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Abstract--Recent years have seen steady improvements in the quality and performance of speech-based human-

machine interaction driven by a significant convergence in the methods and techniques employed. However, the quantity 
of training data required to improve state-of-the-art systems seems to be growing exponentially, and performance 
appears to be asymptoting to a level that may be inadequate for many real-world applications. This suggests that there 
may be a fundamental flaw in the underlying architecture of contemporary systems, as well as a failure to capitalize on 
the combinatorial properties of human spoken language. This paper addresses these issues and presents a novel 
architecture for speech-based human-machine interaction inspired by recent findings in the neurobiology of living 
systems. Called PRESENCE – ‘PREdictive SENsorimotor Control and Emulation’ – this new architecture blurs the 
distinction between the core components of a traditional spoken language dialogue system and, instead, focuses on a 
recursive hierarchical feedback control structure. Cooperative and communicative behavior emerges as a by-product of 
an architecture that is founded on a model of interaction in which the system has in mind the needs and intentions of a 
user, and a user has in mind the needs and intentions of the system. 
 

Index Terms—automatic speech recognition, speech synthesis, spoken language dialogue.  

I. INTRODUCTION 
HERE are many compelling arguments to support the continued development of speech-

based human-machine interaction. The majority of protagonists cite the inherent ‘naturalness’ of 

speech-enabled interfaces in which the spoken language skills acquired by users as infants can be 

readily recruited to understand the information provided by the output of a text-to-speech 

synthesizer, to control equipment by speaking to an automatic speech recognizer, or to access 

information by conversing with a spoken language dialogue system [1]. Even those who question 

the naturalness of such interactions nevertheless concede that the speech channel has the 

potential to offer genuine application benefits in hands-free eyes-free operational environments, 

where even an errorful speech-based human-machine interface can support higher rates of 

information transfer than competing interface technologies [2]. 
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However, recent years have seen a significant convergence in the methods and techniques 

employed to develop speech-based human-machine interaction, and the data-driven statistical-

modeling paradigm (such as hidden Markov model based acoustic modeling, n-gram based 

language modeling, and concatenative speech synthesis) has come to dominate the research 

agenda. Of course, this convergence of modeling paradigms has come about because of the very 

real improvements in system quality and performance that such approaches have provided over a 

period of almost three decades. The principle of defining a model, estimating its parameters from 

example data, and then deploying that model as a mechanism for generalizing in novel situations 

is above reproach, and the use of statistical methods represents one of the most powerful and 

effective tools that the scientific community has at its disposal for performing such modeling [3]. 

The only problem is that the quantity of training data required to improve state-of-the-art speech-

based systems seems to be growing exponentially (despite the relatively low complexity of the 

underlying models), and system performance appears to be asymptoting to a level that may be 

inadequate for many real-world applications [4], [5]. Also, current speech technology is quite 

fragile, even in fairly benign everyday conditions; not only is contemporary automatic speech 

recognition quite poor at recognizing and understanding heavily accented or conversational 

speech, but machine generated speech lacks individuality, expression and communicative intent, 

and spoken language dialogue systems are rigid and inflexible. 

These shortfalls in the capabilities of automated spoken language systems are in direct contrast 

to human spoken language behavior which is exceptionally robust and flexible - characteristics 

that allow human conversation to function very reliably even in difficult or extreme real-world 

conditions. For example, human sentence recognition accuracy is near perfect at -3dB signal-to-

noise-ratio, and human generated speech is highly expressive and communicative. Such 
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differences between human and machine behavior suggest that there may be a fundamental flaw 

in the underlying architecture of contemporary systems for speech-based human-machine 

interaction. 

This paper addresses these issues and presents a novel architecture for future speech-based 

human-machine interaction based on the ‘PREdictive SENsorimotor Control & Emulation’ 

(PRESENCE) theory of spoken language processing introduced by the author in [6]. A unique 

feature of PRESENCE is that it has been founded on results from a range of neurobiological 

scientific disciplines outside the normal realms of speech and language; disciplines that are 

aimed at understanding and modeling the communicative behaviors of living systems in general, 

as well as addressing the special cognitive abilities of human beings. This paper extends these 

results to encompass speech-based human-machine interaction, and discusses the architectural 

implications for future speech-enabled systems. 

II. INSIGHTS FROM LIVING SYSTEMS 
During the 1970s numerous attempts were made to invoke knowledge about the structure and 

behavior of human spoken language in order to develop practical systems for human-machine 

interaction. This was the era of the ‘speech understanding system’ [7], and it was assumed that 

the classical principles of phonetics and linguistics could be used to improve impoverished 

technological approaches. The practical outcomes were almost universally disappointing [8] with 

the best system using the least amount of phonetic and linguistic knowledge [9]. The perceived 

value of any insight into the human process has been greatly diminished ever since. 

Apart from the cultural mismatch between the different research communities concerned, the 

difficulties encountered arose from the technologists’ failure to grasp the importance of the 

communicative nature of speech coupled with the speech scientists’ naïve understanding of 
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computational mechanisms. Both communities have subsequently retreated into their own 

domains and, apart from a few notable exceptions [10]-[19], very little research has attempted to 

‘bridge the gap’. Indeed it is interesting to note that the technology for text-to-speech synthesis 

(TTS) has now evolved almost as far away from models of human speech production as it is 

possible to be; the early approaches based on human-inspired articulatory modeling and formant 

synthesis have now almost completely given way to contatenative unit-selection approaches that 

appear to have very little analogy with the structure and behavior of the human vocal apparatus. 

Of such attempts to bridge the gap between automatic speech recognition (ASR) and human 

speech recognition (HSR), one common approach is to modify the front-end signal processing of 

an ASR system to more closely reflect the characteristics of the human auditory system [10] 

and/or to detect linguistically-motivated features in the incoming signal [11]-[12].  Another 

approach has been to attempt to break down the core modeling assumptions (stationarity and 1st-

order temporal dependencies) embedded within the conventional HMM paradigm by invoking a 

segmental structure that should be better able to characterize the coarticulatory dependencies and 

phonological constraints observed in everyday speech signals [14], [15]. Of particular interest is 

the recent work of Scharenborg et al [16] in which ‘SHORTLIST’ (the most highly regarded and 

widely accepted psycholinguistic model of human word recognition [17]) has been interfaced 

directly to a conventional ASR front-end, thereby creating ‘SPeM’ the first end-to-end HSR 

model (SHORTLIST assumes a phonetic transcription as input, whereas SPeM uses actual 

speech). Other approaches involve simulating models of human memory in order to retain the 

fine phonetic detail embedded in episodic traces of input speech (rather than blurring such detail 

within a statistical modeling framework) [18] and investigating the possibility of training ASR 

systems on the exaggerated characteristics of child-directed speech rather than on the reduced 
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forms typical of adult speech [19]. 

All such attempts to bridge the gap show some promise in terms of achieving comparable 

performance with that attainable using a conventional approach, but none seem to offer the 

order-of-magnitude jump in capability that is needed to match human behavior [20]. Indeed, 

although SPEM successfully captures many of the behaviors of HSR in an end-to-end model, 

and has thus attracted a significant amount of attention in both communities, its ability to 

recognize speech is actually lower than a conventional ASR system! 

As a consequence of this situation, it is the opinion of the author that the challenge facing both 

the speech science and speech technology communities is no longer one of how to share disjoint 

views of a subject of common interest (viz. spoken language). Rather, the issue now appears to 

be how both communities can assimilate research results from the many disciplines outside of 

speech and language that are making significant progress in modeling and understanding the 

complex behavior of living systems in general, and the cognitive abilities of human beings in 

particular. For example, recent years have seen significant advances being made in the fields of 

neurobiology and cognitive neuroscience, and a number of these areas are delivering 

dramatically new insights into intelligent behavior - insights that may have a direct bearing on 

future models of spoken language interaction. In particular, the author has identified four areas 

of research that may have significant implications for the future architecture of speech-based 

human machine interaction. These are; (i) the growing evidence for an intimate relationship 

between sensor and motor behavior in living organisms, (ii) the power of negative feedback 

control to accommodate unpredictable disturbances in real-world environments, (iii) mechanisms 

for imitation and mental imagery for learning and modeling, and (iv) hierarchical models of 

temporal memory for predicting future behavior and anticipating the outcome of events. 



TCSI-0355-0906 6

A. Sensorimotor overlap 

The author has argued in [6] that a key failure in both the speech technology and the speech 

science communities has been the natural tendency to decompose spoken language processing 

into its apparently obvious component parts - speech recognition, speech generation, and spoken 

language dialogue - and to conduct research in each area more or less independently. As a 

consequence, this enforced separation of perception, production, and interaction has made it 

virtually impossible for any of these fields to capitalize on theories of human behavior that 

hypothesize a more intimate relationship between sensor and motor activity.  

Outside the narrow confines of speech research there has been considerable excitement in the 

field of neurocognition as a result of the discovery in the 1990s of ‘mirror neurons’ in the pre-

motor cortex of macaque monkeys [21], [22] – ensembles of neurons that are activated, not only 

during a specific motor activity (such as grasping), but also during the observation of that same 

activity when performed by another individual. The implication is that motor planning behavior 

plays a key role in perceptual processes, and that the actions of others are interpreted with 

respect to an organism’s own abilities to execute the observed behavior [23]. 

The discovery of mirror neurons, and the confirmation of the existence of such structures in 

the human brain, is having a huge impact on models of action-understanding. Indeed it turns out 

that an overlap of sensorimotor processing is implicated in a wide range of intelligent behaviors. 

For example, mirror neurons have been cited as a possible explanatory mechanism for models of 

emotion [24], consciousness [25], and of particular interest here, speech and language [26], [27]. 

Indeed, Rizzolatti and Arbib [26] and others [28] argue that the emergence of an audio-visual 

mirror system in the F5 area of the frontal cortex in close proximity to Broca’s area provides a 

credible explanation of how spoken language evolved from more primitive communication 
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systems based on manual gestures. 

Sensorimotor overlap, therefore, appears to be an essential architectural design that underpins 

the behavior of intelligent living systems, and is thought to have played a central role in the 

emergence of speech-based human-human interaction. As yet, no practical architecture for 

speech-based human-machine interaction exploits the parameter-sharing opportunities offered by 

creating an intimate relationship between speech input and speech output. However, the evidence 

for brain mechanisms linking language and action [29], and the discovery that speech sounds 

have been shown to activate the articulatory system [30], [31] are enticing (and are even reviving 

interest in Liberman’s early ‘motor theory’ of speech perception [32]). 

B. Perceptual control 

Another consequence of decomposing spoken language processing into its component parts is 

that this reductionist approach leads to the situation where any systematic variation in behavior 

that arises from speaker-listener interaction is obliged to be observed (and hence modeled) as 

unpredictable and random. An alternative is to pursue a whole-system approach in which spoken 

language is modeled, not as a ‘chain’ of transformations from the mind of the speaker to the 

mind of the listener [33], but as an emergent behavior of a complex layered control feedback 

system in which a speaker has in mind the needs of a listener and a listener has in mind the 

intentions of a speaker. 

In fact, such an approach - known as ‘perceptual control theory’ (PCT) [34] - was introduced 

in the early 1970s as a means for modeling a wide range of human cognitive behavior (including 

spoken language). Unfortunately, PCT is not well known outside its small group of enthusiasts, 

and it has been mainly directed towards explaining social and psychological phenomena. 

The basic idea in perceptual control theory is that much of the apparent random variability in 
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human behavior can be explained using a hierarchy of closed-loop negative feedback systems. A 

controlling ‘reference’ variable sets the desired value of a controlled ‘output’ variable. The latter 

is sensed and its value is compared with the reference. The resulting error signal then drives the 

system in a direction that minimizes the difference. 

The advantage of a negative feedback closed-loop control system is that it is capable of 

maintaining a controlled variable at a prescribed value in the face of an infinite number of 

possible disturbances. For example, a simple room thermostat maintains a constant temperature 

despite the opening and closing of doors and windows and changes in the external weather. The 

alternative – an ‘open-loop’ control system – would require a multitude of sensor arrays (e.g. to 

detect the degree of opening of each aperture) and a complex analytical model to calculate the 

required input. 

PCT claims that the behavior of a living organism is actively directed towards maintaining 

desired perceptual consequences of its actions. This approach has the rather radical outcome that 

perception is viewed, not as a process for a detailed analysis of the world (including the behavior 

of other organisms) in order to figure out from first principles what is taking place, but as a 

process for checking that the world is as an organism wants. If the world is not as desired then 

(motor) action can be taken to make it so. 

The structure of a basic perceptual control system is shown in Fig. 1. An organism’s 

‘intention’ or ‘need’ is realized as an action, the consequences are sensed, and the 

‘interpretation’ of the consequences is compared with the original intention. If the perceived 

consequences do not match the original intention, further action is automatically triggered to 

correct the difference. PCT thus provides a mechanism whereby the behavior of a living system 

is actively controlled in order to meet internal needs, and that the success or failure of any 
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particular action is judged by comparing the desired intentions against the perceived 

achievements. Behavior is then altered such as to achieve the desired internal state. The 

consequence is that an organism can easily and efficiently compensate for the infinity of 

potential disturbances that pervade real-world environments and obstruct it from achieving its 

intended goals. The apparent random variation in behavior is thus seen to be simply the external 

manifestation of such compensatory activity. 

Reference 
Signal

+

-

OUTPUT 
FUNCTION ACTUATORS

Error 
Signal

INPUT 
FUNCTION SENSORS

FEEDBACK 
FUNCTION

Disturbance

Perceptual 
Signal

Controlled 
Variable

Action

Unintended 
Effects

 

Fig. 1. Illustration of a basic perceptual control architecture. 

The structure illustrated in Fig. 1 is a single layered system. However, PCT proposes a 

hierarchy control in which each layer defines the reference signal for the layer below. In this 

way, PCT is able to capture everything from low-level motor control to high-level psychological 

and social behavior. The levels originally hypothesized by Powers are; 1st-order: intensity; 2nd-

order: sensation/vector; 3rd-order: configuration; 4th-order: transitions; 5th-order: sequence; 6th-

order: relationships; 7th-order: program; 8th-order: principles; 9th-order: system concepts [34]. 

PCT thus provides a powerful explanatory mechanism for the complex behavior of living 

systems interacting with their changing physical environment by means of a hierarchy of 
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feedback control processes. However, also implicit in PCT is the dependency of one organism’s 

behavior on another’s. PCT thus provides the foundation for a multi-layered model of interaction 

between different organisms, as well as between humans and machines [35]. 

There is considerable evidence for the existence of perceptual control operating in spoken 

language. For example, it is well known that being able to hear your own voice has an effect on 

speaking: profoundly deaf individuals can have great difficulty maintaining clear pronunciations 

or achieving an appropriate level of loudness, delayed auditory feedback can cause stuttering-

like behavior, and individuals naturally tend to speak louder/differently in noise [36]. 

Also, there is evidence that speakers actively control their spoken language behavior as a 

function of their listener. For example, speakers constantly adjust the fidelity of their 

pronunciation in order to maintain an efficient balance between communicative effectiveness and 

articulatory effort [37]. There is also the well known phenomenon of ‘parentese’ in which carers 

naturally exhibit quite extreme prosodic and phonetic behavior in order to be better understood 

by very young children [38]. 

Therefore, possible control variables in spoken language generation include (i) listener 

behavior, (ii) a listener’s perception of the linguistic message, (iii) the speaker’s affective state, 

and (iv) the speaker’s individuality. Similarly, possible control variables in spoken language 

interpretation include (i) the listener’s attention, i.e. the allocation of (computational) resources 

and the weighting of sensory input data, and (ii) the listener’s expectations, i.e. predictions of a 

speaker’s behavior. Interestingly, the latter can be viewed as a generative model (i.e. a model of 

the speaker), and this gives a clue as to the linking between perception and production that is 

implicit in perceptual control theory. What is important is that all these factors can only be 

controlled under different conditions if there is a control feedback loop. 
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C. Emulation of self and of others 

The power of negative feedback control mechanisms for modeling complex behavior in living 

systems has also been investigated by scientists completely independently of PCT (e.g. [39] and 

[40]). One of the issues addressed by such research has been how an organism maintains 

accurate motor control under real-time constraints despite there being significant neurological 

loop delays between motor activity and proprioceptive sensor feedback. The solution in living 

systems is thought to be based on the evolution of mechanisms that emulate the effects of the 

intended motor actions in which the necessary feedback is provided, not by sensing the real-

world, but by observing the output of the emulator in a ‘pseudo’ closed-loop architecture – see 

Fig. 2. As a result, it is possible to achieve much more rapid control than would be possible with 

the direct (but delayed) proprioceptive feedback path. 

CONTROLLER PLANT

EMULATOR

goal
goal behaviourcontrol signal

duplicate 
control 
signal

 

Fig. 2. Illustration of a ‘pseudo’ closed-loop control architecture. 

The process of emulation provides an organism with the ability to simulate part (or all) of its 

own behavior – a form of ‘mental imagery’. However, not only can this mechanism be used to 

overcome practical constraints such as loop delay, but it could also provide a means for 

advanced planning behavior; i.e. the ability to implement a faster than real-time simulation of 

possible future actions would facilitate the discovery and selection of optimal behavioral 
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strategies. Furthermore, it has been hypothesized that a mechanism for performing simulations of 

self could also be recruited to model the behavior of others [41], either as an explanatory tool for 

interpreting other’s observed behavior (c.f. mirror neurons) or as a predictive tool for 

anticipating other’s future behavior. These are critical behaviors for intelligent organisms, and 

the underlying mechanisms are clearly highly relevant to human-machine interaction. 

Several authors have also noted that such emulation mechanisms would provide a foundation 

for imitation and mimicry, and hence learning [42] – processes that are thought to be highly 

relevant to the evolution of spoken language as a communicative behavior [43], and for the 

acquisition of spoken language by infants [44]. 

D. Hierarchical temporal memory 

Another potentially relevant scientific advance outside the field of spoken language is 

Hawkins’ ‘memory-prediction framework’ [45] – a relatively recent set of proposals aimed at 

explaining the function and purpose of the mammalian neo-cortex. Based on Mountcastle’s 

observation that the structure of the neo-cortex is surprisingly uniform [46], Hawkins argues that 

its primary function is the prediction of future events based on past events stored in memory, and 

that prediction is the basis for ‘intelligent’ behavior in a living system. Hawkins proposes that 

prediction is achieved through a process of extrapolation and generalization over a hierarchy of 

abstract levels derived from and stored in memory [47], and he links this to the six-layered 

structure of the physical cortex. Such a structure is termed ‘hierarchical temporal memory’ 

(HTM). 

The basic idea is that an HTM attempts to infer the causes of the input patterns that it receives.  

For example, what is the ultimate cause of the pattern of sound entering the auditory system?  It 

is assumed that the lowest level representations are organized topologically, and that information 
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flows through the system over a period of time during which the external cause is assumed to be 

relatively static.  Learning then involves the development of probabilistic internal 

representations - beliefs - from the incoming spatio-temporal patterns, starting with simple low-

level causes and then moving on to more complex high-level structures.  From such hierarchical 

representations stored in memory, it is proposed that it should be possible to construct 

predictions of future events in order to (i) overcome ambiguity arising from noisy or missing 

data, (ii) facilitate the invention of novel situations, and (iii) direct motor behavior.  

HTM relates to other research linking temporal sequence modeling with neurological structure 

[48] as well as neurologically-inspired reinforcement learning techniques such as Barto’s ‘actor-

critic’ architecture [49] in which feedback in a control system is provided by a component – the 

‘critic’ – that assesses both internal and external performance – a behavior thought be a property 

of the basal ganglia. The detailed mechanisms underlying HTM are still in their infancy, and 

physical implementations have yet to demonstrate advanced behavior on standard pattern 

processing tasks. Nevertheless, the general principles espoused in Hawkins’ memory-prediction 

framework offer a fresh insight into the role of memory in intelligent systems, and clearly 

provide a candidate mechanism for the emulation capabilities discussed above as well as 

presenting interesting challenges to the predictive modeling paradigms employed by 

contemporary spoken language systems.  

III. PRESENCE: AN ARCHITECTURE FOR FUTURE SPEECH-BASED HMI? 
The foregoing section has summarized four key developments in modeling and understanding 

the neurobiological behavior of living systems, and it is clear that not only is there considerable 

compatibility between the different explanatory principles, but there is also a very high degree of 

relevance to speech-based human-human and human-machine interaction. An initial attempt to 
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draw these different threads together has been presented by the author in [6], and a preliminary 

proposal has been made for a unified theory of intelligent communicative behavior termed 

PRESENCE – ‘PREdictive SENsorimotor Control and Emulation’.  

PRESENCE is founded on a model of interaction in which an actor has in mind the needs [50] 

of an observer and an observer has in mind the intentions of an actor, and that both achieve these 

behaviors by emulating each other. This is a crucial difference between PRESENCE and 

contemporary architectures for speech-based human-machine interaction. PRESENCE thus 

provides a fundamental mechanism for supporting communicative behavior between participants 

in an ongoing dialogue, and breaks away from the traditional stimulus-response model of the 

speech chain towards a more integrated view based on phase-locked control loops. 

The notion of hierarchical feedback control, as posited by PCT, is assumed to be inherent in 

such interactive behavior, and this is supported by the observation that it provides a credible 

computational mechanism to underpin Lindblom’s ‘H&H’ theory of speech [37]. H&H describes 

the process whereby speakers exhibit real-time control of their articulatory ‘effort’ in order to 

balance the needs of communicative effectiveness against the energy demands involved in 

speaking. Lindblom has hypothesized that such a mechanism could not only explain the apparent 

random variability that is observed in speech, but also that it provides a framework that would 

support the emergence of a contrastive system of communicative behavior (i.e. the evolution of 

the phonemic structure of spoken language). These behaviors are fundamental to the special 

nature of speech, language, and communication, and yet they are completely missing from 

contemporary systems for speech-based human-machine interaction. 

PRESENCE not only incorporates the principles of H&H, but also extends them to cover both 

the production and perception of spoken language within a communicative context, based on a 
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general recursive framework for simulating and predicting both speaker and listener behavior. 

One of its fundamental tenets is that performance benefits should accrue from maintaining a 

close connection between the hitherto independent processes of speech input and speech output. 

At the practical level, this could simply mean the sharing of models between recognition and 

synthesis. However, the implications run much deeper - PRESENCE implies that the process of 

spoken language generation/synthesis should be invoked as part of the process of spoken 

language recognition/understanding, and that the process of spoken language 

recognition/understanding should be invoked as part of the process of spoken language 

generation/synthesis. 

A. The communicative loop 

Somewhat surprisingly, PRESENCE dictates that the primary function of a speech-based 

system is not to speak, or to listen, but to interact with a user in order to meet the system’s needs. 

This latter point might appear counterintuitive in that it would seem that the needs of a user 

should be paramount. However, in order for a system to serve the interests of the user, the needs 

of the system have to be declared in terms of meeting those user’s needs. Indeed, PRESENCE 

predicts that it is only by establishing such basic drives explicitly that it is possible to design an 

automated system that would perform any behavior at all. 

A basic communicative loop is illustrated in Fig. 3. The needs of the system are given as a 

prior (by the system designer) and are specified as a multidimensional reference vector S:ni 

where S indicates ‘system’, n signifies ‘needs’, and i is an index over I independent system 

needs. For example, a system may be configured to complete a transaction to a specified level of 

quality within a certain period of time. The needs of the user are to be determined by the system 

and are specified as a multidimensional reference vector U:nj where U indicates ‘user’, n 
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signifies ‘needs’, and j is an index over J independent user needs. If the system’s needs and the 

user’s needs are aligned, then the resulting communicative behaviors are likely to be both 

effective and efficient. However, if the two sets of needs are in some sense conflicting (for 

example, a user may wish to maintain the engagement for as long as possible), then the resulting 

interaction might exhibit classic symptoms of an unstable control system such as oscillatory 

behavior or even hard limiting. Clearly both system and user drives are a function of the 

communicative context – the application - and hence system drives require careful thought on 

the part of the system designer: what is appropriate for an automated enquiry service may be 

quite inappropriate for a robot companion. 



TCSI-0355-0906 17

sensory
input(s)

motor
output(s)

S

BP

multi-modal
input(s)

multi-modal
output(s)

ni

ei

ai

+
-

PB
ej aj

nj U+
-

disturbance(s)

 

Fig. 3. Illustration of the basic communicative loop in the PRESENCE architecture. 

The basic operation of the communicative loop illustrated in Fig. 3 is as follows: At the 

highest level, a perceptual process in the system S:P determines, for each of its key criteria, the 

current state of achievement S:ai, and the difference between S:ai and S:ni produces an error 

signal S:ei that drives system behavior S:B in such a way as to reduce S:ei. In parallel, a 

perceptual process in the user U:P determines, for each of their key criteria, the current state of 

achievement U:aj, and the difference between U:aj and U:nj produces an error signal U:ej that 

drives the user’s behavior U:B in such a way as to reduce U:ej. The result is that the system will 
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consistently act to overcome any obstacle or disturbance (whether it is user–generated, system-

generated and/or present in the operating environment) that interferes with the realization of its 

intended behavior, whilst at the same time the user is acting in order to realize their intended 

behavior. 

In order for either the system or the user to maximize their achievements in the context of the 

interaction, it is clearly necessary for each to determine the needs of the other. In particular, a 

cooperative system would require its needs S:ni to be expressed as a function of its 

understanding of its user’s needs U:nj, and a cooperative user would express their needs U:nj in 

terms of the needs of the system S:ni. Such a recursive arrangement not only facilitates an 

alignment between the behavior of the two participants, but it also allows both to achieve success 

in otherwise unpredictable circumstances. Again, any mismatch between system and user, e.g. 

arising from one participant misunderstanding the needs of the other, is destined to lead to 

communicative difficulties and/or failure. 

Determining a user’s needs U:nj is achieved in PRESENCE either by access to a predictive 

model/emulation of the user S:E(U:nj) (in which case a user’s needs may be given as a prior, or 

they may need to be estimated by running a simulation of the user), by recognizing the user’s 

expressed needs S:P(U:B(U:nj)), or by requesting the user to express their needs S:B(U:B(U:nj)). 

The choice of which of these strategies to pursue at any given point in time would depend on the 

output of an emulation process aimed at predicting and assessing the possible outcomes against 

constraints conditioned on other high level system needs (such as meeting a user’s needs within 

a certain time frame). So, for example, a successful system might be one which could accurately 

anticipate the needs of a user based on minimal interaction in order to satisfy them in the shortest 

possible time. 
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Since the achievements of the system S:ai are expressed in terms of meeting user needs U:nj, 

then S:ai is actually determined by U:ej – the user’s internal error signal. This means that a 

secondary function of the PRESENCE architecture is an ability, not only to determine a user’s 

needs, but also to estimate the degree to which those needs are being met (by the system). In 

other words, the self-evaluation question “how well am I doing?” (from the system point of 

view) is implicit in the PRESENCE architecture. Interestingly, the degree to which a user’s 

needs are being met U:ej will have a direct influence on user behavior U:B and may actually be 

manifest in the form of emotion. Hence, PRESENCE predicts that the effectiveness of human-

machine interaction would be greatly enhanced if the system was able to recognize such user 

behavior. PRESENCE also predicts that interaction would also be enhanced if a system was able 

to communicate the degree to which its needs are being met S:ei through appropriate system 

behavior S:B. 

Therefore, perhaps surprisingly, it can be seen that the main building block in the PRESENCE 

architecture is not a set of low-level sensorimotor processes concerned with detailed acoustic-

phonetic speech recognition and synthesis behavior. Rather, it is a high-level communicative 

loop structure that is conditioned on the fundamental purpose of the overall system; its essential 

drives being derived from what would be regarded as the application ‘back-end’ in a 

conventional architecture. It is this high-level communicative loop that drives and shapes the 

low-level communicative behaviors – not the other way around. Of course spoken language 

recognition and generation are essential features of this high-level structure, but what is being 

recognized and generated is not yet specified in acoustic or even linguistic terms; at this level the 

constructs are communicative locutionary acts that form key steps within an iterative 

optimization process (targeted at the meeting of system and user needs in an efficient and timely 
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manner).  

B. Internal structure 

The internal structure of the PRESENCE architecture is illustrated in Fig. 4 (adapted from [6]).  

This is a general-purpose view intended to represent both a model of human behavior as well as 

a putative functional architecture for a practical system.  This duality of purpose explains why 

there are not only references to universal concepts such as action and interpretation, but there are 

also references to motivational and emotional parameters as well as notions such as attention. 

Again, the suggestion that such human-like behaviors might have a key role to play in the design 

of an artificial cognitive system is made immediately apparent by the PRESENCE architecture. 
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Fig. 4. Internal structure of the PRESENCE architecture. 

The architecture shown in Fig. 4 is organized into four layers. The top layer is the main path 

for motor behavior such as speaking.  A system’s needs S:n modulated by motivation, causes the 
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selection of a communicative intention S:i that would satisfy those needs. The selection 

mechanism can be implemented as a search process, and this is indicated by the diagonal arrow 

running through the S:i module. The selected intention drives both actual motor behavior S:m 

and an emulation of possible motor behavior S:E(S:m) on the second layer.  Sensory input feeds 

back into this second layer, providing a check as to whether the desired intention has been met.  

If there is a mismatch between intended behavior and the perceived outcome, then the resulting 

error signal will cause the system to alter its behavior appropriately. 

The third layer of the model captures the empathetic relationship between system as a speaker 

and the user as a listener that conditions the speaking behavior of the system. U:E(S:i) represents 

the emulation by the user of the intentions of the system, and S:E(U:E(S:i)) represents the 

emulation of that function by the system.  A similar arrangement applies to S:E(U:E(S:m)) – the 

system’s emulation of the user’s emulation of the systems motor output. The fourth layer 

represents the system’s means for interpreting the needs, intentions and behavior of a user 

though a process of emulating the user’s needs S:E(U:n), intentions S:E(U:i) and behavior 

S:E(U:m).  

The second, third and fourth layers are able to exploit the information embedded in the 

previous layers, and this is indicated in Fig. 4 by the large block arrows. This process is 

equivalent to parameter sharing between the different models and thus represents not only an 

efficient use of information but also offers a mechanism for learning. In fact such a process may 

be bi-directional, and the potential flow of information in the opposite direction is indicated in 

Fig. 4 by the small block arrows. 

C. Recursive nesting 

Clearly, the basic communicative loop in the PRESENCE architecture contains system 



TCSI-0355-0906 22

components that are themselves realized using similarly-structured building blocks. The 

PRESENCE architecture is thus inherently recursive and therefore hierarchical in structure, with 

further refinements in behavior coming from the operation of the nested components. 

For example, if a system is driven to ask a question, then a nested structure is required in order 

to determine what is actually going to be said. The communicative loop at this level would use 

emulation mechanisms to take in to consideration the possible consequences of particular 

choices of linguistic content, and such emulators would effectively be simulations of the user’s 

mirror understanding system - ‘synthesis-by-analysis’. The significance of such a structure is 

that it provides a natural mechanism for allowing the resulting linguistic constructs to be truly 

communicative, i.e. words and phrases would be chosen specifically to maximize the 

effectiveness of the communication, avoiding confusion and enhancing clarity in the context of 

the ongoing interaction – all these features being estimated using forward models to perform 

predictive emulation of the possible consequences of the proposed linguistic output. 

Similarly, interpretation of a user’s response would be based on reference to the system’s own 

generative capabilities – ‘analysis-by-synthesis’. Again, the significance of such a structure is 

that it provides a natural mechanism for accessing the ‘hidden’ meaning of user behavior by 

virtue of placing the system in the virtual position of the user; understanding arises as an 

emergent by-product of the synchronization of the knowledge and beliefs of both system and 

user – the system empathizes with the user in the widest sense. 

D. Speech-based interaction 

As outlined thus far, the PRESENCE architecture is somewhat neutral with respect to the 

modalities of a system’s interaction with a user. In fact this is a real bonus, since it means that 

multi-modal behavior is treated as the general case of communicative human-machine 
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interaction. PRESENCE clearly provides a mechanism whereby a system may make choices 

between different communicative modalities based on an understanding of the differing 

characteristics of the individual channels (e.g. in terms of information transfer rates, 

memorability, noise, interference etc.) and the projected implications of their use at each point in 

an interaction. That is, a system may itself choose to use a particular modality based on its 

estimation of the effectiveness of that strategy in meeting its needs – and this may change in the 

course of an ongoing interaction. 

However, the real power of the PRESENCE architecture becomes clear when considering 

speech-based human-machine interaction. Of course, language in itself provides a higher 

bandwidth channel than any other modality (~50 bits-per-second [51]), but spoken language 

approximately doubles that through the addition of expressive behavior that carries further 

linguistic information such as prosody, as well as para-linguistic information such as 

individuality and expression. Such behaviors present major problems for state-of-the-art speech-

based human-machine interaction, but they are seen as central to the functionality of 

PRESENCE. 

In practice, this means that not only would a system based on the PRESENCE architecture be 

able to choose its words carefully, but it would also be capable of adjusting its pronunciation in 

order to avoid potential confusion and to overlay expressive behavior appropriate to its internal 

states or the needs of the communication (e.g. it would automatically start to speak louder in a 

noisy environment). These behaviors emerge because of the system’s ability to emulate the user 

and hence accommodate the user’s expectations based on an estimation of their listening 

experience. In other words, in PRESENCE the process of speech generation is mediated by 

reference to a feedback path involving speech recognition – the system would effectively be 
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listening to its own output (either overtly or using an ‘inner loop’ [52]) in order to judge whether 

it was having the intended effect on the listener, a concept referred to by the author as ‘reactive 

speech synthesis’. 

Likewise, the system would be able to interpret the intention behind a user’s particular choice 

of words and pronunciation, and the implications of expressive behavior, all by the means of 

reference to low-level emulations of mirrored sensorimotor structures. In other words, in 

PRESENCE the process of speech recognition is mediated by reference to a forward model 

based on the emulation of speech generation – the system would effectively be determining the 

implications of what is being said by imagining itself saying it. 

These features of the PRESENCE architecture mean that such a system would exhibit 

communicative behavior in both the production and perception of speech. Issues such as 

pronunciation modeling are sidestepped because the predictive feedback control structures 

compensate automatically for the communicative context. PRESENCE thus provides an 

opportunity for a real advance towards ‘intelligent’ behavior in speech-based human-machine 

interaction. 

IV. TOWARDS PRACTICAL SYSTEMS 
The foregoing sections have argued the case for viewing the production and perception of 

spoken language within a single theoretical framework - PRESENCE. From this new perspective 

it is immediately possible to extract some practical implications for future spoken language 

technology. 

For example, PRESENCE suggests an architecture for a new type of reactive speech 

synthesizer that would actively modify its output behavior as a function of its perceived 

effectiveness – talking louder in a noisy environment and actively altering its pronunciation to 
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maximize intelligibility and minimize potential confusion. In order to achieve such advanced 

behavior, PRESENCE indicates that such a synthesizer would need to include a model of the 

listener within the feedback loop, and this would be achieved by simulating the behavior of the 

listener using an automatic speech recognizer. This means that such a system could effectively 

be described as ‘synthesis-by-recognition’ (SbR). As far as the author is aware, no contemporary 

text-to-speech synthesizer utilizes this kind of feedback, although something along these lines 

was suggested by Fallside some time ago [53] and a related scheme is currently being used to 

train a low-level speech synthesizer to imitate speech [54]. 

For recognition, PRESENCE suggests an architecture that incorporates an emulation of the 

speaker, i.e. a generative model of speech whose output is compared with incoming speech data. 

Of course, almost all state-of-the-art ASR systems already employ generative models in the form 

of hidden Markov models, so the conventional approach to ASR would already appear to fit 

nicely within the PRESENCE framework. In some sense this is correct, however as outlined 

earlier, a standard HMM is typically a rather poor model of speaker behavior. To fully realize the 

opportunities offered by PRESENCE, it is necessary to invoke a new type of architecture for 

speech recognition that, instead of HMMs, would incorporate a generative model that is closer to 

an actual speech synthesizer in order to perform ‘recognition-by-synthesis’ (RbS). In fact such 

an idea was proposed over 20 years ago by Bridle and Ralls [55] and since that time a number of 

researchers, inspired in part by the Motor Theory of speech perception [56], have been attracted 

to the prospect of incorporating models of speech production within automatic speech 

recognition [57]-[59]. However, the difference between such approaches and the one being 

proposed here is that the neuroscience studies underpinning this aspect of the PRESENCE 

architecture suggest that such an embedded model of speech generation should be derived, not 
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from the voice of the speaker, but from the voice of the listener (which, in this case, is a 

machine!). 

This apparent dilemma points the way towards the need to unify research into automatic 

speech recognition with research into text-to-speech synthesis.  Not only does PRESENCE 

suggest an architecture within which each refers to the other, but this leads to a powerful 

recursive structure in which it is possible to envisage ‘recognition-by-synthesis-by-recognition’ 

(RbSbR), ‘synthesis-by-recognition-by-synthesis’ (SbRbS) and so on, with each layer providing 

greater fidelity and refinement than the layer above. 

V. EXPERIMENTAL WORK 
Clearly the implications of PRESENCE for the architecture of future spoken language systems 

are far reaching in both scope and potential impact.  By integrating both speech recognition and 

generation within a single recursive structure for speech-based interaction, PRESENCE posits a 

very different approach to system design and implementation. This means that it is quite difficult 

to exploit the traditional experimental framework for developing a spoken language system, 

since the conventional approach involves the bottom-up instantiation of independent system 

components - the very components that PRESENCE seeks to integrate.  Therefore, in marked 

contrast to such familiar methodologies for system construction, PRESENCE points towards a 

more top-down design methodology, starting with the definition of a system's basic needs 

embedded within a high-level interactive control structure. 

 Therefore, in order to lend some experimental support to the novel architecture proposed in 

this paper, a preliminary investigation has been conducted into a physical instantiation of high-

level acoustic interaction between a robot and a human being.  This approach was chosen as the 

fastest means for demonstrating the essential principles of the overall PRESENCE architecture 
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without using simulation or approximation. 

The task selected was to create an embodied device that could learn to produce motor behavior 

in time to rhythmic input (much like someone clapping along to music).  This might appear to be 

a long way from something like automatic speech recognition, however the sophisticated 

coordination and synchronization of behavior between system and user in speech-based human-

machine interaction is just the kind of problem that remains a challenge for contemporary 

approaches.  PRESENCE, on the other hand, offers an immediate solution based on interlocking 

control structures. 

A. The robot 

A humanoid robot - ALPHA REX - was constructed using the LEGO® MINDSTORMS® NXT 

platform [60]. The device consisted of a central 32-bit microprocessor controller, three 

interactive servo motors and four sensors; sound, light, touch and ultrasonic. The robot was 

programmed by USB connection to a PC using the standard LEGO® MINDSTORMS® NXT 

software environment. Since the aim was to demonstrate the core principles of PRESENCE, the 

‘drive’ of the robot was declared as a high-level ‘need’ to maximize synchrony between its own 

behavior and that of an external source. The resulting software architecture instantiated this need 

as three parallel sub-loops within the overall control loop; first, a loop to generate its own 

rhythmic behavior; second, a loop to sense its own behavior; and third, a loop to sense any 

external behavior.  In this first implementation, the second loop was embedded in the first.  

However, in order to control a genuine clapping response in a future implementation, this loop 

would need to be instantiated independently. 

The sensor and motor sub-loops each generated a variable that represented the precise time of 

each ‘tap’ (i.e. the robot’s tap and the external tap), and the overall control loop compared the 
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two times and generated an error signal that was proportional to the difference. The error signal 

then increased or decreased the robot’s rhythmic behavior until it matched the external source. 

The outcome is thus that the robot learns to adapt its behavior until there is synchrony between 

its behavior and that of the external source. 

B. Results 

Although this work represents a relatively simple example of PRESENCE-based architecture, 

it nevertheless successfully demonstrated an alternative to the traditional stimulus-response (S-

R) view of intelligent behavior.  Unlike an S-R model, the robot did not suffer from internal 

system delays that would give rise to behavior with the same rhythm but out of synchronization. 

Nor did the robot need to compute complex analytical solutions in order to estimate such delays. 

In other words, the implementation of a PRESENCE-like structure gave the robot an ability to 

‘anticipate’ the external behavior, and this was evidenced by the fact that the robot always made 

one more action precisely at the appropriate moment even though the external behavior had 

ceased. 

Fig. 5 illustrates this behavior for a spoken input. The experimenter (U) uttered a short 

sequence consisting of the words “one” and “two” spoken at regular intervals, and the robot (S) 

generated ‘taps’. As can be seen from the Figure, the robot starts to tap by the third user 

utterance and gradually established a rhythm that is precisely synchronized with the onset of the 

eighth and ninth utterances. The ninth utterance is the last, but the robot emits one final tap at the 

time at which the next word would have been expected. 
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S: Tapping Points

 

Fig. 5. Illustration of the synchronization of robot behavior with spoken input. 

VI. DISCUSSION 

A. System initialization 

A key difference between PRESENCE and a more conventional architecture for speech-based 

human-machine interaction is that PRESENCE can be said to ‘know’ what it is saying and why 

it is saying it. As a consequence, it also ‘knows’ what a user is saying and why they are saying it. 

PRESENCE achieves this feat by providing a framework - inspired by insights into the 

neurobiology of living systems - that unifies the processes of generating and interpreting 

behavior. However, a major issue is just how such a framework is established in the first place. It 

is one thing to hypothesize a general recursive structure of the type described, but at some point 

the parameters of a particular system need to be specified. In other words, if the generation of 
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appropriate behavior is controlled by interpretation of that behavior, and the interpretation of 

behavior is made with respect to a putative generator, then there appears to be a fundamental 

lack of ‘grounding’ within the system. 

This apparent dilemma goes away if one is concerned with living systems, since the grounding 

is provided by the physical attributes of the individual organisms and the implicit commonality 

of those physical attributes between different members of the same species. However, an 

automated system shares very little physical structure with a human user. 

This suggests three possibilities: first, priority could be given to research into speech 

generation techniques that mimic more closely the physical human speech production process 

[61] (such research is no longer ‘in vogue’, yet it may be crucial to the development of the next 

generation of speech-based interactive systems); second, it may be necessary to create systems 

that are able to acquire the necessary grounding by learning the appropriate skills in a situated 

and embedded environment (i.e. analogous to the process by which infants acquire social and 

linguistic skills) [62]; third, perhaps it will never be possible to establish truly effective speech-

based human-machine interaction (in much the same way that speech-based human-animal 

communication is fundamentally limited by a lack of a shared frame of reference). 

B. Recognizing users 

In the system description presented above, it was taken for granted that users would present 

themselves to the system in a cooperative and friendly manner. However, in a real-world 

application environment - especially for tasks those that do not involve a ‘captured’ user (such as 

a telephone-based system) - even this simple assumption may be invalid. Therefore, in the 

general case, a system might have to take control of a range of different scenarios. For example, 

it might be necessary to be able to recognize the presence of a user, to identify a user in a 
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complex environment, or to discriminate between users and non-users. The ‘needs’ structure 

inherent in the PRESENCE architecture provides a mechanism for handling such cases, and it 

could even be invoked to actively search for users – a behavior that currently has to be explicitly 

‘programmed in’ to a speech-enabled robot [63]. 

C. The particulate structure of language 

One of the disadvantages of the conventional approach to speech-based human-machine 

interaction is that each additional component effectively adds a new set of parameters that have 

to be estimated from training data (or learnt during the operation of the system). As a 

consequence, the number of conditional dependencies within the overall system grows 

exponentially with the complexity of the system, as does the required amount of training data. In 

marked contrast, by virtue of its inherent recursive structure, free variables are factored in the 

PRESENCE architecture. Not only does this provide an efficient mechanism for storing 

information and for maximizing the value of limited training material, but it reflects the 

particulate structure of a self-diversifying system such as language [64]. It seems that speech and 

language have evolved precisely to exploit such efficiencies, and hence have given rise to a 

communicative medium with vast expressive potential based on a physical system – the human 

vocal apparatus – possessing relatively few degrees of freedom. 

D. Knowledge re-use 

It may appear that the creation of PRESENCE is aimed at discarding much of the good 

research into speech-based human-machine interaction that has already taken place. However, by 

virtue of the fact that the speech technology community has been facing such a difficult 

challenge over many years, scientists and engineers already have at their disposal a wide range 

of very powerful tools for computational modeling. Many of the processes embedded within the 
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PRESENCE architecture – pattern matching, sequential search, predictive models – are already 

well understood; what is new is the conceptual framework within which such processes are 

embedded. In the same way that algorithms from speech processing have pervaded other areas of 

pattern processing, so too the advanced computational processes required within PRESENCE 

might well serve to influence the wider scientific community studying the neurobiology of living 

systems.  

VII. CONCLUSION 
In response to the hypothesis that the quantity of training data required to improve state-of-the-

art speech-based human-machine interaction seems to be growing exponentially, and that 

performance is asymptoting to a level that may be inadequate for many real-world applications, 

this paper has presented the outline of a novel architecture that has been inspired by recent 

findings in the neurobiology of living systems. Called PRESENCE - ‘PREdictive SENsorimotor 

Control and Emulation’ – this new architecture blurs the distinction between the components of a 

traditional spoken language dialogue system and, instead, focuses on a recursive hierarchical 

feedback control structure driven by high-level system needs. Cooperative and communicative 

behavior emerges as a by-product of an architecture that is founded on a model of interaction in 

which the system has in mind the needs and intentions of a user, and a user has in mind the needs 

and intentions of the system. 

Much detail has yet to be worked out, yet it is clear that the implications of this new 

architecture are potentially far reaching. Not only might PRESENCE provide a means to 

construct more effective speech-based human-machine interfaces based on an emergent natural 

intelligence [65] but, for example by drawing on recent work by Oztop et al [66], it also offers 

the possibility of creating biologically credible computational models of human spoken language 
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behavior, thereby unifying the currently divergent fields of speech science and technology [67]. 

Indeed, such a convergence of knowledge and disciplines is already being fostered by the newly 

emerging transdisciplinary field of ‘Cognitive Informatics’ [68]. Cognitive Informatics aims to 

forge links between a diverse range of disciplines spanning the natural and life sciences, 

informatics and computer science, and is founded on the conviction that many fundamental 

questions of human knowledge (such as spoken language processing) share a common basis - an 

understanding of the mechanisms of natural intelligence and the cognitive processes of the brain. 

The appearance of Cognitive Informatics and its community of like-minded researchers presents 

a unique opportunity for research into speech-based human-machine interaction to sit at the very 

heart of this new field [69]. 
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