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A Bayesian Hierarchical Correlation Model
for fMRI Cluster Analysis
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Abstract—Data-driven cluster analysis is potentially suitable to
search for, and discriminate between, distinct response signals in
blood oxygenation level dependent functional magnetic resonance
imaging (BOLD fMRI), which appear during cerebrovascular
disease. In contrast to model-driven methods, which test for
a particular BOLD signal whose shape must be given before-
hand, data-driven methods generate a set of BOLD signals
directly from the fMRI data by clustering voxels into groups
with correlated time signals. Here we address the problem of
selecting only the clusters that represent genuine responses to
the experimental stimulus by modeling the correlation structure
of the clustered data using a Bayesian hierarchical model. The
model is empirically justified by demonstrating the hierarchical
organization of the voxel correlations after cluster analysis.
BOLD signal discrimination is demonstrated using i) simulations
that contain multiple pathological BOLD response signals and ii)
fMRI data acquired during an event-related motor task. These
demonstrations are compared with results from a model-driven
method based on the general linear model. Our simulations show
that the data-driven method can discriminate between the BOLD
response signals, while the model-driven method only finds one
signal. For fMRI, the data-driven method distinguishes between
the BOLD signals appearing in the sensorimotor cortex and those
in basal ganglia and putamen, while the model-driven method
combines these signals into one activation map. We conclude
that the proposed data-driven method provides an objective
framework to identify and discriminate between distinct BOLD
response signals.

Index Terms—Functional magnetic resonance imaging,
Bayesian hierarchical model, cluster analysis, stroke, cerebrovas-
cular disease

I. INTRODUCTION

UNDERSTANDING the regulatory mechanisms of cere-
bral blood flow and its dysfunction in disease is a central

topic in the neurological scientific literature. Ample evidence
now exists indicating that factors related to age, disease, and
medication can alter cerebrovascular regulation and, conse-
quently, affect the blood oxygenation level-dependent (BOLD)
signal measured by functional magnetic resonance imaging
(fMRI) [1]–[5]. Conventional methods based on tests of vari-
ance, which require pre-defined hemodynamic models to de-
tect a cerebrovascular response, may not be appropriate in this
setting, since the diseased response may deviate considerably
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from the assumed model. These facts have led to investigations
of data-driven methods that search for distinct BOLD signal
responses during an fMRI study [6]–[8]. These methods aim to
identify multiple distinct hemodynamic responses to an event-
related stimulus by, first, grouping together voxels having
similar time series into clusters and, second, by identifying
which of these clusters are significantly correlated to the
stimulus paradigm.

In order to address the second aim, we propose a Bayesian
hierarchical model [9] to describe the correlation structure
of the observed voxel clusters. The model provides a joint
posterior distribution of voxel and cluster correlation val-
ues in order to determine the statistical significance of the
voxel correlations within each cluster with respect to the
global correlation of the data set. We begin by justifying
the choice of a Bayesian hierarchical model by empirically
demonstrating the hierarchical organization of the correlation
data. Next, the model is developed and applied to fMRI
cluster analysis by computing estimates of the joint posterior
distribution with a Markov chain Monte Carlo (MCMC) algo-
rithm. We demonstrate the proposed method’s capability for
BOLD signal identification and discrimination by preparing
fMRI simulations that contain three distinct BOLD response
signals that have been observed in subjects with and without
cerebrovascular disease (CVD) and by corrupting these signals
with characteristic fMRI noise. The proposed method is also
applied to real fMRI data acquired during resting and during
an event-related hand motor task. The fMRI participants all
gave informed consent in accordance with the Ottawa Hospital
Research Ethics Board. A performance benchmark is provided
for these experiments by comparing the results with those
from a model-driven method based on a t statistic calculated
using the general linear model (GLM) and the “canonical
hemodynamic function.”

It seems natural to use a multilevel statistical framework
to describe the correlation structure of fMRI data. In fact,
multilevel Bayesian frameworks such as Gaussian mixture
models have also been used for model-driven fMRI analysis
[10], [11]. The motivation for these frameworks is that fMRI
data are strongly dependent in space and time. In addition to
correlations between proximal voxels, a considerable degree of
correlation is also expected between disparate regions, which
can arise from general variations in blood pressure, electronic
noise, magnetic field inhomogeneities, or body movement.
Within a multilevel framework, these factors can be modeled
appropriately at the voxel, regional, and global levels. Interest-
ingly, the study of hierarchical models for fMRI analysis was
also recently proposed during recent methodological debates
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Fig. 1. Overview of the fMRI cluster analysis method. The acquired fMRI
data are partitioned by a cluster analysis algorithm into a set of k clusters.
The set of clusters is then parameterized by k features. The features y are
then used in a Bayesian model to determine the statistical significance of each
cluster. It is important to note that in this model, y does not represent the
fMRI time-series data, but rather features of those data.

on the limitations of unilevel models employing multiple
comparison correction strategies [12]–[14]. Nonetheless, while
the aforementioned research suggests that multilevel frame-
works might lead to analytical improvements over multiple
comparisons correction factors, the aim of this article is not
to compare statistical models but rather to demonstrate how
data-driven fMRI cluster analysis can be used to search for,
and discriminate between, distinct BOLD response signals.

II. METHODS

An overview of the analysis method is illustrated in Fig. 1.
The fMRI data are acquired as a time series of voxels within
the brain during an event-related experimental paradigm. In
the cluster analysis stage, the data set is partitioned into
k groups of voxels with correlated time series, such that
each voxel has highest correlation with voxels in its group.
This stage allows for the automatic detection and distinc-
tion of different responses without requiring hemodynamic
or paradigm stimulus models. We used the fuzzy k-means
algorithm [15], with the hyperbolic correlation distance [16].
This algorithm is appropriate for functional neuroimage data,
since the optimal value k is unknown and can be determined
heuristically from the algorithm’s fuzzy membership values
[17]. Our algorithm implementation is based on modifications
of previously developed software [6]. In the cluster feature
stage, the measured motor signal (e.g., the signal from a
pressure transducer when the subject closes their hand) is
compared to the BOLD signal from each cluster using the
causal cross-correlation function, which we recently described
in [7]. For each cluster i, this feature provides the correlation
coefficient r with largest absolute value between the motor
signal m[t] and a BOLD signal x[t+d], by optimizing the non-
negative delay d constrained to be no greater than the shortest
inter-stimulus duration. We calculate yi and σi as the weighted
average and weighted standard deviation, respectively, of the
correlation coefficients from all voxels, where the weights are
the membership values for cluster i. These data provide infor-
mation of the distribution of correlation coefficients within

each cluster and are used to fit the Bayesian hierarchical
model.

A. Correlation structure of clustered data

In order to study the empirical distribution of y =
(y1, . . . , yk), we consider two questions: 1) at the voxel level,
how is the temporal correlation r(x[t],m[t]) between each
voxel x[t] in the image and the motor signal m[t] distributed?
and 2) at the cluster level, how is the correlation r(x[t], vi[t])
between voxels x in cluster i and the cluster centroid vi
distributed? Histograms of these correlations were computed
to answer these questions. Fig. 2(a) shows the empirical
distribution of the correlation coefficients of r(x[t],m[t]) for
each of ten resting fMRI sessions, where each curve represents
a different session. Fig. 2(b) shows a color-scale histogram
of correlation coefficients r(x[t + d],m[t]) along the y-axis,
for each cluster i = 1, . . . , k arranged along the x-axis, from
one session. The y-axis indicates the correlation coefficient
between the optimally delayed BOLD signal data in a voxel
x[t+d] and the motor signal m[t]. The delay is selected so that
the cross-correlation between x[t] and m[t] is maximum [7].
The color bar is used to illustrate the histogram indicating the
relative quantity of voxels in a given cluster having correlation
values along the y-axis. These plots reveal several phenomena.

First, at the voxel level, Fig. 2(a) shows that each session
produces a Gaussian-shaped distribution of correlation coef-
ficients r(x[t],m[t]) that are not always centered at zero but
often have a positive or negative bias. Indeed, this bias has
been demonstrated in previous neuroimage studies resulting
in a stimulus-correlated average time signal, often referred
to as the global signal [18], [19]. Hence, the global signal
could be modeled by a Gaussian random variable with mean
and variance conditioned by the empirical distribution of
r(x[t],m[t]). Second, at the cluster level, Fig. 2(b) shows
how the correlation coefficients r(x[t+d],m[t]) organized by
cluster (i.e., column-wise) are symmetrically distributed about
the most frequent correlation value, which coincides with the
average correlation coefficient r(vi[t+ d],m[t]). Furthermore,
the spread of these distributions is directly related to the
correlation r(x[t], vi[t]). Hence, within each cluster, it is
reasonable to approximate these distributions by a Gaussian
random variable whose mean and variance are conditioned by
the empirical distributions of yi and r(x[t], vi[t]). Together,
these observations indeed suggest a hierarchical influence at
global, regional, and voxel levels, since correlations at each
voxel appear to be governed by distributions both at the global
and cluster levels.

Therefore, for all voxels from each cluster i, we set yi and
σ2
i as the sample average and variance of correlations r(x[t+
d],m[t]).

B. Bayesian hierarchical correlation model

Modelling voxel correlations using a multilevel model has
the advantage of representing the variability within each
cluster as well as between them. Moreover, the intersubject
variability shown in Fig. 2(a) also indicates the impact a biased
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Fig. 2. Histograms demonstrating the hierarchical and Gaussian form of cluster voxel correlations. (a), Gaussian-shaped distribution of r(x[t],m[t])
correlations for each of ten resting fMRI sessions (each curve corresponds to one session) shows how the global signal can be biased in either direction. (b),
Histograms (arranged in columns) of correlation coefficients r(x[t + d],m[t]) along the y-axis for each of the 24 clusters, along the x-axis, obtained from
one session. The color bar quantifies the relative frequency of voxels in a given cluster having correlation values along the y-axis.

Fig. 3. Bayesian hierarchical model parameters (adapted from [9]) used in
the final stage of the cluster analysis method. The model parameters (α, β) are
fit to the data y, such that each cluster feature yi is drawn from an underlying
signal βi. In turn, all underlying signals β are drawn from a global signal α.

global signal may have on determining cluster significance
based on simple correlation thresholding.

A Bayesian approach can account for the bias introduced
by the global signal by conditioning the model parameters
based on the empirical observations y and their variance
σ2. Therefore, we propose a Bayesian hierarchical model to
represent the correlative effects of the global signal and of each
cluster by model parameters whose values are conditioned on
the neuroimage data. The structure of the model parameters
is illustrated in Fig. 3. From bottom to top, each of k
clusters inputs a value yi determined using the correlation data
r(x[t+d],m[t]). The objective is to determine whether voxels
forming cluster i are significantly affected by an underlying
response or rather exhibit an unrelated signal. The underlying
effect of each cluster is modeled as the parameter βi (the true
value that yi is measuring). The apex of the structure is the
hyperparameter α that models the global signal. The hyper-
parameter α controls this effect by modeling the influence of
the global signal on each cluster via βi. Our implementation
closely follows the theoretical developments by Gelman et al.
[9]; therefore, we only describe the details necessary to apply
the model to the fuzzy k-means algorithm.

The joint posterior distribution p(β, α, τ |y, σ) encapsu-
lates the entire model by conditioning all model parameters

{α, β, τ} with the given data {y, σ}, where the variance of α
is estimated by the parameter τ 2.

We model the joint likelihood function p(y, σ|β, α, τ) as the
Gaussian distribution N(βi, σ

2
i ), since each yi is the sample

average of the member voxel correlations r(x[t+d],m[t]). For
a large sample size of independent and identically distributed
samples the central limit theorem guarantees an approach
to normality. Although our samples do exhibit considerable
interdependence, our empirical data in Fig. 2 show that their
distribution of values remain unimodal and approximately
Gaussian. The joint population distribution is modeled by
assuming that the individual parameters βi are exchangeable,
since there is no a priori information to distinguish one cluster
from another. Furthermore, we assume that the population
and prior distributions have the Bayesian conjugate form of
the likelihood function, since we do not have an explicit
parametric form for these distribution functions. In the case
of a Gaussian likelihood function, the conjugate forms for the
population and prior distributions are also Gaussian. Therefore,
the joint likelihood function and the joint population distribu-
tion are respectively written as

p(y, σ|β) =

k∏
i=1

N(βi, σ
2
i ), (1)

p(β|α, τ) =

k∏
i=1

N(α, τ2). (2)

Finally, since nothing is known about α and τ a priori, we
write the joint prior distribution in the non-informative form

p(α, τ) = p(α|τ)p(τ) ∝ 1. (3)

The product of equations (1)–(3) describes the joint posterior
distribution to within a constant factor.

C. Gibbs sampling of the joint posterior distribution

This section provides a numerical approach to estimate
the joint posterior distribution by simulating draws using the
Gibbs sampler MCMC technique based on Gelman et al. [9].
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This method has the advantage of implementing Bayesian
hierarchical models that do not have closed-form solutions for
their distribution functions.

First, the joint posterior distribution is factored into the
alternate form

p(β, α, τ |y, σ) = p(β|α, τ, y, σ) p(α|τ, y, σ) p(τ |y, σ) (4)

so that realizations can be simulated from each term starting
with the rightmost density to give τ , then α, and finally β.
Simulated draws from equation (4) are obtained by iteratively
performing batch realisations of k + 2 random variables
{β1, . . . , βk, α, τ}, where each batch simulates one point from
p(β, α, τ |y, σ).

We require the conditional density functions on the right-
hand side of equation (4). To begin, we estimate the condi-
tional posterior distribution of τ 2 using the scaled inverse-χ2

distribution [9], [20] written as

τ 2|βi, α, y ∼ Inv−χ2(k − 1, τ̂2), (5)

where τ̂2 is the unbiased variance estimate based on the
realisations α and βi given by

τ̂2 =
1

k − 1

K∑
i=1

(βi − α)2. (6)

Next, we seek the conditional posterior distribution of α. It
is not hard to see that this distribution is simply the sample
average and sample variance of the βi terms

α|β, τ ∼ N

(
1

k

k∑
i=1

βi,
τ2

k

)
. (7)

Finally, the conditional posterior distribution of βi is obtained
based on the exchangeability assumption, since the multi-
variate distributions (2) and (1) have product forms. Thus,
computing their product p(β|α, τ)p(y, σ|β, α, τ) yields the
Gibbs sampler estimate of each βi as the Gaussian random
variable

βi|α, τ, yi, σi ∼ N
(
β̂i, Vβi

)
(8)

with mean and variance

β̂i =
yi/σ

2
i + α/τ2

1/σ2
i + 1/τ2

, Vβi
=

1

1/σ2
i + 1/τ2

. (9)

We used the following algorithm based on the Gibbs sam-
pler equations (5)–(8) for all data in this study. At the end
of each iteration, we include a means to check for MCMC
convergence using the potential scale reduction threshold [9].

Algorithm 1 (Gibbs sampler): Let (yi, σ
2
i ) for i = 1, . . . , k

be a data set described by a Bayesian hierarchical model with
random variables τ , α, and β. Let G = 10 be the number
of Gibbs samplers running in parallel, and 2N = 2, 000
the number of realisations from each sampler, and one small
number, such as ε = 0.001. Then a total of GN = 10, 000
batch realisations are obtained by the doing the following for
each of the G samplers:

1) Set the initial values for each βi = yi and compute the
initial value for α to be the sample average of all k

values βi.
2) Simulate a realization of τ using equation (5), which

can be implemented by first making random draws from
a χ2 random variable with k − 1 degrees of freedom,
X = χ2

k−1, and then setting τ2 = (k − 1)τ̂2/X .
3) Simulate a realization of α using equation (7), with the

latest realisations of τ and β.
4) Simulate a realization for each βi using equation (8),

with the latest realisations of α and τ .
5) Store the batch of latest realisations {τ, α, β1, . . . , βk}.
6) Repeat steps 2-5 until 2N batches are obtained.
7) Discard the first N batches from each Gibbs sampler.
8) Compute the potential scale reduction threshold

R̂ =

√
1

W

(
N − 1

N
W +

1

N
B

)
, (10)

where W and B are the within-sampler and between-
sampler variance of the remaining GN realisations.

9) If the inequality |R̂| < 1 + ε is satisfied, then these GN
realisations are convergent and represent realisations
from the true joint posterior distribution of the Bayesian
hierarchical model.

Given a convergent MCMC sampling of the joint posterior
distribution, we can calculate the significance of each cluster
with respect to the global signal by computing Bayes’ error
between the distributions of the hyperparameter α and the
cluster parameters βi, for each i = 1, . . . , k. Geometrically,
it corresponds to the overlap area between the tails of both
distributions. A summary graph for the area overlap between
each βi and α can be obtained by generating a corresponding
set of box plots arranged horizontally whose box and whiskers
extend vertically and show the 5% and 95% quantiles of each
distribution. When the box plot of a given βi does not overlap
with the box plot of α, then that cluster has a distribution of
correlation values that are significantly different from the rest
of the data set and potentially represent a stimulus-response
cluster with probability of error p < 0.05.

D. Simulation of event-related BOLD fMRI data

Simulated data are used to test the sensitivity and specificity
under various signal to noise ratio (SNR) levels. The temporal
SNR for fMRI data is defined as the largest change in signal
magnitude divided by the noise standard deviation. This SNR
definition and range of [0, 2] are common in the literature
involving 1.5 Tesla MRI. The image volume contains 643 8-
bit voxels over which an event-related design is executed for
160 TR-cycles.

The normal BOLD signal can be divided into three post-
stimulus phases: i) a delay before the response onset, ii) a
positive peak width, and iii) a negative undershoot period after
the response. Fig. 4(a) plots three BOLD signals normalised
to unit extrema whose characteristics are based on those
described in the literature. Signal 1 represents a typical BOLD
response in normal subjects. The selected values for the onset
delay (1.3 s), time-to-peak (5 s), peak width (8.3 s), and
undershoot duration (11 s) are the average of previously
reported values [21]–[23]. Signal 2 is a delayed response in
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Fig. 4. Simulated fMRI data. (a), Modelled BOLD responses from normal
subjects (signal 1) and CVD patients (signals 2,3). (b), Event-related paradigm
with interstimulus period randomly varying between 16-20 s (gray area
indicates simulated BOLD response duration).

the presence of CVD, where an average onset delay of 3.8
s and the appearance of an early trough before onset have
been reported [24], [25] . Signal 3 is an advanced, negative
peak response also from CVD patients, however, this time
exhibiting a time-to-peak advancement of 2 s [25], [26].

The event-related paradigm time series is illustrated in
Fig. 4(b). The signals are added to a central block of the image
volume, each confined to one of three regions, and decrease
linearly in SNR moving upwards along the y-axis (e.g., see
Fig. 6(b)). The remainder of the image volume consists of a
low intensity background and noise voxels without signal.

The noise for each voxel is simulated from an empirical
analysis of water phantom data. Four sessions were completed
using a standard echo-planar imaging sequence, whence a
central 163-voxel region from each session was observed
over 16 consecutive TR cycles. Before analysis, these data
underwent the same preprocessing as our human fMRI data.
The average phantom session mean and standard deviation in
arbitrary image intensity units (au; measured as 1517± 30.79
au, n = 4) are simulated as Gaussian noise with a 2.0%
standard deviation from a mean intensity of 1500 au. A
slight negative trend is also simulated, based on the observed
phantom linear intensity decrease with slope −0.025 au/TR
(r = −0.98, n = 4). Spatial and temporal noise correla-
tions are simulated by estimating the autocovariance function
γww[m] = E{wnwm+n} − E{wn}2 of a stationary real
random process wn. The phantom data w[n] are treated as
a realization of wn, where n is a multivariate index over
space-time. The first term is estimated using the convolution
property of the discrete Fourier transform (DFT): computing
the product Φww[k] = W [k]W [−k], where W [k] is the DFT
of w[n], and then taking the inverse DFT of Φww[k]. The
second term is estimated as the square of the sample mean
of w[n]. The function values are plotted along the four axes
in Fig. 5, where x, y, and z represent the MRI read encode,
phase encode, and slice select orientations, respectively. The

Fig. 5. The autocovariance function estimate plotted along (a) the read-
encode x-axis, (b) the phase-encode y-axis, (c) the slice-select z-axis, and
(d) the time axis.

correlation coefficient estimates are rx = 0.865 ± 0.008,
ry = 0.898± 0.002, rz = 0.636± 0.024, rt = 0.208± 0.076
(n = 4). These negative trend and autocovariance functions are
used to simulate the fMRI noise corrupting the aforementioned
BOLD response signals.

E. Acquisition of event-related BOLD fMRI data

To qualitatively demonstrate the performance of the pro-
posed method during the performance of an event-related
motor task, BOLD fMRI data were acquired from one healthy
subject (36-year-old female). Whole brain imaging was per-
formed on a 1.5 Tesla Magnetom Symphony MR scanner
(Siemens, Erlangen, Germany) using an echo-planar imaging
(EPI) sequence (TR/TE = 2000/30 ms; 70◦) and a voxel
size of 1.72× 1.72× 5.00 mm3. The fMRI session produced
a 160-image data set collected over 5 minutes, roughly. A
stimulus-response apparatus provided a visual feedback hand-
motor task whose events of two-second duration occurred
irregularly to minimize habituation. During events, the subject
was instructed to squeeze a palm-sized ball placed in her right
hand in order to raise a computer-generated horizontal bar
displayed on-screen to meet a target. The visual scene was
kept as small as possible to avoid visual area stimulation.
The only visible objects in the room were two horizontal bars
whose vertical movement was limited to subtend no more than
a 5-degree angle with respect to the subjects eyes. A detailed
description of the task is given in [7].

III. RESULTS

A. Simulated BOLD fMRI data

Summary results from the proposed method are shown
in Fig. 6. The joint posterior distribution p(β, α, τ |y, σ) is
illustrated in Fig. 6(a) by a set of box plots representing the
MCMC distributions of the parameters α, β1, . . . , βk arranged
horizontally. A low Bayes’ error corresponds to a cluster
whose box plot does not overlap with that of α shown in
gray. Boxes marked with an asterisk have p < 0.05. The
figure shows that the simulated data are partitioned into 24
clusters, where β corresponding to clusters 3, 4, and 5 are
significantly different from α. The three response-signals are
well distinguished by the voxel maps in Fig. 6(b). The aver-
aged voxel time series are shown in Fig. 6(c). The correlations
and response delay pairs (ri, di) for clusters 3, 4, and 5, are
(0.78, 8 s), (0.78, 6 s), (−0.87, 4 s), respectively. Due to the
inclusion of high SNR values, these correlations may seem
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Fig. 6. Simulation results from the proposed method. (a), Box plots of paradigm-cluster correlation values from the entire data set α and each cluster βi
(i = 1, . . . , k). The * symbol denotes clusters that are significantly different from α with p < 0.05. (b), Significant voxel-cluster correlation maps for clusters
3-5 (membership threshold indicated by white bar on scale). (c), Averaged voxel time series (events indicated by vertical gray bars).

Fig. 7. Simulation results from the GLM-t method. (a), Significant voxel-paradigm t-maps obtained from the correct paradigm. (b), Significant voxel-paradigm
t-maps obtained from the paradigm advanced by 4 seconds (t-threshold indicated by white bar on scale). (c), Averaged voxel time series (events indicated by
vertical gray bars).

large for fMRI; however, the detection of noisy signals are
also appreciable in the figure. Moreover, the delays match
those seen in Fig. 4(a). The stability of the proposed method
was verified by three repeated analyses on three simulated
data sets. In all cases the same three clusters were identified
from a range of [24, 30] clusters whose correlation coefficient
estimate differed on average by 3.8× 10−4 within a data set,
and by 0.034 between data sets.

Results using the GLM-t testing for the normal hemody-
namic response are computed for comparison. Two, one-tailed
tests are done to detect a significant increase or decrease in

voxel intensity, referred to as “activation” or “deactivation,”
respectively. Summary results from the GLM-t method are
shown in Fig. 7. Using the paradigm that generated the
data shown in Fig. 4(b), only signal 2 is identified as an
activation as shown in Fig. 7(a). The deactivation finds no
signal voxels. Signals 1 and 3, however, are identified by
advancing the paradigm by 4 seconds (p[n] → p[n + 2])
as suggested by the time-to-peak of the simulated signals
in Fig. 4(a). The significance threshold for the GLM-t is
p < 0.001. This value was chosen ad hoc to approximate
the significance threshold of the proposed method so that
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the voxel maps in Figs. 6 and 7 can be visually compared
across the SNR range. Indeed, the structure of the GLM t-
maps are similar to the r-maps from the proposed method in
Fig. 6, as expected from previous correlation analyses [16].
Thus, similar results between methods are observed as their
respective significance thresholds, indicated by the white bar
across the gray scales, increase proportionately. Both methods
have comparable sensitivity. This can be seen by recording the
SNR of the weakest signal voxel correctly identified in each
of the 24 image slices. The weakest signal voxel correctly
identified by the proposed method has median SNR = 0.51
and worst case SNR = 0.78; similarly, the GLM-t method has
median SNR = 0.56 and worst case SNR = 0.83.

The major difference seen between the methods is related
to specificity, namely, the ability to distinguish between the
three response signals. In general, the proposed method is
capable of distinguishing various signals automatically, while
the GLM-t requires informed adjustments of the paradigm to
achieve similar results. Even with the necessary adjustments,
the GLM-t method does not discern signals 1 and 2 as well
as the proposed method. In this simulation, the proposed
method seldom misclassifies these signal voxels. The worst
case misclassification by the proposed method occurred in
a voxel with SNR = 0.78. The strongest signal voxels
misclassified by the GLM-t method, however, occur at higher
signal strengths in voxels with a median SNR = 0.56, and
worst case SNR = 2.00. This difference is apparent when
comparing the SNR level of the confounded voxels in cluster
3 of Fig. 6(b) with those of Fig. 7(a). Both methods identified
signal 3 with perfect specificity.

Finally, we applied the proposed method to a set of ten
resting fMRI data sessions to determine if clusters could
be falsely selected. To do this, we applied the event-related
stimulus sequence shown in Fig. 4(b) to these data, and the
Bayesian model correctly rejected all clusters. The largest
stimulus-related centroid correlation observed in these clusters
had a coefficient of 0.18, which led to a probability of being
significantly different from the global signal of correlation
α = 0.06 ± 0.14 (mean ± SD) with corresponding Bayes’
error p = 0.21.

B. Acquired BOLD fMRI data

Summary results from the proposed method and the GLM-
t method are shown in Fig. 8(a) and (b), respectively. Since
the subject performed a visual feedback controlled motor task
with her right hand, the BOLD response signals expected
according to previous neuroimage research should be localized
in the left sensorimotor cortex near the “hand area” and the
supplementary motor area [27]–[29]. Secondly, responses in-
volving the basal ganglia and thalamus are also possible, since
they have also been implicated in sensory and motor function
[30]. In particular, the putamen and caudate nucleus of the
basal ganglia has previously been identified in two neuroimage
studies utilizing a visual feedback controlled motor task [29],
[31]. We do not expect to observe the deactivation of a default
network, since these were not identified in the aforementioned
studies. Lastly, although the task is visually cued, activations

in the visual area are not expected because the cue represented
only a small proportion of the visual field as was described in
section II. E.

In Fig. 8(a), the Bayesian hierarchical model from the
proposed method identified clusters 8, 17, and 24 as being
significantly different from the global signal. Their correlation
distributions are marked with the symbol * in the box plot.
Indeed, the expected brain regions for the performed task are
identified, and the responses in the cerebral cortex (clusters 8
and 24) are distinguished from those of the basal ganglia and
thalamus (cluster 17). The cluster centroid plots superimposed
over the motor responses (gray vertical bars) also reveal the
BOLD signal differences between the identified clusters. These
results are compared with the GLM-t analysis in Fig. 8(b),
which shows the maximum intensity projection of the activa-
tion t-map. The expected regions identified by the proposed
method also appear in the GLM-t analysis and are indicated
by the anatomical overlay sections A, B, and C corresponding
to clusters 8, 24, and 17, respectively. No significant voxels
were identified in the deactivation map.

Although the expected regions were identified by both
methods, differences in other regions can be seen. In particular,
an unexpected bilateral response in the parietal cortex seen
in section A of the GLM-t map yet only faintly appears in
cluster 8 of the proposed method. To compare these regions,
we computed their voxel’s time sequences and measured their
correlation to the pressure signal generated during the hand-
grip events. The sensorimotor response signal had a higher
correlation coefficient r(sensorimotor,hand) = 0.59 than the
parietal response r(parietal,hand) = 0.31. Nevertheless, both
regions were remarkably correlated to the hand signal. The
second notable difference is that the basal ganglia response
seen in cluster 17 of the proposed method does not appear
in the GLM-t map, which only faintly shows the thalamic
response. In light of the simulation results, which reveal how
the standard GLM can overlook responses that differ from
the assumed model, it is plausible that these differences stem
from the variability of the hemodynamic response throughout
the brain, as previously demonstrated [8], [32]. Moreover, the
notable differences of the BOLD signals plotted in Fig. 8(a)
from cortex in cluster 8, and basal ganglia in cluster 17 also
support this explanation.

IV. DISCUSSION

Data-driven fMRI cluster analysis seems beneficial for the
study of the complex regulatory mechanisms of the cere-
brovasculature, since in CVD, unanticipated changes can take
place in the BOLD response signal [1]–[5]. However, these
exploratory techniques are hindered by the difficulty in de-
termining the statistical significance of the identified clusters.
For example, the fuzzy k-means offers a unique advantage
over the standard k-means or ISODATA algorithm, since its
fuzzy membership functions can be used to determine the
optimal k number [6], [17]. Unfortunately, the task of directly
integrating fuzzy logic algorithms into a probability space
remains unresolved [33]–[35]. Here we addressed this problem
by using a Bayesian hierarchical model for the correlation
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Fig. 8. Results from fMRI data acquired during an event-related right-hand motor task. (a), Proposed method: box plots of paradigm-cluster correlation
values from the entire data set α and each cluster βi (i = 1, . . . , k). The * symbol denotes clusters that are significantly different from α with p < 0.05. The
significant cluster voxels are shown in green from three computer rendered views, and the anatomical overlay, in radiological convention. Centroid plots for
all clusters are shown with the same scale. (b), GLM t method: significant voxel-paradigm t-map shown in three maximum intensity projections. Anatomical
overlay sections A, B, and C reveal the brain regions (blue cross-hairs) identified in agreement with clusters 8, 24, and 17, respectively, from the proposed
method (t-threshold indicated by black bar on scale).

structure of the clustered data in order to determine whether
any one cluster possessed a correlation distribution signifi-
cantly different from the others. Our simulation and fMRI
results show that the proposed data-driven method is capable
of identifying and discriminating distinct BOLD response
signals with a detection performance that is comparable to
model-driven approaches based on the GLM. We emphasize,
however, that this comparison should not be viewed as an
indication to replace model-based methods. On the contrary,
our results suggest that data-driven and model-driven analysis
are perhaps best utilized as complementary tools.

In response to methodological concerns about fMRI analysis
[12], [13], a statistical commentary about the multiple compar-
isons framework and the Bayesian hierarchical model has been
recently published by Lindquist and Gelman [14]. The authors
argue that the multiple comparisons framework in essence
can only provide inference at the voxel level. Since voxel
interactions do indeed exist in fMRI data, corrections of the
p-value threshold are essential to obtain a reasonable estimate
the type I error rate of the tested hypothesis. Considerable

research has addressed this issue using the GLM framework
[36]–[38], perhaps most elegantly appealing to the theory of
smooth random fields [39]–[41]. Nonetheless, on their own,
these corrections provide a scalar that uniformly adjusts the
confidence interval around a point estimate, i.e., keeping all
point estimates stationary as though they were statistically
independent. On the other hand, hierarchical models can
represent inter-voxel dependence directly by “shrinking” the
confidence interval of each point estimate toward the regional
and global means. Moreover, global signal correction strategies
(e.g., [18], [42], [43]) are not required. Nevertheless, the
efficacy of the Bayesian hierarchical model remains to be de-
termined for BOLD fMRI signal detection and discrimination
problems.

While multilevel models have already been applied to
fMRI analysis [10], [11], to our knowledge, this is the first
implementation of a Bayesian hierarchical model for data-
driven fuzzy cluster analysis. We note that a probabilistic, data-
driven framework has already been developed for independent
component analysis (PICA) for fMRI by Beckmann and Smith
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[44]. However, the differences between PICA and the proposed
method are considerable. For example, PICA decomposes the
fMRI time series data into a set of orthogonal signals, while
the proposed method uses fuzzy k-means, which does not have
an orthogonality constraint. Secondly, PICA infers voxel sig-
nificance based on comparisons between each detected signal
and the residual Gaussian noise model, while the proposed
method infers significance by assessing the salience of each
detected signal relative to the global signal. Finally, PICA is
not a hierarchical model.

In our implementation, we used a fuzzy clustering algorithm
to systematically generate regions of interest based on voxel
time series correlation. At the voxel level, our simulation re-
sults show comparable behavior between the proposed method
and the GLM-t over a wide range of physiologically plausible
BOLD signals at various SNR levels. Although we only used
known response signals in our simulation study, the proposed
method is not signal dependent and may be used to discover
arbitrary response signals. This is especially important in
two applications: i) event-related fMRI because short stimuli
(under 4 seconds) are known to evoke responses which are
non-linearly related to the sequence of stimuli and, hence,
difficult to model a priori [45], [46]; and ii) clinical studies of
CVD patients because of the possible alterations in cerebral
blood flow caused by age, disease, and medication [1]–[5].

The proposed method remains in a preliminary stage and
is not without limitations. There is currently no approach to
make statistical comparisons between two particular clusters.
While such future work would be beneficial to confirm cluster
differences, here we began by empirically verifying that the
clustering algorithm appropriately separates voxels according
to the different signals utilized in fMRI data simulation. The
apparent differences in the BOLD signals identified within the
acquired fMRI data also motivate the development of intra-
cluster comparisons. Second, while the fuzzy k-means cluster
analysis does not require a hemodynamic response model a
priori, it nevertheless makes implicit assumptions about the
BOLD time series data such as temporal independence. An
improvement would be to account for this dependence between
measurements by using autoregressive models to account
for the temporal autocorrelation of time series as previously
described within [47] or before [48] Bayesian analysis. Third,
refinements of the parametric density models of Bayesian hier-
archical model could also lead to improvements. For example,
we empirically chose to model the likelihood of mean Pearson
correlation coefficients as a Gaussian function, since since we
did not observe the mean correlation approaching ±1 in our
data, nor exhibiting marked skew. In general, however, the
distribution of Pearson correlation coefficients can take on
more complicated forms [49]. Additionally, one could modify
the likelihood function to account for the prominent spikes
appearing near the mean value of the histograms in Fig. 2(a),
which is also pointed out by Lindquist and Gelman [14]. For
this reason, the Gibbs sampling technique was implemented
so that more detailed likelihood and prior functions can be
evaluated without requiring a closed-form formula for the joint
posterior distribution. Although cluster analysis seems to offer
unique advantages in neuroimage analysis, it remains to be

shown how its assumptions affect signal detection performance
in comparison to those based on hypothesis-testing statistics.

Extending the proposed method to group and population
level analyses remains a challenging problem for future work.
A major issue in performing group analysis with the proposed
method is how to account for subject differences in the
shape and location of identified regions. A simple approach
might aggregate the identified regions from all subjects onto
a single activation map in order to determine which voxels
are most frequently activated. However, this approach would
yield a group analysis where all cluster-based membership is
lost. Perhaps a comprehensive clustering approach for group
and population analysis could utilize a second hierarchical
model to estimate a group template for the clusters identified
in the individual subjects. Along this line, Kim et al. [11]
have recently proposed an approach to tackle this problem
in two dimensions by using a Bayesian hierarchical model
to analyze cluster location and shape. Their approach could
be instrumental in providing a common ground for group
and population inference based on individual subject cluster
shape, location, and hemodynamic signal features, such as
those addressed here.

In conclusion, the proposed Bayesian hierarchical model
for data-driven fMRI cluster analysis is encouraging and
represents a significant step toward the development of an
objective framework to identify, and estimate the significance
of, distinct hemodynamic responses within the cerebrovascular
system.
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