4.6086 4.5908 3.9641 3.9850 3.9371
PSNR↑ 32.967 33.175 - 33.404 32.602 32.324 31.386 31.538 31.721
SSIM↑ 0.9359 0.9371 - 0.9394 0.9320 0.9296 0.9124 0.9112 0.9152

Manga109

LPIPS↓ 0.0106 0.0102 - 0.0100 0.0228 0.0226 0.0072 0.0070 0.0067
NIQE↓ 4.5104 4.5217 - 4.4956 4.6483 4.6622 3.8334 3.9864 3.8553
PSNR↑ 39.193 39.438 - 39.586 39.073 38.992 37.046 37.518 37.607
SSIM↑ 0.9782 0.9787 - 0.9791 0.9773 0.9771 0.9650 0.9660 0.9669

Set5

×3

LPIPS↓ 0.0758 0.0747 0.1356 0.0734 0.1363 0.1378 0.0365 0.0354 0.0363
NIQE↓ 6.4616 6.4571 6.5556 6.6240 6.6755 6.8924 5.0188 4.8185 4.8930
PSNR↑ 34.680 34.758 34.361 34.878 34.612 34.499 32.618 32.715 33.001
SSIM↑ 0.9294 0.9300 0.9264 0.9312 0.9271 0.9262 0.8989 0.9002 0.9059

Set14

LPIPS↓ 0.1002 0.1001 0.2175 0.0976 0.2288 0.2092 0.0630 0.0607 0.0637
NIQE↓ 5.5798 5.6797 5.9351 5.6477 5.9953 5.9011 3.8107 3.8364 3.7388
PSNR↑ 30.533 30.627 28.571 30.771 30.583 30.379 28.423 28.578 28.762
SSIM↑ 0.8465 0.8476 0.7809 0.8502 0.8341 0.8435 0.7861 0.7898 0.7953

BSD100

LPIPS↓ 0.1163 0.1150 0.2967 0.1124 0.2968 0.2944 0.0641 0.0648 0.0634
NIQE↓ 5.7653 5.8292 6.0468 5.7018 6.2079 6.0124 3.4016 3.4324 3.3014
PSNR↑ 29.263 29.301 29.053 29.367 29.224 29.181 26.938 27.139 27.163
SSIM↑ 0.8096 0.8106 0.8035 0.8124 0.8049 0.8035 0.7355 0.7415 0.7417

Urban100

LPIPS↓ 0.0863 0.0830 0.1675 0.0798 0.1674 0.1581 0.0661 0.0654 0.0647
NIQE↓ 5.0547 5.1298 5.2835 5.0891 5.3741 5.2855 4.0667 4.0781 4.0287
PSNR↑ 28.812 29.009 28.042 29.288 28.469 28.389 27.424 27.722 27.889
SSIM↑ 0.8659 0.8685 0.8493 0.8744 0.8578 0.8558 0.8309 0.8361 0.8412

Manga109

LPIPS↓ 0.0328 0.0320 0.0662 0.0307 0.0669 0.0638 0.0231 0.0215 0.0220
NIQE↓ 4.8532 4.9141 4.9435 4.8789 5.0512 4.9802 3.9195 3.8586 3.6899
PSNR↑ 34.200 34.429 33.433 34.749 34.109 33.982 32.207 32.338 32.428
SSIM↑ 0.9486 0.9498 0.9433 0.9517 0.9454 0.9450 0.9245 0.9236 0.9259

Set5

×4

LPIPS↓ 0.1098 0.1096 0.1820 0.1087 0.1889 0.1865 0.0619 0.0606 0.0564
NIQE↓ 7.2500 7.1562 7.2289 7.0368 6.9859 7.2315 5.5288 5.6325 4.9999
PSNR↑ 32.426 32.638 32.173 32.722 32.442 32.387 30.830 30.838 31.031
SSIM↑ 0.8985 0.9002 0.8948 0.9021 0.8960 0.8949 0.8684 0.8645 0.8676

Set14

LPIPS↓ 0.1415 0.1387 0.2886 0.1369 0.2911 0.2871 0.0883 0.0865 0.0827
NIQE↓ 6.0475 6.1797 6.3646 6.2370 6.3369 6.2940 3.8035 3.8188 3.7958
PSNR↑ 28.679 28.851 28.572 28.937 28.614 28.534 26.996 27.015 27.039
SSIM↑ 0.7883 0.7885 0.7809 0.7914 0.7845 0.7837 0.7316 0.7257 0.7341

BSD100

LPIPS↓ 0.1551 0.1536 0.3847 0.1542 0.3881 0.3829 0.0935 0.0953 0.0834
NIQE↓ 6.3351 6.3104 6.5912 6.3638 6.6465 6.5235 3.3751 3.4251 3.4096
PSNR↑ 27.734 27.743 27.552 27.841 27.725 27.675 25.743 25.865 25.947
SSIM↑ 0.7425 0.7430 0.7351 0.7461 0.7369 0.7353 0.6681 0.6706 0.6743

Urban100

LPIPS↓ 0.1220 0.1220 0.2342 0.1200 0.2396 0.2315 0.0997 0.0997 0.0934
NIQE↓ 5.4302 5.4886 5.6733 5.4203 5.9356 5.7585 4.0943 4.0521 4.1578
PSNR↑ 26.645 26.745 26.012 27.075 26.522 26.278 25.452 25.587 25.852
SSIM↑ 0.8039 0.8066 0.7837 0.8165 0.7965 0.7903 0.7649 0.7681 0.7796

Manga109

LPIPS↓ 0.0562 0.0544 0.1066 0.1033 0.1109 0.1035 0.0409 0.0396 0.0374
NIQE↓ 5.1480 5.2272 5.2393 5.1456 5.4343 5.3175 3.7661 3.7599 3.7985
PSNR↑ 31.057 31.197 30.413 31.668 30.979 30.837 29.072 29.385 29.601
SSIM↑ 0.9160 0.9170 0.9076 0.9226 0.9107 0.9097 0.8791 0.8816 0.8874

varying scales. Our methods perform well on a variety of
content, including humans, plants, text, and animals. These
results further demonstrate the effectiveness of our approach
in achieving both metric and perceptual quality.

C. Ablation Study

In this section, we conduct ablation studies to verify the
influence of different conditional images on our ACDMSR.
In addition, we also investigate how stochastic sampling and
deterministic sampling influence the reconstruction results.
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Fig. 7: Visual results on ’361010’ from BSD100 under different conditional images (×4 scale. Best view with zoomed-in.)

Furthermore, we conduct experiments to verify the effective-
ness of different loss functions.

Different conditional images. Here, we conduct experi-
ments to verify how different conditional images influence
performance. We adopt LR, SRs generated by EDSR, RCAN,
SwinIR, and the RRDB trained in SRDiff [51] as the condi-
tional images to perform experiments, respectively. As shown
in Tab.III and Fig.7, without any pre-processing, the result
under LR conditional performs worst in both quantitative and
qualitative. After being pre-trained by RRDB, EDSR, RCAN,
and SwinIR, the conditional images can restore more details,
pushing our ACDMSR model to perform better.

TABLE III: Results of ablation study for different conditional
images on BSD100. (4 × SR)

Method LR SR-RRDB ours
EDSR+ RCAN+ SwinIR+

LPIPS↓ 0.1412 0.1096 0.0935 0.0953 0.0834
PSNR↑ 24.353 25.208 25.743 25.865 25.947
SSIM↑ 0.6402 0.6589 0.6681 0.6706 0.6743

Noise-predicted Loss VS. Image-predicted Loss. We
conduct an experiment on the Urban100 dataset with scale
factor 4 to verify whether training the model to predict noise or

TABLE IV: Results of ablation study for different loss with
4×SR on Urban100.

Method LPIPS PSNR SSIM

EDSR+ Image-predicted 0.0997 25.452 0.7649
Noise-predicted 0.1106 24.866 0.7805

RCAN+ Image-predicted 0.0997 25.587 0.7681
Noise-predicted 0.1051 25.035 0.7820

SwinIR+ Image-predicted 0.0934 25.852 0.7796
Noise-predicted 0.1018 25.130 0.7915

images can achieve better performance. As shown in Tab. IV,
the image prediction model can achieve both better distortion
metric (PSNR, SSIM) and perceptual quality (LPIPS), com-
pared with SR3 [48] and SRdiff [51], whose model predicts
the added noise. It is because the image-predict model is more
likely to learn the distribution of image information, which
helps obtain good results for super-resolution reconstruction.

VI. CONCLUSION

Our work revisits diffusion models in super-resolution and
reveals that taking a pre-super-resolved version for the given
LR image as the conditional image can help to achieve
a better high-resolution image. Based on this, we propose
a simple but non-trivial DPM-based super-resolution post-
process framework, i.e., ACDMSR. By taking a pre-super-
resolved version of the given LR image and adapting the
standard diffusion models to perform super-resolution, our
ACDMSR improves both qualitative and quantitative results
and can generate more photo-realistic counterparts for the
low-resolution images on benchmark datasets (Set5, Set14,
Urban100, BSD100, Manga109). In the future, we will extend
our ACDMSR to images with more complex degradation.

Although our method achieves impressive results in gen-
erating high-quality images in single image super-resolution,
however, it inherits the natural issue of the diffusion models
that require multiple feedforwards to achieve the final output.
The recent progress in the research community attempts to
resolve this drawback of the diffusion model to shorten it to a
single step with promising results [59], [67], [60], which can
be beneficial for the SISR framework proposed by our method.
In future work, we will focus on accelerating the inference
process of diffusion models for image super-resolution.
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