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Abstract

Many studies have attempted to monitor fatigue from electromyogram (EMG) signals. However,

fatigue affects EMG in a subject-specific manner. We present here a subject-independent

framework for monitoring the changes in EMG features that accompany muscle fatigue based on

principal component analysis and factor analysis. The proposed framework is based on several

time- and frequency-domain features, unlike most of the existing work, which is based on two to

three features. Results show that latent factors obtained from factor analysis on these features

provide a robust and unified framework. This framework learns a model from EMG signals of

multiple subjects, that form a reference group, and monitors the changes in EMG features during a

sustained submaximal contraction on a test subject on a scale from zero to one. The framework

was tested on EMG signals collected from 12 muscles of eight healthy subjects. The distribution
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of factor scores of the test subject, when mapped onto the framework was similar for both the

subject-specific and subject-independent cases.

Index Terms

Computer algorithm; electromyogram (EMG)

I. INTRODUCTION

Activities of daily living often involve repetitive or sustained contractions. The result of

such contractions is an increase in muscle fatigue, which is commonly defined as a reduction

in the maximal force generating capability of the muscle [1]–[3]. Prolonged fatiguing

contractions can result in damage to the involved muscles and is considered a major factor

contributing to muscle pain and accidental falls [National Institute for Occupational Safety

and Health, A Harvard medical school study (2004), U.S. Bureau of Labor Statistics

(2002)]. Annual direct cost of occupational injuries due to slip and fall caused due to muscle

fatigue is expected to exceed 43.8 billion by the year 2020 in the U.S. [Bureau of Labor

Statistics (2004)].

These accidents have the potential to be avoided if individuals and clinicians could

continuously monitor the progression of muscle fatigue. Unfortunately, it is impractical to

repeatedly measure the reduction in maximal force generating capabilities of the muscle.

Thus, in an effort to monitor the progression of muscle fatigue and minimize muscle fatigue-

related injuries in a more practical fashion, researchers have attempted to track the changes

in electromyographic (EMG) features of the involved muscles that can correlate with an

increase in muscle fatigue [1], [4]–[7].

Typically, during a sustained submaximal fatiguing contraction, the mean amplitude of the

EMG increases while the power spectrum of the EMG signal shifts to lower frequencies [8].

These changes are consistent with the recruitment of additional motor units and a decrease

in the conduction velocity of action potentials along the muscle fibers [9], respectively.

However, there is often a large amount of intersubject variability in such features [1], [3]

and these phenomena can also be affected based on the type of contraction performed or

electrode location [10]. These, generally, unpredictable variations across subjects make it

difficult to develop a general framework that can grade several EMG features from a subject

without prior data from that same subject. Such limitations make the application of systems

to detect the progression of muscle fatigue in the workplace and clinical settings difficult

and impractical. To overcome this limitation, we propose a general framework that can

grade the changes in EMG features of a test subject during a fatiguing contraction without

prior data from the same subject. We refer to this ability as a subject-independent method

for grading EMG features. This framework is based on EMG data recorded from a reference

group during a similar fatiguing contraction.

Because of the large intersubject variability in EMG features, it may not be possible to

reduce myoelectric information into a single EMG parameter. Moreover, only EMG

amplitude parameters may not be able to reliably track the myoelectric manifestations of
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fatigue [11]. However, it may be possible to track the myoelectric manifestations of fatigue

by observing multiple EMG amplitude and spectral parameters, collectively. Hence,

multiple EMG features were used to develop the subject-independent generalized

framework. Many studies have only used two or three EMG features, namely, root mean

square, mean frequency, and median frequency [3], [5], [6].

Although studies have attempted to track multiple features from the EMG signal during

fatiguing contraction [12]–[14], these frameworks require baseline data from the test subject.

Thus, these frameworks are not subject-independent. Others [15] have suggested to have

developed a subject-independent fatigue estimating index [generalized mapping index

(GMI)] based on a mapping function derived from multiple features. These claims are based

on the fact that GMI has better signal-to-noise ratio, compared to commonly used estimators

of fatigue such as mean frequency of EMG signals. In the proposed framework, the subject-

based variability of the suggested measure was quantified and is shown to be an order less

than the subject-based variability of the commonly used features such as mean frequency

and median frequency. Moreover, GMI is based on four time-domain features, that are used

to train an artificial neural network based on an assumption of linear relationship between

muscle fatigue and time. Whereas, the proposed method derives its grading index based on

both time- and frequency-domain features and do not assume any specific trend in

progression of fatigue. However, to date, it has not been proven that multiple features can be

used to track the progression of muscle fatigue, and therefore we are only attempting to

determine when the muscles are approaching the point of task failure through the EMG

features, in a subject-independent manner.

The proposed framework uses factor analysis to learn the relation between the EMG features

during a fatiguing contraction, rather than learning the values of the features. Latent factors,

obtained as a result of factor analysis on multiple features, represent the relation between the

features. An analysis of the subject-based variability of each of the commonly used

frequency and time-domain features and latent factors revealed that the latent factors are

more robust across multiple subjects. Subject-based variability of these commonly used

features has been provided in Section II-E and has been compared with the subject-based

variability of the latent factors.

The purpose of this study was to develop a computer algorithm to automatically grade EMG

features typically associated with muscle fatigue, during a fatiguing contraction, without the

need to calibrate or train the system with baseline or subject-specific data, thus, forming a

subject-independent framework. In this paper, we present a computer algorithm that

quantifies a set of EMG parameters obtained during a fatiguing contraction on a scale from

zero to one in real time. The scale is defined such that the zero denotes the beginning of the

contraction and one denotes the point at which the subjects were unable to sustain the

required contraction force as a result of muscle fatigue (task failure). However, the computer

algorithm is not limited to tracking EMG features during sustained isometric contractions

only. It is capable of tracking EMG parameters during dynamic contractions as well, as long

as the reference data are also collected under similar exercise. A successful application of

the proposed mapping index using SEMG signal from a repetitive gripping activity is

presented in our earlier work [16], though in a subject-dependent manner.
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II. METHODS

The proposed algorithm was applied to intramuscular EMG signals collected from 12 hand

muscles during a sustained isometric fatiguing contraction and compared to the results from

standard amplitude and spectral measures. The data are from a published report [17], which

investigated the influence of fatigue on EMG–EMG coherence across hand muscles.

A. Subjects

Eight adults (five men, three women; 27 ± 6 years) participated in the study. Subjects

reported being without any neurological disorders or musculoskeletal injuries of the hand

and were right-handed. Subjects gave a written informed consent before participation in the

study, and all experimental procedures were approved by the Institutional Review Board at

Arizona State University.

B. Experimental Setup

Subjects sat in an adjustable chair facing a computer monitor. The right forearm was placed

on a flat rigid platform with the wrist and hand in a semisupinated and neutral position,

respectively. Movement of the forearm and wrist was prevented by rigid dowel restraints

inserted into the platform around the forearm and wrist. The hand was positioned in a three-

digit (thumb, index, and middle finger) grasp posture for the fatiguing contractions as shown

in Fig. 1.

1) Force Measurement—The isometric force of each of the distal pads of thumb, index,

and middle fingers was measured with 6-D force/torque transducers (ATI Nano-17/S1 Apex,

NC) mounted on a manipulandum. They measure force in all three spatial dimensions and

torque about all three spatial axes. The contact surfaces of the sensors for the index and

middle fingers were 3 cm apart vertically (center-to-center), and 8 cm apart horizontally

from the surface of the force/torque sensor for the thumb.

2) EMG Measurement—The intramuscular EMG was recorded with electrodes

comprised of one 50 μm stainless steel wire insulated with Formvar (California Fine Wire,

Grover Beach, CA) from 12 muscles of the hand. Insulation was removed from the

recording tip and the opposite end of wire. One electrode was inserted into the belly of each

muscle via a 27-gauge hypodermic needle. Once the electrode was inserted, the quality of

the signal was optimized by changing the depth and angle of the needle. Electrode

placement was further verified with electrical stimulation. The needle was then removed and

the wire electrode remained in the muscle for the duration of the experiment. The muscles

recorded and analyzed included six intrinsic and six extrinsic hand muscles (for details, see

[17]).

The EMG recordings were amplified 2000× and band-pass filtered between 3 Hz and 1 kHZ

(Neurodata Acquisition System model 12, Grass Instruments, Warwick, RI). A reference

surface electrodes (gold-plated silver disc, Grass Instruments; West Warwick, RI) was

placed on the skin over the radial styloid to serve as a reference electrode.
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3) Data Acquisition—Force and EMG recordings were acquired and digitized at 2 kHZ

with 12-bit A/D converter boards (PCI-6225, National Instruments, Austin, TX) displayed,

and stored on a computer using LabView v 6.0, National Instruments.

C. Experimental Procedure

1) Maximal Voluntary Contractions (MVC)—Subjects increased digit isometric grasp

force of all three fingers from rest (~1N) to maximum over a period of 3 s and then

maintained the maximum force for 6 s. Subjects performed three MVC trials with a

minimum of 3-min of rest between trials. The trial with the greatest total sum of digit forces

was used as the reference value to compute the target force for the submaximal fatiguing

contraction.

2) Submaximal Fatiguing Contraction—Subjects performed a sustained isometric

contraction with the thumb, index, and middle fingers at a total force of 40% of MVC.

Subjects began the task by increasing digit total force from rest (~1N) to the target force.

Data collection began when the subject was able to maintain the target force for ≥3 s. Visual

feedback of the target force was provided as a horizontal line on the computer for the

duration of the contraction. The subject’s total digit force was also displayed as a red trace in

real time. The contraction was ended when the subject could not maintain the total force

within ±10% of the target force or they were unable to maintain the same hand and forearm

posture despite strong verbal encouragement for 3 s. However, all subjects failed due to an

inability to maintain the target force.

D. Data Analysis

A set of nine time- and frequency-domain features were extracted from the interference

EMG, after downsampling to 1 kHz (see Table I). The linear envelope (LE) of the rectified

EMG signal was obtained with the Butterworth low-pass filter of third-order with a cutoff

frequency of 2.5 Hz. Features were derived from running windows of 1000 time samples

with a 50% overlap, i.e., features were derived every 500 ms. The spectral components were

obtained using a 1024 point DFT, yielding a spectral resolution of 0.97 Hz. We have used

multiple time- and frequency-domain features to extract more information about the

amplitude and spectral characteristics of the EMG signal. Mean and peak of LE, maximum

peak amplitude, root mean square [3], [18], and spectral energy [21] provided information

about the amplitude of the EMG signal, whereas zero crossing count [4], median frequency

[18], [19], mean frequency [3], [5], [20], and spectral entropy [6] provided information

about the frequency content of the EMG signal. A brief description of the features is as

follows.

Mean and peak of LE are mean and peak voltages, respectively, of the 2.5-Hz LE obtained

as described before. Zero-crossing count is obtained by counting the number of times the

EMG voltage changes sign in a window of 1000 time samples or 1 s. The maximum peak

amplitude is the maximum voltage obtained in every window. Median frequency mf, which

is a measure of skewness in power spectrum, is defined as the frequency that divides the

power spectrum into two equal parts and was obtained as follows:
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(1)

where n is the number of frequency bins, which is equal to the bandwidth of the signal, i.e.,

500, and Ii is the amplitude or intensity of spectrum at ith bin. Mean frequency defined as

the normalized, first-order spectral moment was calculated as the sum of the product of the

spectrogram amplitude and the frequency, divided by the total sum of spectrogram

amplitude or intensity, as follows:

(2)

where fi is the frequency of spectrum at ith bin of n frequency bins and the spectral energy

was obtained as follows:

(3)

The spectral entropy, defining the entropy in the power spectrum was obtained as

(4)

where .

E. Model for Grading EMG Features Related to Fatigue

Even though EMG amplitude and spectral features vary differently across subjects during a

contraction, the relation among the features tended to be subject-independent. Therefore, the

framework was based on the relation between multiple features of the EMG signal. Principal

component analysis on the nine features listed in Table I from all 12 muscles over eight

subjects revealed that the first two components captured 98.71 ± 1.1% of the total variance,

therefore, we performed factor analysis [22] on these nine features using two factors. Factor

analysis was used to describe variability among the features to define a potentially lower

number of variables, i.e., latent factors. These experiments revealed two latent factors,

which were used for the analysis of the reference framework.

Because our aim was to develop a generalized subject-independent method for grading the

changes in the EMG signal during a fatiguing contraction, we measured the variability of

each feature and latent factor, between subjects, with an intra-class correlation (ICC)

analysis. The ICC coefficient measures the fraction of the total variance that is due to

between group variance (groups are values of a particular feature or latent factor over all

twelve muscles belonging to different subjects) as follows:
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(5)

where  is the variance in the feature or latent factor f between subjects and  is

the variance within subjects. Between-subjects and within-subjects variances of each feature

and latent factors were obtained using Kruskal–Wallis one-way analysis of variance [23]

across multiple subjects.

Since ICC values capture the between-subject variance, with respect to the total variance in

a feature, higher ICC values indicate greater variation across subjects. The individual EMG

features had greater ICC values compared to the latent factors (see Table II). Despite the

large variation in feature values across subjects, the relation between the features and the

two latent factors did not differ significantly across subjects, as indicated by significantly

lower ICC values of the latent factors, shown in bold in Table II.

The latent factors provide a reference model to monitor changes in the EMG signal of a

subject with respect to a reference group of subjects in real time. Therefore, we used these

latent factors to derive our automatic algorithm. Analysis of the relation of the EMG features

with the two latent factors over all subjects and muscles revealed that features related to

EMG amplitude were strongly correlated with latent factor 1 while the features related to

frequency content of the EMG signal were strongly correlated with latent factor 2 (see Table

III). Corresponding significant coefficients are in bold for reference.

F. Subject-Independent Framework for Grading EMG Features Related to Fatigue

The main requirement of the subject-independent framework was to obtain a generalized or

reference mapping of features extracted from the EMG signal, which could be used to map

and quantify the progression of multiple features continually in real time, during a fatiguing

exercise of a subject, without the need to calibrate the algorithm with subject-specific data.

The reference mapping, in the proposed framework, was obtained through the latent factors

(latent factors 1 and 2). The mapping was then used to monitor the changes in EMG features

on a continuous scale from zero to one of a test subject in real time. The state 0 represents

the beginning of the contraction whereas the state 1 represents the estimated point of task

failure with respect to the reference framework.

The proposed framework consisted of two major components: 1) developing the reference

framework and 2) projecting a test subject’s features into the reference framework. The

reference framework was developed with the EMG features from seven subjects and cross

validated on the remaining eighth subject, known as test subject, following a leave-one-out

strategy. As per this strategy, the reference data consisted of features from all seven subjects

and the test data consisted of features from the remaining eighth subject referred to as the

test subject. Details of the framework are provided in Fig. 2. Table IV defines notations used

in Fig. 2.
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1) Development of the Reference Framework—A set of nine features (see Section II-

D) were extracted from each window of 1000 time samples of the preprocessed EMG signal

of a subject k, with 50% overlap. Preprocessing of the raw EMG signal involved denoising

using a high-pass filter of 20 Hz. In step 2 of the framework, as shown in Fig. 2, features

extracted from all K subjects were appended to form Freference. Factor analysis was

performed on Freference, in step 3, to obtain the factor loadings L and the factor scores

FSreference. Factor analysis was performed with two principal components, using standard

MATLAB function “factoran.” Factor loadings define the relation of each feature to the two

latent factors (latent factors 1 and 2). Typical factor loadings obtained for a reference group

of subjects is shown in Table III. This provides a reference mapping for grading EMG signal

from a test subject.

2) Projecting a Test Subject’s Features Into the Reference Framework—The

feature vectors extracted from EMG signal of a test subject in step 4 were mapped in the

reference framework, using the equation defined in step 5 of Fig. 2. The factor scores FStest

obtained in step 5 map the test subject features in the reference framework using the

reference factor loadings L. The latent factor 1 and latent factor 2 components of FStest, i.e.,

P1 and P2, respectively, obtained in step 6, provided a composite view of the changes in the

features of the EMG signal from the test subject. These values were normalized with respect

to maximum and minimum values of the respective components of the reference factor

scores FSreference to generate a continuous grading in the range [0,1], in step 7. We inverted

the grading on latent factor 2 to get an increasing value with a decrease in values of latent

factor 2.

III. Results

Fig. 3 shows typical trends of the extracted features from three different muscles, namely, 1)

FPB, 2) FDS3, and 3) EPL for a representative subject (subject 1). For the flexor muscles,

the values of amplitude-related features such as mean of LE, peak of LE, maximum peak

amplitude, root mean square, and spectral energy increased throughout the contraction and

the values of frequency-related features such as median frequency, mean frequency, spectral

entropy, and zero-crossing count decreased as the power spectrum shifted toward lower

frequencies. These trends are consistent with the recruitment of additional motor units and a

decrease in the conduction velocity of action potentials along the muscle fibers as discussed

in Section I. The features of the extensor muscles did not always follow the same trend as

those of the flexors, especially for subject 1 shown in Fig. 3(c). However, the framework

was still able to derive the factor score distributions for this muscle in a subject-independent

manner as shown in Fig. 4(f).

Fig. 4 shows the distribution of factor scores for the three muscles for a test subject (subject

1), obtained by the subject-dependent and subject-independent frameworks. Factor scores

obtained by using factor analysis (standard MATLAB function “factoran”) solely on

subjects’s own features are referred to as subject-dependent and the subject-independent

factor scores are obtained based on the features of the other seven subjects, as per the

algorithm described in Fig. 2. The angle between the axis representing a feature and the axis
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representing the specific latent factor indicates the correlation between the feature and the

latent factor. A greater correlation corresponded to a smaller angle between the two axes.

The start of contraction is denoted as (A) and the end of contraction as (B). As mentioned

earlier in Section II-E, the amplitude-related features correlated well with latent factor 1 and

the frequency-related features correlated well with latent factor 2. This corresponded to a

shift of factor scores toward higher values for latent factor 1 and lower values for latent

factor 2, respectively, during the duration of the contractions. This is in accordance with the

observation that as fatigue progresses the amplitude of the EMG signal typically increases

while the frequency of the signal shifts to lower values. Consequently, the factor scores for

most cases, started in the upper-left quadrant at (A) and ended in the fourth quadrant of the

framework at the end of contractions (B).

To compare the factor scores obtained by the subject-dependent and subject-independent

frameworks, a linear regression using degree 1 polynomial was performed on the two-factor

score distributions. Table V shows the mean slope and intercept values obtained for both

subject-dependent and subject-independent factor scores, for all the twelve muscles,

averaged over eight subjects. Leave-one-out strategy, as explained in Section II-F, was used

to obtain the subject-independent factor scores for each subject. The distribution of factor

scores did not differ significantly whether the reference model was based on subject’s own

features (subject-dependent framework) or on the features of other seven subjects (subject-

independent framework). A multivariable analysis of variance revealed that the means of the

slope and intercept values obtained using subject-dependent and subject-independent

frameworks did not differ significantly (p > 0.05).

Note that for each of the three different muscles, the factor loadings for the subject-

dependent frameworks shown in Fig. 4(a)–(c) are very similar to the factor loadings of their

respective subject-independent frameworks shown in Fig. 4(d)–(f), respectively. This is due

to the low-subject-based variability of the factor loadings shown in Table II. Hence the

distribution of the factor scores obtained by the subject-independent framework is similar to

the distribution in the subject-dependent framework. This is also evident from the

similarities in slope and intercept values in the two frameworks presented in Table V. Also,

note that though the factor score distributions are different across the flexor (FPB and FDS3)

and extensor muscle (EPL) but the factor loadings are very similar across both the muscle

types.

Fig. 5(a)–(c) shows the gradings of the EMG features (associated with muscle fatigue)

obtained as per the algorithm shown in Fig. 2, by projecting factor scores obtained in Fig.

4(d)–(f) on both the latent factors for the three muscles, flexor pollicis brevis (FPB), flexor

digitorum superficialis 3 (FDS3), and extensor pollicis longus (EPL), respectively. The

EMG feature gradings increased on a scale between zero and one from the start of

contractions defined by (A) to end of the contractions (B), during the progression of the

fatiguing exercise for all three muscles. Please note that for the extensor muscle EPL [see

Fig. 5(c)], the P1gradings which capture the EMG amplitude, did not increase with fatigue up

to point B. However, the P2gradings related to EMG spectral characteristics, increased from

zero at the start of contractions (A) to one at the end of contractions (B), signifying the

Chattopadhyay et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 May 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



importance of capturing changes in both EMG amplitude and spectral characteristics for

grading features related to fatigue.

IV. Discussion

The subject-independent framework presented here provides a practical way to track the

changes in EMG features associated with muscle fatigue. The framework is based on hidden

factors or latent factors derived from multiple EMG amplitude and spectral features. The

goal of the proposed algorithm is to associate the beginning of the contraction and the time

of task failure, in which there is a significant level of muscle fatigue, to the changes in the

multiple EMG features, in a subject-independent manner. This was shown in two primary

ways: first, the factor scores for most cases, started in the upper-left quadrant of the subject-

independent framework and ended in the fourth quadrant of the framework (see Fig. 4), and

second, the gradings of the EMG features obtained from the projections of the factor scores

on the latent factors 1 and 2 (see Fig. 5) increased in a scale from zero to one with respect to

the reference framework in either both or one of the latent factors. So far this analysis cannot

measure the extent of muscle fatigue. However, the framework provides a method to

identify in a subject-independent fashion when the muscles are approaching a level of

fatigue that would result in task failure. Another advantage of this framework is that it

operates in real time.

Although surface EMG is more practical for clinical purposes, its current ability to record

from individual hand muscles is limited. Therefore, intramuscular electrodes were used in

this study to record the EMG activity of small hand muscles due to its higher selectivity and

reduced risk of crosstalk. Nevertheless, studies using surface EMG or intramuscular EMG

during sustained submaximal isometric contractions have revealed similar changes in the

signal features, such as an increase in EMG amplitude and a left shift in frequency content

of the power spectra [8], [24]. Although our present study is based on data from eight

subjects, we have collected EMG data from 12 muscles per subject, thus, increasing the

number of muscles sampled. We have applied the proposed framework successfully to

several extensor and flexor muscles. We observed that the performance of the algorithm was

relatively not sensitive to the type of the muscle, indicating flexibility in the choice of

muscles.

V. Conclusion

This study provides a generalized framework for grading several EMG features during a

sustained submaximal fatiguing contraction. Despite the use of a constant isometric

contraction, this algorithm provides the first step to developing similar systems that could

potentially identify the time when the muscles are approaching a level of fatigue that may

cause injury, on a subject-independent basis, from features extracted from the surface EMG.

To this end, we have previously applied a similar algorithm that can extract latent factors

from the surface EMG signals, but to date, this algorithm cannot be used to monitor fatigue

on a subject-independent basis [16]. Furthermore, latent factor mapping should in future

studies be associated with the drop in MVC force to ensure that the mapping is a reliable

estimate of muscle fatigue.
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Fig. 1.
Experimental Setup: hand positioned in a three-digit grasp posture.
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Fig. 2.
Subject-independent framework for grading EMG features.
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Fig. 3.
Time- and frequency-domain features during the fatiguing contractions for muscles (a) FPB, (b) FDS3, and (c) EPL for a

representative subject (subject 1).
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Fig. 4.
Subject 1 factor scores with respect to own, i.e., subject-dependent framework and rest seven subjects features, i.e., subject-

independent framework, from beginning to end of contractions (A to B) for the muscles FPB [(a) and (d)], FDS3 [(b) and (e)],

and EPL (sub1) [(c) and (f)]. Feature axis numbered as per Table I. The angles between each feature axis and the two latent

factors indicate the respective correlation between each feature and the latent factors. Smaller angle signifies higher correlation.
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Fig. 5.
Subject 1 EMG feature gradings with respect to reference framework for muscles (a) FPB, (b) FDS3, and (c) EPL obtained by

projecting respective subject-independent factor scores (A–B) in Fig. 4 on both the latent factors.
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TABLE I

Time- and Frequency-Domain Features Extracted From EMG Signal

Time Domain Features

1 Mean of linear envelope (LE)

2 Peak of linear envelope (LE)

3 Zero crossing count [4]

4 Maximum peak amplitude

5 Root mean square (RMS) [3], [18]

Frequency Domain Features

6 Median frequency [18], [19]

7 Mean frequency [3], [5], [20]

8 Spectral entropy [6]

9 Spectral energy [21]
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Table II

Subject-Based Variability for Features and Latent Factors

No. Features/Latent factors ICC based on subjects

1 Mean of LE 0.738

2 Peak of LE 0.716

3 Zero crossing count 0.929

4 Max peak value 0.839

5 Root mean square 0.714

6 Median Frequency 0.914

7 Mean Frequency 0.914

8 Spectral Entropy 0.775

9 Spectral Energy 0.737

10 Latent Factor 1 0.076

11 Latent Factor 2 0.098
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Table III

Correlation Coefficients: Features Versus Latent Factors (Bold Values Indicate Significant Correlation (P <

0.05) Coefficient)

Sl.no Features Latent Factor 1 Latent Factor 2

1. Mean of LE 0.98 0.02

2. Peak of LE 0.87 −.01

3. Zero crossing count −0.01 0.90

4. Max peak value 0.81 0.09

5. Root mean square 0.98 0.05

6. Median Frequency 0.02 0.95

7. Mean Frequency 0.01 0.96

8. Spectral Entropy −0.79 0.31

9. Spectral Energy 0.97 −0.01
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Table IV

Notation I

Notation Explanation

K Number of subjects in reference set

Sk(t) Input time series signal for a subject k in reference set

ST(t) Input time series signal for test subject T

N Total number of windows in signal

D Feature dimension

F Feature matrix

L Reference factor loadings

FS Factor scores
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Table V

Linear Regression Results on Factor Score Distributions for Subject-Dependent and Subject-Independent

Frameworks

Muscle

subject_dependent subject_independent

slope intercept slope intercept

First dorsal interosseus (FDI) −0.68 ± 0.18 −0.00 ± 0.01 −0.67 ± 0.16 −0.00 ± 0.01

First palmar interosseus (FPI) −0.31 ± 0.12 −0.01 ± 0.02 −0.29 ± 0.14 −0.01 ± 0.02

Second dorsal interosseus (SDI) −0.64 ± 0.13 −0.00 ± 0.02 −0.67 ± 0.11 −0.00 ± 0.01

Second palmar interosseus (SPI) −0.55 ± 0.36 −0.00 ± 0.05 −0.51 ± 0.31 −0.00 ± 0.02

Abductor pollicis breves (APB) −0.86 ± 0.46 −0.18 ± 0.51 −0.85 ± 0.57 −0.19 ± 0.53

Flexor pollicis breves (FPB) −0.84 ± 0.10 −0.01 ± 0.09 −0.85 ± 0.12 −0.04 ± 0.09

Extensor digitorum 2 (ED2) −0.49 ± 0.01 −0.00 ± 0.00 −0.51 ± 0.00 −0.00 ± 0.00

Extensor digitorum 3 (ED3) −0.75 ± 0.12 −0.01 ± 0.12 −0.77 ± 0.31 −0.01 ± 0.11

Extensor pollicis longus (EPL) −0.62 ± 0.24 −0.00 ± 0.00 −0.59 ± 0.25 −0.00 ± 0.00

Flexor digitorum superficialis 2 (FDS2) −0.82 ± 0.31 −0.00 ± 0.00 −0.83 ± 0.28 −0.00 ± 0.00

Flexor digitorum superficialis 3 (FDS3) −0.74 ± 0.14 −0.00 ± 0.01 −0.73 ± 0.11 −0.00 ± 0.02

Flexor pollicis longus (FPL) −0.72 ± 0.13 −0.02 ± 0.01 −0.74 ± 0.12 −0.02 ± 0.01
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