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Refined Composite Multiscale Dispersion Entropy
and its Application to Biomedical Signals

Hamed Azami1,∗, Student Member, IEEE, Mostafa Rostaghi2, Daniel Abásolo3, Member, IEEE, and Javier
Escudero1, Member, IEEE

Abstract—Objective: We propose a novel complexity measure
to overcome the deficiencies of the widespread and powerful mul-
tiscale entropy (MSE), including, MSE values may be undefined
for short signals, and MSE is slow for real-time applications.

Methods: We introduce multiscale dispersion entropy (DisEn
- MDE) as a very fast and powerful method to quantify the
complexity of signals. MDE is based on our recently developed
DisEn, which has a computation cost of O(N), compared with
O(N2) for sample entropy used in MSE. We also propose the
refined composite MDE (RCMDE) to improve the stability of
MDE.

Results: We evaluate MDE, RCMDE, and refined compos-
ite MSE (RCMSE) on synthetic signals and three biomedical
datasets. The MDE, RCMDE, and RCMSE methods show similar
results, although the MDE and RCMDE are faster, lead to more
stable results, and discriminate different types of physiological
signals better than MSE and RCMSE.

Conclusion: For noisy short and long time series, MDE and
RCMDE are noticeably more stable than MSE and RCMSE,
respectively. For short signals, MDE and RCMDE, unlike MSE
and RCMSE, do not lead to undefined values. The proposed MDE
and RCMDE are significantly faster than MSE and RCMSE,
especially for long signals, and lead to larger differences between
physiological conditions known to alter the complexity of the
physiological recordings.

Significance: MDE and RCMDE are expected to be
useful for the analysis of physiological signals thanks to
their ability to distinguish different types of dynamics. The
Matlab codes used in this paper are freely available at
http://dx.doi.org/10.7488/ds/1709.

Index Terms—Complexity, multiscale dispersion entropy, non-
linearity, biomedical signals, electroencephalogram, blood pres-
sure.

I. INTRODUCTION

ENTROPY is an effective and broadly used measure of
the irregularity and uncertainty of time series [1], [2].

Higher entropy shows higher uncertainty, while lower entropy
corresponds to less irregularity or uncertainty of a signal
[3]. When dealing with biomedical signals, two of the most
common entropy estimators are sample entropy (SampEn) [2]
and permutation entropy (PerEn) [4].

SampEn denotes the negative natural logarithm of the con-
ditional probability that a signal of length N , having repeated
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itself within a tolerance r for m sample points, will also repeat
for m + 1 sample points [2]. For more information about
SampEn, please refer to [2]. In spite of its advantages over
other entropy methods, SampEn has a computation cost of
O(N2) [5], [6]. PerEn, as a fast and powerful symbolization
method, is based on the permutation patterns or the order
relations of the amplitude values of a signal [4]. PerEn has
been used in many signal processing applications, because
it is computationally quick and has a computation cost of
O(N) [6]. Nevertheless, it has two key deficiencies: 1) when
a time series is symbolized using the Bandt-Pompe algorithm,
only the order of the amplitude values is considered and
some information about the amplitude values is ignored, and
2) the impact of equal amplitude values in each embedding
vector was not addressed in PerEn [7]. While modified PerEn
(MPerEn) has been recently introduced [8] to address point
2) and weighted PerEn (WPerEn) [9] to address 1), none of
them addresses both shortcomings.

To alleviate the deficiencies of PerEn, WPerEn, MPerEn,
and SampEn, we proposed a new entropy method, named
dispersion entropy (DisEn) [1]. DisEn needs to neither sort
the amplitude values of each embedding vector nor calculate
every distance between any two composite delay vectors with
embedding dimensions m and m+1. This makes DisEn signif-
icantly faster than PerEn, WPerEn, MPerEn, and SampEn, and
it leads to a computation cost of O(N). DisEn overcomes the
problem of equal values for embedding vectors and discarding
some information with regard to the amplitudes for PerEn
[1], [7]. Finally, unlike PerEn, MPerEn, WPerEn, and even
SampEn, DisEn is relatively insensitive to noise, because
a small change in amplitude value will not vary its class
label [1]. The results demonstrated that DisEn, unlike PerEn,
WPerEn, and MPerEn, is sensitive to changes in simultaneous
frequency and amplitude values and bandwidth of signals
[1]. We also showed that DisEn outperformed PerEn in the
discrimination of diverse biomedical datasets [1], [10].

Nevertheless, existing entropy methods (such as SampEn,
PerEn, and DisEn) used to quantify the uncertainty of signals
on a single scale [1], [11] by assessing repetitive patterns, re-
turn maximum values for completely random processes [12]–
[14]. Signals recorded from subjects suffering from different
pathologies usually show a more regular behavior and are asso-
ciated with smaller entropy values in comparison with healthy
ones [13]. In contrast, certain pathologies, such as cardiac ar-
rhythmias, are associated with highly erratic fluctuations with
statistical characteristics resembling uncorrelated noise. The
entropy values of these noisy signals are higher than those of



2

healthy individuals, even though the healthy individuals’ time
series show more physiologically complex adaptive behavior
[13], [15]. To provide a unified framework for the evaluation of
impact of diseases in physiological signals, multiscale entropy
(MSE) [13] was proposed to quantify the complexity of signals
over multiple temporal scales.

The complexity concept stands for meaningful structural
richness, which may be in contrast with regularity measures
defined from classical entropy approaches such as SampEn,
PerEn, and DisEn [12], [13], [16]. In fact, a completely
ordered signal with a small entropy value or a completely
disordered signal with maximum entropy value is the least
complex [12], [13], [17]. For example, white Gaussian noise
(WGN) is more irregular than 1/f noise although the latter is
more complex because 1/f noise contains long-range corre-
lations and its 1/f decay produces a fractal structure in time
[12], [13], [17]. The neural networks in the brain, with their
structure intermediate between order and randomness are con-
sidered as another example of complexity in the physiological
area [18].

In brief, the concept of complexity builds on three hy-
potheses: I) the complexity of a biological or physiological
time series indicates its ability to adapt and function in ever-
changing environment; II) a biological time series requires
to operate across multiple temporal and spatial scales and
so, its complexity is similarly multiscaled and hierarchical;
and III) a wide class of disease states, in addition to aging,
decrease the adaptive capacity of the individual, thus reducing
the information carried by output variables. Therefore, the
MSE focuses on quantifying the information expressed by the
physiologic dynamics over multiple temporal scales [12], [13].

The MSE has been widely used in different research fields,
including biomedical applications [19]. MSE has been success-
fully employed to characterize different pathological states,
such as to diagnose depression using physiological signals,
including heart rate, speech recordings, and electroencephalo-
grams (EEGs) [20], to detect Parkinson’s disease using EEGs
[21], and to characterize Alzheimer’s disease (AD) [22]. The
assessment of entropy at multiple scale factors, proposed by
Costa, et al., has also inspired researchers to introduce other
complexity metrics such as multiscale PerEn (MPE) [23].
However, MPE, though fast, does not fulfil the key hypotheses
of the concept of complexity [6].

To increase the accuracy of entropy estimation and decrease
the probability of facing situations where entropy is undefined,
especially for short signals, refined composite MSE (RCMSE)
was proposed [24]. Although the RCMSE reduces the sen-
sitivity of the MSE to the length of signals, the problem
of undefined MSE and RCMSE values is still present, as
shown later. In brief, MSE and RCMSE, though powerful,
have the following shortcomings: (i) MSE and RCMSE values
are undefined for short signals, (ii) MSE and RCMSE are
not stable enough, especially for short signals, and (iii) the
computation of MSE and RCMSE is not quick enough for
some applications and their computational cost is O(N2) [6].

To alleviate these deficiencies, we introduce multiscale
DisEn (MDE) and its improved version, i.e., refined composite
MDE (RCMDE), as fast and powerful complexity estimators

for real world signals.
Thus, the main contribution of this study is the proposal

of MDE and RCMDE and the testing of these algorithms
with both synthetic datasets and clinically relevant real-world
signals: focal and non-focal EEGs [25], blood pressure record-
ings in Fantasia database [26], and resting-state EEGs activity
in AD [27], [28]. In comparison with the existing entropy
estimators, we show that: 1) MDE and RCMDE increase
the reliability of the results and at the same time do not
lead to undefined values for short signals, 2) their results are
more stable for both short and long time series, 3) they are
considerably faster, especially for long signals, and 4) they
lead to larger differences between physiological conditions.

II. METHODS

A. Multiscale Dispersion Entropy (MDE)

MDE is more than the combination of the coarse-graining
[13] with DisEn. Instead, crucially, the mapping based on
the normal cumulative distribution function (NCDF) used in
the calculation of DisEn [1] for the first temporal scale is
maintained across all scales. In fact, in MDE and RCMDE, µ
and σ of NCDF are respectively set at the average and standard
deviation (SD) of the original signal and they remain constant
for all scale factors. This approach is similar to keeping r
constant fixed (usually 0.15 of the SD of the original signal)
in the MSE-based algorithms [13].

Assume we have a univariate signal of length L: u =
{u1, u2, ..., uL}. In the MDE algorithm, the original signal u is
first divided into non-overlapping segments of length τ , named
scale factor. Then, the average of each segment is calculated
to derive the coarse-grained signals as follows [13]:

xj
(τ) =

1

τ

jτ∑
b=(j−1)τ+1

ub, 1 ≤ j ≤
⌊
L

τ

⌋
= N (1)

Finally, the entropy value, using DisEn, is calculated for each
coarse-grained signal.

The DisEn of the univariate time series of length N : x =
{x1, x2, ..., xN} is defined as follows:

1) First, xj(j = 1, 2, ..., N) are mapped to c classes with
integer indices from 1 to c. To this end, the NCDF is first
used to overcome the problem of assigning the majority of xi
to only few classes in case maximum or minimum values are
noticeable larger or smaller than the mean/median value of the
signal. The NCDF maps x into y = {y1, y2, ..., yN} from 0 to
1 as follows:

yj =
1

σ
√

2π

xj∫
−∞

e
−(t−µ)2

2σ2 dt (2)

where σ and µ are the SD and mean of time series x,
respectively. Then, we use a linear algorithm to assign each
yi to an integer from 1 to c. To do so, for each member of
the mapped signal, we use zcj = round(c · yj + 0.5), where
zcj denotes the jth member of the classified time series and
rounding involves either increasing or decreasing a number to
the next digit [1]. Note that, although this part is linear, the
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whole mapping approach is non-linear because of the use of
the NCDF.

2) Time series zm,ci are made with embedding di-
mension m and time delay d according to zm,ci =
{zci , zci+d, ..., zci+(m−1)d}, i = 1, 2, ..., N − (m − 1)d [1] [2]
[4]. Each time series zm,ci is mapped to a dispersion pattern
πv0v1...vm−1

, where zci = v0, zci+d = v1,..., zci+(m−1)d =
vm−1. The number of possible dispersion patterns that can
be assigned to each time series zm,ci is equal to cm, since the
signal has m members and each member can be one of the
integers from 1 to c [1].

3) For each cm potential dispersion patterns πv0...vm−1
,

relative frequency is obtained as follows:

p(πv0...vm−1) =

#{i
∣∣i ≤ N − (m− 1)d, zm,ci has type πv0...vm−1

}
N − (m− 1)d

(3)

where # means cardinality. In fact, p(πv0...vm−1
) shows the

number of dispersion patterns of πv0...vm−1
that is assigned to

zm,ci , divided by the total number of embedded signals with
embedding dimension m.

4) Finally, based on the Shannon’s definition of entropy, the
DisEn value is calculated as follows:

DisEn(x,m, c, d) = −
cm∑
π=1

p(πv0...vm−1
) · ln

(
p(πv0...vm−1

)
)

(4)

When all possible dispersion patterns have equal probability
value, the highest value of DisEn is obtained, which has a
value of ln(cm). In contrast, if there is only one p(πv0...vm−1)
different from zero, which demonstrates a completely reg-
ular/predictable time series, the smallest value of DisEn is
obtained [1]. Note that we use the normalized DisEn as DisEn

ln(cm)
in this study [1].

B. Refined Composite Dispersion Entropy (RCMDE)

In RCMDE, for scale factor τ , τ different time series,
corresponding to different starting points of the coarse graining
process are created and the RCMDE value is defined as
the Shannon entropy value of the averages of the dispersion
patterns of those shifted sequences. The kth coarse-grained
time series x(τ)

k = {xk,1(τ), xk,2(τ), ...} of u is as follows:

xk,j
(τ) =

1

τ

k+τj−1∑
b=k+τ(j−1)

u
b
, 1 ≤ j ≤ N, 1 ≤ k ≤ τ (5)

Then, for each scale factor, RCMDE is defined as follows:

RCMDE(x,m, c, d, τ) =

−
cm∑
π=1

p̄(πv0...vm−1) · ln
(
p̄(πv0...vm−1)

) (6)

where p̄(πv0...vm−1
) = 1

τ

∑τ
1 p

(τ)
k with the relative frequency

of the dispersion pattern π in the series x(τ)
k (1 ≤ k ≤ τ).

C. Parameters of MDE and RCMDE

There are four parameters for MDE, including the embed-
ding dimension m, the number of classes c, the time delay
d, and the maximum scale factor τmax. In practice, it is
recommended d = 1, because aliasing may occur for d > 1
[1]. Clearly, we need c > 1 in order to avoid the trivial case of
having only one dispersion pattern. For MDE and RCMDE,
here, we use c = 6 for all signals according to [1], although the
range 2 < c < 9 leads to similar results. For more information
about c, m, and d, please refer to [1].

To work with reliable statistics to calculate DisEn, it was
recommended that the number of potential dispersion patterns
is smaller than the length of the signal (cm < L) [1]. For
MDE, since the coarse-graining process causes the length of a
signal decreases to

⌊
L

τmax

⌋
, it is recommended cm <

⌊
L

τmax

⌋
.

In RCDME, we consider τ coarse-grained time series with
length

⌊
L

τmax

⌋
. Therefore, the total sample points calculated

in RCMDE is τ ×
⌊

L
τmax

⌋
≈ L. Thus, the RCMDE follows

cm < L, leading to more reliable results, especially for short
signals.

III. EVALUATION SIGNALS

In this section, we briefly explain the synthetic and real
signals used in this study to evaluate the behaviour of MDE
and RCMDE.

A. Synthetic Signals

1) The complexity of 1/f noise is higher than WGN,
while the irregularity of the former method is lower than
the latter one [12], [13]. Accordingly, WGN and 1/f noise
are two important signals to evaluate the multiscale entropy
approaches [6], [12], [13], [17], [29]. For more information
about WGN and 1/f noise, please refer to [13], [30].

2) To understand the relationship between MDE, RCMDE,
and RCMSE, and the level of noise affecting quasi-periodic
time series, we generated an amplitude-modulated quasi-
periodic signal with additive WGN of diverse power. First, we
created signal as an amplitude-modulated sum of two cosine
waves with frequencies at 0.5 Hz and 1 Hz. The length and
the sampling frequency of the signal are 100 s and 150 Hz,
respectively. The first 20 s of this series (100 s) does not have
any noise. Then, WGN was added to the time series [30].

3) To find the dependence of MDE, RCMDE, and RCMSE
with changes from periodicity to non-periodic non-linearity, a
logistic map is used. This analysis is relevant to the model
parameter α as: uk = αuk−1(1 − uk−1), where the signal x
was generated varying the parameter α from 3.5 to 3.99. When
α is equal to 3.5, the signal oscillated among four values. For
3.5 < α < 3.57, the time series is periodic and the number
of values doubles progressively. For α between 3.57 and 3.99,
the time series is chaotic, although it has windows of periodic
behavior (e.g., α ≈ 3.8) [31]–[33]. Note that the signal has a
length of 100 s with a sampling frequency of 150 Hz.
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B. Real Biomedical Datasets

EEG and blood pressure recordings are affordable, non-
invasive, and widely-used to detect different physiological
states [3], [26]. Using these signals, we employ RCMDE and
MDE to discriminate focal signals from non-focal ones, elderly
from young subjects, and AD patients from controls, as three
broadly-used applications in complexity-based methods.

1) Dataset of Focal and Non-focal Brain Activity: The ability
of RCMDE and MDE to discriminate focal signals from non-
focal ones is evaluated by the use of a publicly-available EEG
dataset [25]. The dataset includes 5 patients and, for each
patient, there are 750 focal and 750 non-focal time series.
The length of each signal was 20 s with sampling frequency of
512 Hz (10240 samples). For more information, please, refer
to [25]. Before computing the entropies, all time series were
digitally band-pass filtered between 0.5 and 150 Hz using a
fourth-order Butterworth filter. Backward and forward filtering
was employed to minimize phase distortions [25]. Finally, the
time series were digitally filtered using a Hamming window
FIR band-pass filter of order 200 and cut-off frequencies 0.5
Hz and 40 Hz, a band typically used in the analysis of brain
activity.

2) Fantasia Dataset of Blood Pressure Recordings: To
further evaluate MDE and RCMDE, we use uncalibrated
continuous non-invasive blood pressure recordings of the
Fantasia database [26]. This included 10 young (21-34 years
old) and 10 old (68-85 years old) rigorously-screened healthy
individuals. Each group had 5 women and 5 men. All 20
individuals remained in an inactive state in sinus rhythm when
watching the movie Fantasia to help maintain wakefulness. All
the recordings were digitized at 250 Hz (1,000,000 samples)
[26]. For more information, please see [26].

3) Surface EEG Dataset of Brain Activity in AD: The
dataset includes 11 AD patients (5 men; 6 women; age: 72.5
± 8.3 years, all data given as mean ± SD; mini mental
state examination (MMSE): 13.3 ± 5.6) and 11 age-matched
control subjects (7 men; 4 women; age: 72.8 ± 6.1 years;
MMSE: 30 ± 0) [27] [28]. The EEG signals were recorded
using the international 10-20 system, in an eyes closed and
resting state with a sampling frequency of 256 Hz from
the Alzheimer’s Patients Relatives Association of Valladolid
(AFAVA), Spain. Informed consent was obtained for all 22
subjects and the local ethics committee approved the study.
Before band-pass filtering with cut-off frequencies 0.5 and
40 Hz and a Hamming window with order 200, the signals
were visually examined by an expert physician to select 5
s epochs (1280 samples) with minimal artifacts for analysis.
More details can be found in [27], [28].

IV. RESULTS AND DISCUSSION

A. Synthetic Signals

Fig. 1(a), 1(b), and 1(c) respectively show the results ob-
tained for MDE, RCMDE, and RCMSE using 40 different
WGN and 1/f noise signals with the length of 20,000 samples.
All the results are consistent with the fact that 1/f noise
has more complex structure than WGN, and WGN is more
irregular than 1/f noise [12], [13], [17]. At short scale

TABLE I: CV values of the proposed and classical multiscale entropy-based
analyses at scale factor 10 for 1/f noise and WGN.

Time series MSE RCMSE MDE RCMDE
1/f noise 0.0101 0.0056 0.0044 0.0022

WGN 0.0152 0.0087 0.0119 0.0066

factors, the entropy values of WGN signals are higher than
those of 1/f noise. However, at higher scale factors, the
entropy value for the coarse-grained 1/f noise signal stays
almost constant, while for the coarse-grained WGN signal
monotonically decreases. For WGN, when the length of the
signal, obtained by the coarse-graining process, decreases (i.e.,
the scale factor increases), the mean value of each segment
converges to a constant value and the SD becomes smaller.
Therefore, no new structures are revealed on higher scales.
This demonstrates WGN time series contain information only
in small time scales [13] [17]. For all MSE-based methods, we
set d = 1, m = 2, and r = 0.15 of the SD of the original signal
[2]. Here, for WGN and 1/f noise, τmax and m respectively
were 20 and 2 for MDE and RCMDE, according to Section
II.C.

To compare the results obtained using the MSE, RCMSE,
MDE, and RCMDE, we used the coefficient of variation (CV)
defined as the SD divided by the mean. We use such a
measure because the SDs of signals may increase or decrease
proportionally to the mean. Accordingly, the CV, as a standard-
ization of the SD, allows comparison of variability estimates
irrespective of the magnitude values. We investigate WGN and
1/f noise results at scale factor 10 as a trade-off between short
and long scales. As can be seen in Table I, the RCMDE and
RCMSE are more stable than MDE and RCMSE, respectively,
showing the importance of the refined composite technique to
improve the stability of results for noisy signals. Moreover, the
CVs for MDE and RCMDE are noticeably smaller than those
for MSE and RCMSE, respectively. Overall, the smallest CV
values for 1/f noise and WGN are reached by RCMDE.

To evaluate the computation time of MSE (with m=1 and
2 for completeness), MDE (m=2 and 3, likewise), RCMSE
(m=2), and RCMDE (m=3), we use WGN signals with dif-
ferent lengths, changing from 100 to 100,000 sample points.
The results are shown in Table II. The simulations have been
carried out using a PC with Intel (R) Xeon (R) CPU, E5420,
2.5 GHz and 8-GB RAM by MATLAB R2015a. For 100 and
300 sample points, MSE (m = 1 and 2) and RCMSE (m = 1)
lead to undefined values at least at several scale factors. This
does not happen for MDE and RCMDE. This fact proves
the superiority of MDE-based methods over MSE-based ones
for short signals. There are no big differences between the
computation time for the MSE with m=1 and 2 or for the MDE
with m=2 and 3. The results show that for the different number
of sample points, MDE and RCMDE are noticeably faster than
MSE and RCMSE, respectively. This computational advantage
of MDE and RCMDE increases notably with the signal length.
It is in agreement with the fact that the computational cost of
SampEn and DisEn are O(N2) [6] and O(N ), respectively [1].
Note that the MSE and RCMSE codes used in this paper are
publicly-available at http://dx.doi.org/10.7488/ds/1477.

The multiscale methods are applied to the logistic map
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Fig. 1: Mean value and SD of results of the (a) MDE, (b) RCMDE, and (c) RCMSE computed from 40 different 1/f noise and WGN test signals.

TABLE II: The computational time of MSE, MDE, RCMSE, and RCMDE.

Number of samples → 100 300 1,000 3,000 10,000 30,000 100,000
MSE (m = 1) undefined at all scales undefined at several scales 0.16 s 0.65 s 4.08 s 25.87 s 202.43 s
MSE (m = 2) undefined at all scales undefined at all scales undefined at several scales 0.72 s 4.59 s 27.50 s 210.18 s

RCMSE (m = 2) undefined at all scales undefined at several scales 0.94 s 3.33 s 16.08 s 84.75 s 624.41 s
MDE (m = 2) 0.02 s 0.02 s 0.05 s 0.15 s 0.45 s 1.42 s 4.52 s
MDE (m = 3) 0.03 s 0.03 s 0.06 s 0.16 s 0.48 s 1.45 s 4.67 s

RCMDE (m = 3) 0.09 s 0.15 s 0.40 s 1.10 s 3.49 s 10.52 s 34.15 s

and quasi-periodic signals with additive noise using a moving
window of 1500 samples (10 s) with 90% overlap. Here, for
MDE and RCMDE, τmax and m respectively were 15 and 2,
according to Section II.C. Fig. 2(a), (b), and (c) respectively
show the MDE-, RCMDE- and RCMSE-based profiles using
the quasi-periodic signal with increasing additive noise power.
As expected, the entropy values for all three methods increase
along the signal. At high scale factors, the entropy values
decrease because of the filtering nature of the coarse-graining
process. To sum up, the results show all the methods lead to
the similar results, although the RCMDE results are slightly
more stable than MDE ones, as evidenced by the smoother
nature of variations in Fig. 2(b) in comparison with Fig. 2(a).
Hence, when a high level of noise is present, RCMDE leads
to more stable results than MDE.

The results with MDE, RCMDE, and RCMSE using a
window of 10 s (1500 samples) with 90% overlap moving
along the logistic map with the parameter α changing linearly
from 3.5 to 3.99 are shown in Fig 2(d), 2(e), and 2(f),
respectively. As expected, the entropy values, obtained by the
MDE, RCMDE, and RCMSE, generally increase along the
signal, except for the downward spikes in the windows of
periodic behavior (e.g., for α = 3.8 - shown by arrows in
Fig. 2(d), 2(e), and 2(f)). This fact is in agreement with Fig.
4.10 (page 87 in [31]). For increasing scale factors, MDE,
RCMDE, and RCMSE lead to an increase until τ = 2 and
τ = 3, respectively, then a decrease. The results show that all
the methods lead to similar results. In particular, there is little
difference between MDE and RCMDE. Hence, when signals
do not have noticeable noise, MDE and RCMDE have quite
similar performance, although MDE is significantly faster due
to avoiding having to repeat the coarse-graining process within
each temporal scale.

B. Real Biomedical Datasets

In the physiological complexity literature, it is hypothesized
that healthy conditions correspond to more complex states due

to their ability to adapt to adverse conditions, exhibiting long
range correlations, and rich variability at multiple scales, while
aged and diseased individuals present complexity loss. That is,
they lose the capability to adapt to such adverse conditions
[13]. Accordingly, we employ the MDE and RCMDE to
characterize different kinds of biomedical signals to detect
different pathological states.

1) Dataset of Focal and Non-focal Brain Activity: For the
focal and non-focal EEG dataset, the results obtained by MDE,
RCMDE, and RCMSE, respectively, depicted in Fig. 3(a), (b),
and (c), show that non-focal signals are more complex than
focal ones. This fact is in agreement with previous studies
[25], [34]. The results show that the MDE, RCMDE, and
RCMSE lead to similar results, albeit the MDE-based methods
are significantly faster than MSE-based ones. Note that, for
MDE and RCMDE, τmax and m respectively were 30 and 3.

2) Fantasia Dataset of Blood Pressure Recordings: In Fig.
3(d)-(f), the error bars respectively show the mean and spread
of the MDE, RCMDE, and RCMSE values computed from
young and old subjects’ blood pressure recordings in the
Fantasia database. For each scale factor, the average of entropy
values for elderly subjects are smaller than that for young
ones using MDE, RCMDE, and RCMSE, in agreement with
those obtained by the other entropy-based method [35]. For
RCMDE, τmax and m respectively were 20 and 4. The com-
putational time for the MDE, RCMDE and RCMSE results
were about 1 hour, 5 hours, and 10 days, respectively. These
considerable differences are due to the length of the signals
(1,000,000 samples). For each scale factor and for each of
MDE, RCMDE, and RCMSE, a Student’s t-test was also used
to assess the statistical differences between the DisEn/SampEn
values for young subjects versus elderly ones at all considered
temporal scales. We adjusted the false discovery rate (FDR)
independently for each entropy approach. The scales with
the adjusted p-values between 0.01 and 0.05 (significant) and
less than 0.01 (very significant) are shown with + and *,
respectively, in Fig. 3(d)-(f). The results show that the MDE
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(a) MDE results for quasi-periodic time series
with increasing additive noise power
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(b) RCMDE results for quasi-periodic time series
with increasing additive noise power
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(c) RCMSE results for quasi-periodic time series
with increasing additive noise power
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(d) MDE results for logistic map
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(e) RCMDE results for logistic map
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(f) RCMSE results for logistic map

Fig. 2: Results of the tests performed to gain better understanding of (a) MDE and (b) RCMDE in comparison with (c) RCMSE using a window moving
along the quasi-periodic time series with increasing additive noise power, showing an increase in entropy values along the signal (temporal window); and
(d) MDE, (e) RCMDE, and (f) RCMSE using a window moving along the logistic map with varying parameter α from 3.5 to 3.99 showing an increase in
entropy values along the signal, except for the downward spikes in the windows of periodic behavior (e.g., for α = 3.8 - shown by the arrows)
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Scale Factor

0 5 10 15 20 25 30

E
n

tr
o

p
y
 M

e
a

s
u

re

0.46

0.65

0.84

0.93

Focal
Non-focal

(b) RCMDE for focal and non-focal EEGs
Scale Factor

0 5 10 15 20 25 30

E
n

tr
o

p
y
 M

e
a

s
u

re

0.5

1

1.5

2

Focal
Non-focal

(c) RCMSE for focal and non-focal EEGs
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(d) MDE for Fantasia database
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(f) RCMSE for Fantasia database
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(g) MDE for AD subjects and controls
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(h) RCMDE for AD subjects and controls
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Fig. 3: Mean value and SD of results of the MDE, RCMDE, and RCMSE computed from (a), (b), and (c) focal and non-focal EEGs, (d), (e), and (f) blood
pressure recordings in Fantasia database, and (g), (h), and (i) resting-state EEGs activity in AD.
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and RCMDE lead to the very significant differences for elderly
and young subjects at all scale factors, except the second scale,
showing only significant difference. However, the RCMSE-
based results do not show a significant difference at scales 1
and 2. The differences for scale factors 3-10 and 11-20 are
significant and very significant, respectively. These facts show
advantages of MDE and RCMDE over RCMSE.

3) Surface EEG Dataset of Brain Activity in AD: We also
analyze EEG signals from patients with AD and age-matched
control subjects. The error bars showing the spread of the
MDE, RCMDE, and RCMSE values are depicted in Fig. 3(g),
(h), and (i), respectively. The average of MDE or RCMDE
values for AD patients is smaller than that for controls at scale
factors 1-7 (short-time scale factors), while after scale factor
8, the AD subjects’ signals have larger entropy values (long-
time scale factors). Similar results are obtained with RCMSE.
All the results are in agreement with [22], [36], [37].

Moreover, a Student’s t-test was performed for AD patients’
vs. controls’ results. We adjusted the FDR independently for
each of MDE, RCMDE, and RCMSE and each scale factor.
As can be seen in Fig. 3(g)-(i), the results show that the MDE
and RCMDE methods achieve very significant differences
at scale factors 2, 3, 4, 5, 6, 11, and 12 and significant
differences at scales 1 and 10, while the RCMSE leads to
very significant differences at only scale factors 11 and 12
and a significant difference at scale factor 10. This suggests a
better performance of the MDE and RCMDE approaches over
the RCMSE algorithm for the distinction of EEG background
activity related to AD.

The adjusted p-values for EEGs in the AD dataset, unlike the
previous two datasets, show that the AD patients’ and controls’
signals are not significantly different at several scale factors
using MDE, RCMDE, and RCMSE, albeit MDE and RCMDE
led to smaller adjusted p-values. As an alternative approach,
we integrate information from several temporal scales using
slope values of complexity curves instead of considering
entropy values separately at every time scale to distinguish
different kinds of dynamics [38]. The MSE and MDE profiles
showing respectively the SampEn and DisEn values of each
coarse-grained time series versus the scale factor were visually
inspected to determine the range of scales over which the slope
would need to be calculated. For example, the slopes of MDE
and MSE profiles are used to discriminate controls and AD
patients’ surface EEGs. As can be seen in Fig. 3(g)-(i), for
MDE profiles, the curves increase until scale factor 6. Then,
the slope goes down and the DisEn values are nearly constant
or decrease slightly. Therefore, we can divide each of the MDE
curves into two segments: I) the first part corresponds to the
steep increasing slope (small scale factors, i.e. 1 ≤ τ ≤ 6),
and II) the second one contains the scale factors in which the
slope of the DisEn values are smoother (large scale factors,
i.e. 7 ≤ τ ≤ 12 ). Similarly for the MSE method, we divide
the curves into two segments with scale factors 1 ≤ τ ≤ 4
and 5 ≤ τ ≤ 12. Note that the slope values of both parts were
calculated based on the least-square approach.
Tabulation III shows the average ± SD of slope values of the
MSE and MDE profiles for small and large time scales. The
adjusted p-values of the Student’s t-test were also calculated to

TABLE III: Average ± SD of slope values of the MDE and MSE profiles and
adjusted p-values for AD patients vs. controls over all channels and subjects.

Method AD Patients Controls Adj. p-values
MSE (1 ≤ τ ≤ 4) 0.410±0.022 0.418±0.024 0.441

MSE (5 ≤ τ ≤ 12) 0.002±0.019 -0.021±0.024 0.019
MDE (1 ≤ τ ≤ 6) 0.121±0.018 0.111±0.025 0.296

MDE (7 ≤ τ ≤ 12) -0.024±0.019 -0.053±0.015 0.001

investigate whether there is any significant difference between
the AD and control groups. For small scale factors, no sig-
nificant differences between both groups were found, whereas
the differences between these groups were significant at large
scale factors. More importantly, the adjusted p-values obtained
using MDE were noticeably smaller than those for MSE,
showing that the MDE better discriminates the AD patients
from controls than MSE. This again suggests that MDE is a
better method than MSE to discriminate AD patients’ from
controls’ signals.

Overall, the results of the three real world datasets support
the use of MDE and RCMDE over RCMSE due to its ability
to produce similar complexity profiles, faster computational
time and increased ability to find differences between physi-
ological conditions. In future work, the ability of MDE and
RCMDE to distinguish different kinds of dynamics of other
physiological and non-physiological signals will be inspected.
We also take into account the dynamics across the channels
for multivariate time series [39] and will introduce multivariate
MDE (mvMDE) and refined composite mvMDE.

V. CONCLUSIONS

To quantify the complexity of signals and to improve
diagnostic or therapeutic interventions, we introduced and
subsequently evaluated the MDE and RCMDE methods.

Our proposed methods MDE and RCMDE overcame the
shortcomings of the existing multiscale entropy methods: 1)
MSE and RCMSE values are undefined or unreliable for short
signals, 2) MSE and RCMSE are not stable enough for short
signals, and 3) the computation of MSE and RCMSE is not fast
enough for some real-time applications. We evaluated the per-
formance of MDE and RCMDE on several relevant synthetic
signals and three datasets of real physiological signals. The
results showed similar behavior in terms of complexity profiles
of MSE or RCMSE and MDE or RCMDE although MDE and
RCMDE are significantly faster, especially for long signals.
Moreover, RCMDE was more stable than MDE for noisy
signals, while for filtered biomedical signals, the performance
of RCMDE and MDE was quite similar. For short signals,
MDE and RCMDE, unlike MSE and RCMSE, did not lead
to undefined values. In comparison with RCMSE, MDE and
RCMDE discriminated better the elderly from young subjects
and controls from AD patients, respectively, for Fantasia and
AD datasets.

Overall, we expect MDE and RCMDE to play a prominent
role in the evaluation of complexity in real signals.
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“Approximate entropy and auto mutual information analysis of the
electroencephalogram in Alzheimer’s disease patients,” Medical & bio-
logical engineering & computing, vol. 46, no. 10, pp. 1019–1028, 2008.

[29] A. Humeau-Heurtier, C.-W. Wu, S. De Wu, M. Guillaume, and P. Abra-
ham, “Refined multiscale hilbert-huang spectral entropy and its applica-
tion to central and peripheral cardiovascular data,” IEEE Transactions
on Biomedical Engineering, pp. 1–11, 2016.

[30] H. Azami and J. Escudero, “Improved multiscale permutation en-
tropy for biomedical signal analysis: Interpretation and application to
electroencephalogram recordings,” Biomedical Signal Processing and
Control, vol. 23, pp. 28–41, 2016.

[31] G. L. Baker and J. P. Gollub, Chaotic dynamics: an introduction.
Cambridge University Press, 1996.

[32] M. Ferrario, M. G. Signorini, G. Magenes, and S. Cerutti, “Comparison
of entropy-based regularity estimators: application to the fetal heart rate
signal for the identification of fetal distress,” IEEE Transactions on
Biomedical Engineering, vol. 53, no. 1, pp. 119–125, 2006.

[33] J. Escudero, R. Hornero, and D. Abásolo, “Interpretation of the auto-
mutual information rate of decrease in the context of biomedical signal
analysis. application to electroencephalogram recordings,” Physiological
measurement, vol. 30, no. 2, p. 187, 2009.

[34] R. Sharma, R. B. Pachori, and U. R. Acharya, “Application of entropy
measures on intrinsic mode functions for the automated identification of
focal electroencephalogram signals,” Entropy, vol. 17, no. 2, pp. 669–
691, 2015.

[35] S. Nemati, B. A. Edwards, J. Lee, B. Pittman-Polletta, J. P. Butler,
and A. Malhotra, “Respiration and heart rate complexity: effects of
age and gender assessed by band-limited transfer entropy,” Respiratory
physiology & neurobiology, vol. 189, no. 1, pp. 27–33, 2013.

[36] A. C. Yang, S.-J. Wang, K.-L. Lai, C.-F. Tsai, C.-H. Yang, J.-P. Hwang,
M.-T. Lo, N. E. Huang, C.-K. Peng, and J.-L. Fuh, “Cognitive and
neuropsychiatric correlates of EEG dynamic complexity in patients
with Alzheimer’s disease,” Progress in Neuro-Psychopharmacology and
Biological Psychiatry, vol. 47, pp. 52–61, 2013.

[37] D. Labate, F. La Foresta, G. Morabito, I. Palamara, and F. C. Morabito,
“Entropic measures of EEG complexity in Alzheimer’s disease through a
multivariate multiscale approach,” Sensors Journal, IEEE, vol. 13, no. 9,
pp. 3284–3292, 2013.

[38] H. Azami, D. Abásolo, S. Simons, and J. Escudero, “Univariate and
multivariate generalized multiscale entropy to characterise EEG signals
in Alzheimer’s disease,” Entropy, vol. 19, no. 1, p. 31, 2017.

[39] M. U. Ahmed and D. P. Mandic, “Multivariate multiscale entropy: A
tool for complexity analysis of multichannel data,” Physical Review E,
vol. 84, no. 6, p. 061918, 2011.


