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Abstract—A hardware-based control flow monitoring technique
enables the detection of errors in both the control flow and the
instruction stream executed on a processor. However, as shown
in recent publications, these techniques fail to detect malicious
carefully-tuned manipulations of the instruction stream in a basic
block. This paper presents a non-linear encoder and checker that
can cope with this weakness. It is a MAC based control flow
checker that has the advantage of working with basic blocks
of variable length, can detect every error, and performs the
computation in real-time. The architecture can easily be modified
to support different signature size and error masking probabilities.

Keywords— Embedded Security, Control Flow Checking, Non-
Linear Codes, Signature, Countermeasures

I. INTRODUCTION

Dependability is an important characteristic of modern computing
systems. The hardware components of a system can be affected by
faults deriving from different root causes such as environmental per-
turbations (e.g., radiation, electromagnetic interference) or malicious
attacks (e.g., fault attacks, software modification or replacement).

Many techniques have been proposed to cope with transient, per-
manent and malicious fault. These techniques for reliability improve-
ment and fault tolerance target both the hardware and the software,
and rely on different forms of redundancy. Among them, Control
Flow Checking (CFC) makes it possible to cover faults affecting
storing elements containing the executable program, as well as all
the hardware components handling the program itself and its flow
[1, 2]. It can also cope with the effects of a malicious attacker who
tries either to bypass security checks or retrieves secret information
by fault injection [3, 4].

Software based CFC solutions that modify the program rely on
the assumption that the binary code stored in memory is not being
maliciously tampered. Thus, these solutions cannot provide security
against fault injection attacks [5]. In contrast, hardware-based CFC
solutions, such as [6] can detect malicious code and data tampering
at run-time.

There are two types of hardware-based CFC policies: fine grained
and coarse grained [5]. A fine grained CFC policy allows control flow
along the valid edges of the Control Flow Graph (CFG), whereas a
coarse grain policy relaxes this restriction. A CFG makes it possible
to model the normal program behavior of a code that is not self-
modifying or generated on the fly as a walk on a static graph. The
nodes in this graph are sequences of non-branching instructions (also
called basic blocks) with a single entry point at the first instruction
and a single exit point at the last instruction. The edges of the graph
represent jumps, branches and returns. In [7] the authors distinguished
between two levels of fine granularity: instruction integrity checking
which aims to detect attacks which may not result in control flow
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violations, and instruction flow checking for detecting forward-edge
and backward-edge flow violations between basic blocks.

In [8] the authors suggested encrypting the instructions to detect
changes in it. The instructions are decrypted by adding a stage
to the pipeline, immediately before the instruction’s decode stage,
which required architectural modifications. The additional stage of the
pipeline introduced an ≈ 9.1% total execution time overhead. At this
point, it is important to note that tampering the flow of the program
(i.e., its branches, jumps, calls and returns) can affect its behaviour
tremendously. For that reason, the authenticity of the last instruction
in a basic block must be verified as close as possible to its execution
time, as the Signature Modeling approach suggests.

Signature Modeling is a fine-grained technique [9, 10, 11]. In
Signature Modeling, basic blocks are accompanied by a signature,
such as a Cyclic Redundancy Check (CRC) checksum or Hamming
code, that are generated at run-time and then compared against a
pre-computed signature which is stored in a tamper-resistant memory
(e.g., the tamper-resistant RAM presented in [12]). In the case of
modification of any bit belonging to that portion of the code, the
detection code deviates from the expected signature and reveals the
fault. The two signatures can be compared during the execution of
each instruction [10, 11] or when a basic block ends [7, 3]. In [11] a
CRC-based signature monitor was integrated into the instruction fetch
state to prevent the processing of instructions whose pre-calculated
and current signatures do not match. However, a CRC-based signature
monitor has a major drawback, it can be bypassed by a sophisticated
attacker [13]. The authors in [14] proposed a technique to map one
malicious software into another (protected by a control flow checking
mechanism), without violating the structure of the latter; i.e., without
being detected by a control flow monitoring technique. The basic
principle involved the fine-tuning of the instructions in each basic
block so that the generated signature corresponded to the one for the
original program. In this paper we close this gap, we propose a fine-
grained MAC-based CFC which utilizes non-linear codes to protect
against malicious modifications of the executed program. We assume
the attacker knows the protected architecture details and its machine
language, as well as the program and its control flow graph. The
attacker can execute malicious physical manipulations on the device
by injecting precise faults at run-time into the machine code stored in
memory. We assume that the signature is stored in a tamper-resistant
memory that cannot be tampered with.

The contribution of this paper is:
• A non-linear code based on a weakened version of the

Karpovsky-Wang Algebraic Manipulation Detection (AMD)
code with multiple random variables [15].

• A signature calculation method that works in parallel to the
processor pipeline and does not require processor changes, nor
code changes.

• We introduce an upper bound on the probability that an error
will not be detected. This bound applies to every basic block
and hence obviates the need for simulations/experiments.

• The area overhead of the signature calculation is relatively small
(compared to methods preventing malicious attacks) and there
is no need to partition the program into basic blocks of equal
length as required in [7].

This paper is organized as follows: Section II presents an overview
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of existing CFC solutions, and details the architecture in which the
proposed signature calculation can be used. Section III provides formal
definitions and formulates the security metric we use to evaluate the
effectiveness of the construction. Section IV presents the theoretical
construction of the non-linear code and Section V describes its hard-
ware implementation. Finally, we draw some conclusions in section
VI.

II. CONTEXT

Historically, error-detection codes primarily targeted natural faults
which are likely to cause a small number of bit-flips, randomly
distributed. These codes are usually linear and hence have a small
overall impact on the target system in terms of area overhead and
the additional delays introduced for their calculation. However, they
cannot cope with malicious attacks. For example, [11], the so-called
”derived signature” enables a checksum computation with zero latency.
However, it utilizes systematic encoders of linear cyclic codes defined
by generator polynomials over a finite field. Due to the linearity
of the codes, the corresponding CFCs can only detect a (relatively)
small number of errors, and they cannot detect attacks launched by
sophisticated precise attackers.

Malicious attacks are handled better by non-linear methods; e.g.,
methods based on Message Authentication Codes (MAC). In MAC,
the signature is calculated by resorting to secret information which
also guarantees the authenticity of the data. MAC techniques that are
based on a statically computed cryptographic hash of the instruction
sequence in the basic block [16] generally have high latency, because
the monitor has to buffer the instruction stream corresponding to a
basic block and only start to compute the hash when the block ends.
In some hash algorithms the input is processed through several rounds
and additional latency is accumulated. A few MAC based checkers
([6]) can compute the signature together with the execution of the
program itself. Nevertheless, these solutions have certain limitations.
In [6] a Cipher Block Chaining-Message Authentication Code (CBC-
MAC) algorithm with a 64-bit MAC length is used. Since CBC-MAC
is only secure for messages of a fixed length, two block lengths of 5
and 6 instructions are supported only. In addition, its implementation
has a critical path which is longer than the one of the processor, leading
to a cycle overhead of 13.7% and a total execution time overhead
of 110%. In [17] the authors use public-key cryptography to protect
their code. The strength of the used cipher guarantees the security
of the solution, however its cost (in hardware and timing overhead)
is extremely high. In [18] the authors implemented CCFI-cache; a
dedicated tamper-resistant signature memory with the same properties
as the instruction cache. Each signature consists of the hash value of
the instructions and the meta-data of the basic block along with the
meta-data itself (The number of instructions in the basic block and the
address of the next basic blocks).Since the signature may occupied
several entries in the CCFI-cache, in the case where the basic block is
very short, it must be padded with nop instructions, so its size match
the size of the signature. Similarly, short signatures must be padded
with empty entries in the case of a long basic block. This lead to a
program overhead of up to 30%.

Here, we introduce a MAC scheme that can be applied to every
architecture where the CFC (or watchdog) is a standalone module that
works in parallel with the main processor’s pipeline (see the generic
architecture in Fig. 1). The CFC is a co-processor that calculates
the signatures of the basic blocks by fetching the instructions to
be executed from the main bus, and then comparing the obtained
signature with a predefined one. It does not modify the pipeline stages,
does not add latency, and does not interfere with the program flow.
The CFC communicates with the processor via the existing signals
at its interface or within the pipeline. Namely, the current address
and instruction on buses used by the processor during the Instruction
Fetch (IF) phase, and the calculated address of the next instruction.
For instance, the proposed approach can be easily integrated in recent
solutions, such as [19], where the checker is an independent module
as the one shown in Fig. 2. The generic architecture we consider
consists of four main blocks: a compact processing unit, a comparator,
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Figure 1: Generic architecture for fine-grained signature based
control flow checkers.
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Figure 2: Micro-architecture of a fine-grained control flow
checker.

a control unit, and a tamper-resistant memory array. The tamper-
resistant memory is more expensive, but is only used for storing a
small amount of information, not the whole program. The size of the
tamper-resistant memory and its width depends on the number of basic
blocks, their maximal size and the required security level.

In this paper we focus on the design of the computation module.
We assume that:

• The control unit generates all the control signals for the com-
putation module. This includes the generation of a reset signal
that goes to the computation module at the beginning of a basic
block and an indication that the basic block ends (due to a branch
instruction or because it has reached its maximal size).

• The control unit delivers the signature from the tamper-resistant
memory to the computation module.

We also assume that:

• The profiling process as well as the program can be trusted.
• The content of the tamper-resistant memory is pre-computed

from the control flow graph (see the process flow diagram in Fig.
1). The pre-computation of the signatures (i.e., the encoding of
the basic blocks by using random vectors) can be trusted.

• The process of loading the signatures into the tamper-resistant
memory can be trusted.

• To reduce the cost of the product, the main memory has no
dedicated security protection whereas the CFC itself, including
its tamper-resistant memory in which the signatures are stored,
is not accessible to the attacker.

• The attacker knows the original code, its profiling and its location
in the main memory.

• The attacker is able to tamper with the content of the main
memory and is able to inject arbitrary or precise errors before
the execution or at run-time; i.e., when the code is being fetched
from the memory.
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III. DEFINITIONS AND SECURITY METRIC

A. Basic blocks

A basic block is a piece of code made of one or several consecutive
instructions without any jumps between them. A basic block starts
when its address is the target of a jump instruction of another basic
block, and ends with a jump to another basic block (or a return), or if
the successor instruction is a target of a jump instruction. For example,

Example 1. The following code consists of 3 basic blocks:

. . .

DEC R1
BNZ R1, L1 //end of BB1
INC R1 //end of BB2

L1: ADD R2, 2 //beginning of BB3
. . .

The first basic block ends because of jump instruction and the second
due to the fact that ‘ADD R2, 2’ is a target of a jump instruction. �

The size of the BB is defined as the number of bytes occupied
by all the instructions in that basic block. Its size can range from 32
(for a 32-bit architecture) to 8N bits (N bytes). If the original basic
block is larger than N bytes, it should be divided into several basic
blocks by inserting a branch instruction which jumps to the successor
instruction.

The content of a basic block can be referred to as a binary
string, or, as is common in coding theory, as a q-ary vector over
an alphabet of size q = 2r . When algebraic codes are used for
signature computation, the symbols of the vectors are treated as
elements in the finite field Fq = GF (q). The size of the alphabet
determines both the effectiveness of the code and the implementation
complexity. In general, a small r lowers the implementation cost of
the multipliers over that field, whereas a large r increases the fault
detection probability.

B. Signature structure

The signature S is a q-ary vector of length t + 1 symbols (i.e.,
(t + 1) · r bits). It has two parts: a ”key” X and a tag f ; that is,
S = (X, f(X,Y )). In this paper, the ”key” is a non-zero vector,
X = (xt, ...x1) ∈ X ⊆ Ft

q chosen at random by the manufacturer. Y
is the content of a basic block

Y = (yk, ...y1) ∈ Fk
q ,

and f = f(X,Y ) ∈ Fq is a single q-ary symbol that represents the
tag. The effectiveness of the CFC is determined by the choice of the
tag function.

The triplets (Y,X, f(X,Y )) form a block code. In our case, the
encoder works off-line and thus can be implemented in software,
whereas the decoder works on-line and thus must to be implemented
in hardware.

Typically, block codes consist of codewords of fixed length. Sys-
tematic block codes are codes whose codewords have two parts: a
fixed length information portion Y ∈ Fk

q and a fixed length redundant
portion S. Our case is different; since Y represents a basic block its
length depends on the number of instructions within a basic block
and is not fixed. It is possible to work around this problem by adding
jumps and NOPs to the program, but this in turn adds latency and
increases the tamper-resistant memory size. In order to minimize the
cost, the tag function f must be able to handle (in run-time) a q-ary
vector Y of arbitrary length k,

k ≤ kmax = d8 ·N
r
e,

without knowing its length beforehand.

C. Security metric
Recall that Y is stored in a regular memory. Thus, the attacker can

alter it at will and even change its length. By contrast, the signature is
not observable to the attacker and hence cannot be altered. Formally,
denote by Ŷ = (ŷk̂, ...ŷ1) the (possibly erroneous) sequence as read
by the control flow checker. Note that the length of this sequence is
k̂, 1 ≤ k̂ ≤ kmax. k̂ may be smaller, equal to, or greater than k.
Consequently, the checker ”sees” the tuple (Ŷ , X, f(X,Y )) and has
to decide whether this tuple is a codeword. Specifically, it computes
f(X, Ŷ ) and raises a flag if the computed value differs from the one
stored in the tamper-resistant memory; that is, if f(X, Ŷ ) 6= f(X,Y ).
Therefore, we assess the effectiveness of this type of CFC as the
probability Q that a precise attack will pass unnoticed. That is,

Definition 1 (Security metric.). Let X be a uniformly distributed
random vector over a subset X ⊆ Ft

q , then the error masking
probability is

Q̄ = max
Y,Ŷ

Prob
(
f(X,Y ) = f(X, Ŷ ) | Y, Ŷ

)
.

The function f(X,Y ) must be a nonlinear function in X and Y .
Otherwise, if f can be written as f(X,Y ) = f1(Y ) + f2(X), an
attacker who knows Y and can choose which bits to flip in order to
replace it by Ŷ will choose a Ŷ for which f1(Y ) = f1(Ŷ ); such
an attack will never be detected. The following example clarifies this
statement:

Example 2. Let q = 2 and let Y be the basic block to be protected
and denote by Y0 the vector Y padded with kmax − k zeros, Y0 =
(0kmax−k, Y ).

Let C be a linear code of length kmax + t+ rb bits and dimension
kb = kmax + t defined by a (systematic) generator matrix

G =

(
Ikmax×kmax 0kmax×t Akmax×rb

0t×kmax It×t Bt×rb

)
.

A codeword in C is a triplet (Y0, X, f(X,Y0)) = (Y0, X)G. The
signature associated with Y is then S = (X, f(X,Y )) where the tag
f(X,Y ) is (Y0, X) · (A,B)T .

It is reasonable to assume that the tag length is smaller than the
maximal basic block length; i.e., kmax > rb ≥ rank(A). Therefore,
for every Y there exists at least one vector Ŷ for which Y0A = Ŷ0A.
(Ŷ and Y may be of different lengths). Since for every X , we have
Ŝ = (X, Ŷ0A + XB) = S an attacker can replace Y by this Ŷ
without being detected. �

Numerical examples of attacks that can never be detected by linear
codes are presented in the Appendix (Examples 12,13).

IV. CONSTRUCTION

A. Formal description of the tag function
We use a tag function f based on weakened version of the

Karpovsky-Wang Algebraic Manipulation Detection (AMD) codes
[15]. The computational complexity of f is smaller than Karpovsky-
Wang’s code since it makes use of the fact that the signature cannot
be tampered with. This fact enable us to construct a variable length
code whose checker can work in parallel to the execution of the basic
block; the computed signature is ready before the last instruction of
the current basic block leaves the pipeline. This makes this CFC an
add-on module because it does not change the throughput or latency
of the system. It also enables a simple and smooth transition between
basic blocks.

One of the AMD codes presented in [15] relies on the Generalized
Reed-Muller (GRM) codes. A GRM code is a non-systematic fixed-
length code; it is defined by three parameters, r, t and b [20]:
r - defines the size of the finite field (q = 2r)
t - is the number of random q-ary symbols
b - is the order of the code, b ≤ t(q − 1)
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Table I: λ(3, b) versus b

b 1 2 3 4 5 6 7 8
λ(3, b) 4 10 20 35 56 84 120 165

b is the smallest integer for which the coding scheme can protect a
sequence of maximal length kmax; i.e., b is the smallest integer for
which kmax ≤ λ(t, b)− 1 where

λ(t, b) =

t∑
j=0

(−1)j
(
t

j

)(
t+ b− jq
b− jq

)
.

In a GRM code, an information word Y of length kmax determines
the coefficients of a polynomial of order ≤ b. The corresponding GRM
codeword is then a q-ary vector of length qt whose symbols are the
values that this polynomial takes.

Our code is built on the GRM code in the sense that we use a
specific subset of the GRM codewords, and define f(X,Y ) as the
value of the X’th symbol in the GRM codeword associated with the
information word Y0 = (0kmax−k, Y ). In what follows we define the
mapping we use between Y and the polynomial. We start with several
definitions.

Let Zq be the set of integers {0, 1, ..., q−1}. Let w = (wt, ...w1) ∈
Zt

q be a q-ary vector of length t that represents the number N(w) =∑t
j=1 wjq

j−1 in radix q. When it is clear from the context, we refer
to a vector w by its value N(w).

Define Ωb to be an ordered set of size kmax of vectors whose sum
is smaller or equal to b. That is,

Ωb = {wi = (wi,t, ...wi,1) ∈ Zt
q : 0 <

t∑
j=1

wi,j ≤ b}kmax
i=1 .

In addition, we require that the numbers associated with the vectors
in Ωb be the smallest numbers that have this property. In other words,
N(w1) = 1, N(wi) < N(wi+1) and there is no other vector, say
ŵ /∈ Ωb such that N(wi) < N(ŵ) < N(wi+1).

Example 3. Let t = 3, r = 8. The values λ(3, b) are given in Table
I. For b = 8 the set Ωb consists of 164 vectors,



− (0, 0, 1) (0, 0, 2) (0, 0, 3) . . . (0, 0, 7) (0, 0, 8)
(0, 1, 0) (0, 1, 1) (0, 1, 2) (0, 1, 3) . . . (0, 1, 7) −
(0, 2, 0) (0, 2, 1) (0, 2, 2) (0, 2, 3) . . . − −

...
...

...
... . . .

...
...

(6, 2, 0) − − − . . . − −
(7, 0, 0) (7, 0, 1) − − . . . − −
(7, 1, 0) − − − . . . − −
(8, 0, 0) − − − . . . − −


For example, w56 = (1, 1, 3) and N(w56) = 1 · (28)2 + 1 · (28)1 +

3 · (28)0 = 65795. �

Construction 1 (The tag function f ). Let Y be a q-ary vector of
length k ≤ kmax. Denote by Xw the product term

Xw = xwt
t · · ·x

w2
2 · x

w1
1 ,

where computations are performed over Fq . A polynomial based non-
linear signature of Y is a binary vector of size (t+1)·r bits isomorphic
to the vector S = (X, f(X,Y )) ∈ Ft+1

q where

f(X,Y ) =

k∑
i=1

yiX
wi , (1)

and wi ∈ Ωb

Note that f(X,Y ) = f(X,Y0) is the X’th symbol in a GRM
codeword

c = (f(0, Y0), f(1, Y0), . . . , f(qt − 1, Y0))

associated with the information symbol Y0 = (0kmax−k, Y ).

Example 4. Let the maximal length of a sequence be N = 161 bytes.
Assume we want to design a control flow checker whose signature is
a binary vector of length 32 = (3 + 1) · 8; that is, r = 8 and t = 3.
Then we have kmax = d 8·161

8
e = 161, and b = 8 is the smallest

integer for which (
3 + b

b

)
− 1 = 164 ≥ kmax.

A signature is a binary vector of length 32 of the form S = (X =
(x1, x2, x3), f(X,Y )) where x1, x2, x3 and f are 8 bit vectors that
represent elements from the finite field F28 . The function f for k = 3
is

f(X,Y ) = y1X
(0,0,1) + y1X

(0,0,2) + y1X
(0,0,3)

= y1x1 + y1x
2
1 + y1x

3
1,

whereas for k = kmax it is

f(X,Y ) = y1X
(0,0,1) + y2X

(0,0,2) + ...y8X
(0,0,8) +

y9X
(0,1,0) + y10X

(0,1,1) + ...y16X
(0,1,7) +

...
y159X

(6,0,1) + y160X
(6,1,0) + y161X

(7,0,0)

= y1x1 + y2x
2
1 + ...y8x

8
1 +

y9x2 + y10x2x1 + ...y16x2x
7
1 +

...
y159x

6
3x1 + y160x

6
3x2 + y161x

7
3.

�

B. The effectiveness of the CFC

It is important to note that the triplet (Y,X, f(X,Y )) is a codeword
in an error detecting code; it has no error correction capabilities.
Thus, the decoder has no error-recovery mechanism. This serves to
avoid scenarios in which an attacker can manipulate the system and
make the decoder conceal the attack by ”correcting” an erroneous
basic block into a legal but different basic block. Example 13 in the
Appendix shows how simple it is to manipulate a system when the
error correction mechanism is activated.

The following theorem provides an upper bound on the probability
that the CFC will not detect a tampered-with basic block. The bound
applies to all basic blocks regardless of their length and content and
therefore obviates the need for experiments/simulations.

Theorem 1. Let X be a random vector that is uniformly distributed
over X ⊆ Ft

q . The probability that a GRM based signature will not
detect a tampered sequence is

Q̄ ≤ bqt−1

|X | .

Proof. Let Y be a q-ary vector of length k that represents the correct
sequence, and denote by Ŷ the q-ary vector of length k̂ that represents
the tampered sequence. The two sequences may be of different lengths,
i.e., k 6= k̂. Notice that the expansion of Y and Ŷ into q-ary vectors
of length kmax does not change the signature since f(X,Y ) =
f(X, (0kmax−k, Y )) and f(X, Ŷ ) = f(X, (0kmax−k̂, Ŷ )). Thus,
without loss of generality, we assume that both vectors are of size
kmax. This enables us to represent Ŷ as

Ŷ = Y + E

4



where Y, Ŷ and E are vectors in Fkmax
q . E is defined as the difference

between the two sequences and hence can be treated as an additive
error vector. The error masking probability is then

Q̄ = max
E∈Fkmax

q \{0}
Q(E).

The error E is detected if the computed signature of Ŷ differs
from the signature of Y . In other words, the attack is undetected if
f(Y,X) = f(Y + E,X). Define,

gE(X) = f(Y,X)− f(Y + E,X) =

=

k∑
i=1

yiX
wi −

k∑
i=1

(yi + ei)X
wi =

k∑
i=1

eiX
wi .

(2)

Then, a nonzero E is undetected if X is a root of the polynomial
gE . This polynomial is associated with a q-ary codeword c of length
qt in the generalized Reed-Muller (GRM) code. That is,

c = (gE(0), gE(1), ..., gE(qt − 1)) 6= 0qt .

Since the GRM is a linear code of minimum distance d = (q−b)qt−1,
every nonzero codeword c has a minimal weight d. That is, gE has
at most qt − d roots. Hence, for a uniformly chosen non-zero vector
X ∈ X , the probability that tampering will go undetected is

Q(E) ≤ qt − d
|X | =

bqt−1

|X | .

Example 5. Consider the code in Example 4. The code has t = 3, b =
8 and r = 8, hence for |X | = (2r)t = 224, the probability that an
attack will be masked is approximately 2−5.

Note that another way to construct a control flow checker for N =
161 bytes is by taking a larger r; i.e., r = 16, t = 1 and b =
dN/2e = 81. In this case, the signature is a binary vector of length
(1+1)·16 bits, and f is a polynomial of a single variable, f(X,Y ) =
y1x + y2x

2 + · · · + y81x
81. Here, the computation is performed in

the (larger) field F216 ; hence, the implementation cost is larger, but
the probability that an attack will be masked becomes significantly
smaller ( ≈ 2−9). �

Table II shows several constructions for different block and signa-
ture sizes. The first column lists the length of the maximal sequence
(in bytes), the probability Q that an attack will be masked with

X1 = {X = (xt, . . . , x1) : xi 6= 0 ∀i} ⊂ Ft
q

and with X2 = Ft
q , in the second and third columns, respectively. The

signature size (in bits) is appears in the fourth column, and the GRM
parameters, r, t and b are given in columns 5-7.

The analysis of the error masking probability Q̄ is a worst case
analysis. The error masking probability can be smaller when the gE
is of low degree. The following example illustrates this statement:

Example 6. Assume X = (x3, x2, x1) ∈ X , and let

gE = e1x1 + e2x
2
1 + e3x

3
1x2.

For a given (x3, x2 6= 0) pair, gE is a polynomial of degree 3, and
for pairs (x3, x2 = 0) it is of degree 2. Hence, gE has at most
(3q(q − 1) + 2q) roots. The probability that this error is masked is:

Q(E) ≤ q(3q − 1)

|X | <
8q2

|X | .

�

V. CFC DESIGN FOR A 32-BIT SINGLE-PIPELINE
PROCESSOR WITH A 32-BIT SIGNATURE

In this section we detail the design of a CFC protecting a single-
pipeline processor with a 32 bit ISA from malicious attacks. We

Table II: Code parameters for signature size ≤ 32 bits

maxN Q with Q with Signature r t b
(bytes) X1 X2 size (bits)

156 0.0998 0.0938 30 6 4 6
143 0.0640 0.0625 28 7 3 8
164 0.0316 0.0313 32 8 3 8
160 0.0127 0.0127 30 10 2 13
370 0.1331 0.1250 30 6 4 8
315 0.0880 0.0859 28 7 3 11
261 0.0186 0.0186 30 10 2 19
220 0.0352 0.0351 32 8 3 9
535 0.1498 0.1406 30 6 4 9
594 0.1120 0.1094 28 7 3 14
527 0.1220 0.1211 24 8 2 31
559 0.0514 0.0508 32 8 3 13
522 0.0569 0.0566 27 9 2 29
542 0.0274 0.0273 30 10 2 28
1364 0.1997 0.1875 30 6 4 12
1139 0.0672 0.0664 32 8 3 17
1075 0.0391 0.0391 30 10 2 40

Table III: Code parameters for r = 8

maxN Q with signature t b
(bytes) X1 (bits)

62 0.0394 24 2 10
69 0.0159 40 4 4
83 0.0237 32 3 6

135 0.0591 24 2 15
220 0.0352 32 3 9
164 0.0316 32 3 8
209 0.0238 40 4 6
275 0.0866 24 2 22
285 0.0395 32 3 10
329 0.0278 40 4 7

assume that the pre-computed signatures are stored in a tamper-
resistant memory. We start by describing the considerations that
underlie the choice of design parameters, then describe the architecture
of the computational module and elaborate on the structure of each
of its blocks, with a focus on the correctness of the implementation
rather than its efficiency. Finally, we describe the architectural changes
needed to make it an effective real-time CFC.

A. Design parameters
All the code parameters are linked: as we saw in the previous

section, the triplet t, b and r affects N , the code’s error masking
probability Q̄, and the signature size. In what follows, we describe
the design considerations that led to the choice of N and r, which in
turn determine parameters b and t for the selected processor and the
32-bit signature.

1) The maximal basic block length N : The parameter N
represents the maximal basic block length (in bytes) that can be
protected by the code. Since any basic block can be split into several
basic blocks of smaller length, it is assumed that the encoder and the
checker ”see” basic blocks of length smaller or equal to N .

Note that splitting a basic block larger than N -bytes into smaller
basic blocks requires additional rows in the signature memory; hence,
the maximal basic block size cannot be too small. On the other hand,
a large N may increase the time between the execution of a tampered
instruction and its detection. Therefore, N cannot be too large either.

The basic block size, along with the execution of a jump instruction,
indicates the end of a basic block. To cope with a case where a basic
block ends with a label (see Example 1), we can keep the size of the
basic block in the tamper-resistant memory, as part of the signature, or
insert an unconditional jump to the next (labeled) instruction at the end
of this basic block. Figure 3, taken from [21], shows the distribution
of BB sizes for some real Linux-based applications (ghostscript, head,
hexdump, sort, tail) running on a x86 architecture. As can be seen,
the vast majority of BBs have a number of bytes that is smaller than
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Figure 3: Sizes of Basic Blocks taken from some real Linux-
based applications [21].

Table IV: Code parameters for r ≥ 8

r max N Q with signature t b
(bytes) X1 (bits)

8 220 0.0352 32 3 9
8 164 0.0316 32 3 8
8 209 0.0238 40 4 6
9 133 0.0275 27 2 14
9 133 0.0138 36 3 7

10 130 0.0127 30 2 13
10 148 0.0069 40 3 7
11 143 0.0064 33 2 13
12 135 0.0029 36 2 12

N = 164, thus confirming that the choice of these parameters is
reasonable.

2) The tag size r: For simplicity, we work with bytes (r = 8).
That is, both the y’s and the x’s are elements of F2r (that is,
isomorphic to Fr

2). Table III shows several constructions for r = 8
(q = 28). The columns from left to right are the maximal basic
block length (N ), the probability Q that an attack will be masked,
the signature size in bits, and the GRM parameters, t and b.

In fact, r can take larger values (i.e., r > 8). In this case the x’s
should take a nonzero value from F2r and the eight bits of the y’s
should be padded with r − 8 zeros. This may lead to constructions
with a smaller error masking probability with a similar implementation
cost. Table IV shows the error masking probability for several r values
and for different (maximal) lengths of basic blocks. Note that the size
of the signature, which is a function of r and t, takes values from
27 to 40. It is clear from the table that by adding a single bit to the
signature, one can implement a checker with r = 11 and obtain a
smaller error masking probability of 0.0064 instead of 0.0316.

Guided by these design considerations, we implemented a CFC with
the following parameters (marked in bold in Table IV):

• Serial implementation (Section V-B)

r = 8, t = 3, b = 8, N = 164, bytes q = 256,

and error masking probability Q̄ = 8 · q2/(q3 − 1) = 3.13%.
• Parallel implementation (Section V-F)

r = 8, t = 3, b = 9, N = 144, bytes q = 256,

and error masking probability Q̄ = 9 · q2/(q3 − 1) = 3.5%.

B. Generic architecture of the Computation Module (CM)
A simplified block diagram of the Computation Module (CM) is

shown in Fig. 4. It receives the random portion X of the current basic
blockfrom the tamper-resistant memory and the content of the basic
block as fetched from the instruction cache. The CM has its own clock,
whose frequency depends on the number of y symbols processed each
clock period. For simplicity, we first describe the operation of the CM
when it receives one byte per clock and in Section V-F we show how
to use this simplified design to process four bytes per clock. In the
latter case, the system’s clock is used as the CM’s clock.

The CM consists of three modules:
• A (t, b) counter. These counters are used for generating the t-

digit vectors in Ωb. The inputs to this block are the CM clock
and the global reset signals from the control unit. The current
state of the counters w ∈ Ωb is used to compute internal control
signals (incj and resetj , j = 1, . . . t) that determine its next
state. The t-bit control signal inc = (inct, ..., inc1) is also used
as input to the product term computation block (described next).

• A product term generator. This block computes Xw. The
inputs to this block are the CM clock, the global reset signals
from the control unit, the secret key - X , and the control signals
from the counter block. The block consists of t r-bit registers
dubbed R1, . . . Rt and a single finite field multiplier. Given these
registers and the fact that the Ωb is an ordered set, Xw can be
computed without using w. That is, w is an internal variable of
the counter/s. Thus, only t wires connect the counter and this
block (instead of t · log2(b)).

• A polynomial evaluator. This block computes f(Y,X).
In what follows we elaborate on each module.

X

Y

inc 1-t

P

f(X,Y)

g
lo

b
a
l c

lo
c
k

g
lo

b
a
l re

s
e

t /n
e
w

 b
lo

c
k

output signature

t∙r

r

t

r

r

Polynomial
Evaluator

Product

Term
Generator

(t,b)

Counter

Figure 4: Generic architecture of the computation module

C. The (t, b) Counter module
The (t, b) counter is a state-machine; it produces the vectors Ωb in

an ordered manner. At time slot i the counter generates the vector

wi = (wi,t, . . . , wi,2, wi,1) ∈ Ωb.

A schematic block diagram of the (t, b) counters is depicted in Fig.
5 and its formal description is given in Alg. 1.

The counter can be viewed as a radix q = 2r ripple counter.
For example, for t = 3, r = 8, b = 8, if the current vector w is
(w3 = 5, w2 = 0, w1 = 1), the next vector will be (5, 0, 2). However,
it differs from a conventional t-digit counter in that a conventional
counter has a global reset/preset signal that initializes (simultaneously)
all the digits to a predefined value, whereas in our case the counter
has t local reset and increment signals, resetj and incj ( Alg.1, Line
11). Thus it can increment its upper part, e.g., (wt, . . . , wj+1), and
reset its lower part (wj , . . . , w1), see Alg.1, Lines 7-10. For example,
(4, 2, 2) will be followed by

wi+1 = (4, 3, 0), wi+2 = (4, 3, 1) wi+3 = (4, 4, 0).
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Figure 5: The (t, b) counter module: The top figure shows how the t sub-counters are connected to each other and the bottom
figure shows a schematic design of a sub-counter.

Algorithm 1 (t, b) Counter for b < q

1: (Initialization step) Set i = 1.
2: (Initialization step) Set wi = (0, 0, . . . , 0, 1).
3: while the basic block has not ended, do
4: inc1 := (

∑t
j=1 wi,j < b)

5: reset1 := ¬inc1
6: for j = 1 : t do
7: Update the value of the j’th digit wi+1,j :
8: if (resetj == 1) then wi+1,j := 0,
9: if (resetj == 0)∧ (incj == 0) then wi+1,j :=

wi,j ,
10: if (resetj == 0)∧ (incj == 1) then wi+1,j :=

wi,j + 1,
11: Generate the reset and increment signals for the (j +

1)’th digit:
12: resetj+1 := (resetj == 1) ∧ (wi,j == 0),
13: incj+1 := (resetj == 1) ∧ (wi,j > 0).
14: end for
15: i = i+ 1 // Virtual counter to simplify the analysis
16: end while

Note that N(4, 2, 2) < N(4, 3, 0) < N(4, 3, 1).
Fig. 5-top shows a (t, b) composed of t sub-counters that work

in parallel. Each sub-counter produces r bit vectors, dubbed ’digit’.
Each sub-counter has its own reset and increment signals that are
generated by the preceding sub-counter (Alg.1, Lines 11-13). The first
sub-counter is controlled by the b comparator (Alg.1, Lines 4-5). The
bottom figure shows a detailed scheme of a sub-counter. At each cycle,
if the increment signal is raised, the sub-counter increments its value
by 1 (Alg.1, Line 10). The first sub-counter, cnt1, is set to 1 on a
global reset (Alg.1, Line 2). All the other sub-counters can be set to
zero by either external reset (Line 2) or by a reset from the preceding
sub-counter (Line 12).

Theorem 2. For b < q, Alg. 1 generates all the vectors in Ωb in
increasing order.

The proof of this theorem is given in the Appendix.

D. Product term computation module
This block computes the product term Pi = Xwi . The schematics

of this module are shown in Fig 6. Alg. 2 explains how it operates
and the associated theorem proves its correctness.

The block consists of one finite field multiplier and t ”shadow”
registers, where each register Rj holds a different product. Recall that
the product term computation module does not ”see” the value of wi,
and thus has to figure out how to compute the current product Pi

by analyzing the t bits of the inc vector. Denote by j+ the largest
index for which incj = 1 (Alg.2, Line 3); the i’th product term
is computed by multiplying the value stored in the (j+)’th shadow
register by xj+ (Alg.2, Line 4). Then, the value of the first shadow
registers, R1, . . . Rj+ is updated with the new product Pi (Line 5).

Theorem 3. Algorithm 2 correctly computes Pi = Xwi from the
signals inc1, . . . inct.

The proof of this theorem is given in the Appendix.

Algorithm 2 Compute Product Term

1: (Initialization step) Set Rj = 1 for all 1 ≤ j ≤ t.
2: while the basic block has not ended, do
3: Find the largest index j+ for which incj+ == 1.
4: Compute Pi := Rj+ · xj+ .
5: for j = 1 : j+ do
6: Update the register with the current product term:

Rj := Pi, loadj := 1.
7: end for
8: i = i+ 1 // Virtual counter to simplify the analysis
9: end while
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Example 7. Consider the CFC in Example 4. Table V shows the
content of the shadow registers over time. �

E. Polynomial Evaluation module
The polynomial f(Y,X) can evaluated at the same time as the

generation of the vectors in Ωb. As described at Fig. 7, it consists
of a multiplier and an adder. The computed Pi is multiplied by the
corresponding yi and the result is added to the content of the register
that holds the sum of the products computed so far.

F. Concurrent CFC implementation
A schematic block diagram of the checker is depicted in Fig 8.

Every clock cycle, 32 bits are read from the memory; therefore, at
every clock cycle, 4 = 32/r q-ary symbols, yi, yi+1, . . . yi+3, enter
the checker. As shown in the figure, there are four different (t, b)
counters: the j’th counter has tj digits with design parameter bj . Each
counter can have its own initialization value (or values).

The output of the j’th counter at time i, wi,j , enters a product term
computation module that generates the product Pi,j where Pi,j =
X

wi,j

j (X \Xj)
vj . Here, Xj ⊆ X is the predefined tj q-ary random

variables allocated to the j’th counter, (X \ Xj) are the remaining
variables, and vj ∈ Zt−tj is a predefined integer vector whose L1

norm is equal to or smaller than b− bj .
The polynomial evaluation module in Fig. 8 computes the sum∑4
j=1 yi+j−1Pi,j and adds it to the sum accumulated so far.
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Figure 8: Control flow checker architecture for a 32-bit pro-
cessor and r = 8.

Four disjoint sets of w’s are generated by the counters. Denote the
sets as Ω

(0)
9 ,Ω

(1)
9 ,Ω

(2)
9 and Ω

(3)
9 . These sets satisfy Ω

(j)
9 ∩ Ω

(l)
9 = Φ

for j 6= l, and | ∪j Ω
(j)
9 | ≥ N . The signature value is then

f(X,Y ) =

k/4∑
i=1

3∑
j=0

y4i+j,jX
wi,j , (3)

where y4i+j,j is the j’th byte of the i’th instruction in a basic block
that has k bytes, and wi,j is the i’th vector in the ordered set Ω

(j)
9 .

There are several ways to split Ω9 into four disjoint sets. One
example is the following:

Ω
(0)
9 = {w : w ∈ Ω9 and w3 = 0}

Ω
(1)
9 = {w : w ∈ Ω9 and w3 = 1}

Ω
(2)
9 = {w : w ∈ Ω9 and w3 = 2}

Ω
(3)
9 = {w : w ∈ Ω9 and w3 ≥ 3}. (4)

Note that the sets are of different sizes |Ω(0)
9 | = 54, |Ω(1)

9 | =

45, |Ω(2)
9 | = 36, |Ω(3)

9 | > 40. This implies that the maximal Basic
Block must be smaller or equal to 4 · 36 = 144 bytes. This number is
smaller than 164 which is the maximal basic block size that can be
supported by an 8-bit architecture.

Recall that the four sets are generated by four counters that work in
parallel. Table VI presents the parameters of these counters. For each
counter, the table specifies the parameter vector (ti, bi), the maximal
number of w’s that it can generate and the form of the corresponding
product. Table VII shows the operation of the four counters and the
control signal they generate at different time slots. Note that the first
counter starts from 1 whereas the other three start from zero.

Since N is determined by the size of the smallest counter (in our
case Ω

(2)
9 ), we can use its saturation signal; i.e., its inc2 signal, to

notify the control unit that the current basic block has ended.

It is important to note that the product terms that correspond to
elements in Ω

(0)
9 are of the form x03X̂

ŵ where X̂ = x2x1 and ŵ are
the vectors associated with a smaller code with parameters r = 8, t =
2 and b = 9. Similarly, the product terms corresponding to elements
in Ω

(2)
9 are of the form x23X̂

ŵ where the ŵ’s are associated with code
with parameters r = 8, t = 2, b = 7. Overall, a checker for this code
will consist of four different encoders of smaller codes and will have
to multiply each partial product X̂ŵ by a different power of x3 (see
Fig. 8). Specifically, additional finite field multipliers are required to
compute, for example, x33.
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Table V: The content of the shadow registers in Example 4

i 1 2 3 . . . 9 10 11 . . . 44 45 46 47 . . . 54 55 . . .
wi (0,0,1) (0,0,2) (0,0,3) . . . (0,1,0) (0,1,1) (0,1,2) . . . (0,8,0) (1,0,0) (1,0,1) (1,0,2) . . . (1,1,1) (1,1,2) . . .
inc (0,0,1) (0,0,1) (0,0,1) . . . (0,1,0) (0,0,1) (0,0,1) . . . (0,1,0) (1,0,0) (0,0,1) (0,0,1) . . . (0,0,1) (0,0,1) . . .
R1 1 x1 x2

1 . . . x8
1 x2 x2x1 . . . x7

2x1 x8
2 x3 x3x1 . . . x3x2 x3x2x1 . . .

R2 1 1 1 . . . 1 x2 x2 . . . x7
2 x8

2 x3 x3 . . . x3x2 x3x2 . . .
R3 1 1 1 . . . 1 1 1 . . . 1 1 x3 x3 . . . x3 x3 . . .

Table VI: Counter parameters and initialization for r = 8, t = 3
and b = 9, Q = 0.035

cnt #1 cnt #2 cnt #3 cnt #4
(2,9) (2,8) (2,7) (2,6)
k=54 k=45 k=36 k=28
(0**) (1**) (2**) (3**)

(2,5)
k=21
(4**)

G. Operation
Consistent with Theorem 1, every error will be detected with a

probability of at least (1 − Q̄) = 96.87%. In fact, for a given
pair consisting of a basic block and a tampered-with block the exact
probability that the CFC will not detect the error can be calculated,
following the proof of the theorem.

In the Appendix we provide four examples that illustrating how the
CFC works and how it detects an error:
• Example 8 shows how the CFC works when the tag is calculated

in an error-free scenario.
• Example 9 shows a case where two instructions are erroneous.
• Examples 10 and 11 show the tag calculation when the attacker

changes the size of a basic block.

H. Implementation cost
The coding scheme presented in this section was implemented

for the chosen parameters. We synthesized the circuit by using a
28nm CMOS technology. The results of the synthesis led to an area
occupancy of about 1700 Gate Equivalents (GEs). In order to compare
our solution to existing ones, we calculated (when possible) the area
of the other solutions in GEs. The values we obtained are sensitive
to errors since not all the technological details are provided (nor
units in some cases). For instance, in [6], the sizes are not explicitly
calculated. However, they declare a 30% area overhead w.r.t. Leon3.
Leon3 implementations range from 300K to 450K GE, thus leading to
a rough approximation of at least 90K GEs for their implementation.
Table VIII presents the comparison to the other works discussed in
this paper. As can been seen, our solution has the smallest overhead
while guaranteeing a high level of security.
Concerning the impact in terms of speed, the circuit can work at more
than 1 GHz when working at 1.3V, thus confirming the possibility to
run in parallel with modern processors without incurring in additional
delay. It is important to note that we did not considered the impact
of the tamper-resistant memory in this analysis. We have assumed
that such a memory is available and can be easily integrated into the
system. Example of existing tamper-resistant non-volatile memories
are proposed in [22] and [23].

VI. CONCLUSION

This paper presents a non-linear encoder and checker that can be
used in every Control Flow Checking mechanism. It suggests a way to
design an add-on, low overhead, fine-grained checker with no need for
architectural changes. Similar to other code-based solutions, it has the
advantages of not introducing additional latency, has low overhead
and is able to protect basic blocks of variable length. However,
in contrast to existing code-based solutions, it employs non-linear

codes. In this sense, it guarantees the high level of security of the
MAC-based system, without introducing high area penalties. As in
every MAC-based solution, the code integrates a secret part that must
be stored (together with the pre-calculated signatures) in a tamper-
resistant memory.
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VII. APPENDIX

A. Proof of Theorem 2

First we show that each generated vector is a member of Ωb. The
proof is by induction. Clearly, w1 ∈ Ωb. Assume that wi ∈ Ωb. If the
sum of the digits of wi is smaller than b (Alg. 1 line 4), the value of
the least significant digit wi+1,1 will be incremented by one (line 10).
Consequently, the reset2 and inc2 signals of the second digit will be
set to zero (line 12-13) and hence the second digit will keep its value
(line 9). The same applies to all the other digits, and hence wi+1,j =
wi,j for all j > 1, and therefore,

∑t
j=1 wi+1,j =

∑t
j=1 wi,j +1 ≤ b.

On the other hand, if the sum of the digits of wi equals b then
inc1 = 0 and reset1 = 1. Denote by j∗ the index of the first digit
that carries a nonzero value. That is, wi,j = 0 for all 1 ≤ j < j∗

and wi,j∗ ≥ 1. From line 12, all the first j∗ − 1 digits that carry a
zero have resetj = 1 and hence will remain zero (line 8). In addition,
wi+1,j∗ will be set to zero since resetj∗ = 1, and the following digit
that will have resetj∗+1 = 0 and incj∗+1 = 1 will be incremented
by one (line 10). Therefore we have

wi+1,j∗ + wi+1,j∗+1 = 0 + (1 + wi,j∗+1) ≤ wi,j∗ + wi,j∗+1.

Since resetj∗+1 = 0 all the following digits, j > j ∗ +1, will
have resetj = incj = 0. Hence, they will keep their value (line
9). Therefore,

t∑
j=1

wi+1,j = 0 + wi+1,j∗ + wi+1,j∗+1 +

t∑
j=j∗+2

wi+1,j

≤
t∑

j=j∗

wi,j ≤
t∑

j=1

wi,j = b (5)

and thus wi+1 ∈ Ωb.
Next, we show that all the elements of Ωb are generated. For this,

it is sufficient to show that

N(wi) < N(wi+1) (6)

and that there is no legal vector, say ŵ, in Ωb such that N(wi) <
N(ŵ) < N(wi+1).

Note that if the sum of the digits of wi is smaller than b, then
N(wi+1) = N(wi) + 1 and Eq. 6 is fulfilled. Otherwise,

N(wi+1)−N(wi) = qj
∗

((wi+1,j∗ + qwi+1,j∗+1))

−qj
∗

((wi,j∗ + qwi,j∗+1))

= qj
∗
(q − wi,j∗) > 0. (7)

Assume now that there exists a legal vector ŵ in between wi+1

and wi. Then, ŵj∗+1 ∈ {wi,j∗+1, wi+1,j∗+1}. If ŵj∗+1 = wi,j∗+1

then
∑t

j=1 ŵj >
∑t

j=1 wi,j = b is hence a contradiction (since ŵ

cannot be a member of Ωb). If ŵj∗+1 = wi+1,j∗+1 then
∑j∗

j=1 ŵj <∑j∗

j=1 wi+1,j = 0 and this again is a contradiction since the sum of
the first j∗ digits of ŵ cannot be negative.

B. Proof of Theorem 3

At the first time slot the registers Rj+ are initialized to carry the
value 1. (In Section V-F, there are four sets of registers, where each
set is initialized with a different predefined value.)

Consider the i’th time slot, i > 1. Assume that the last time slot
Rj+ was updated was at time p, p < i. At that time slot, the increment
occurred at position j+p ≥ j+i and wp carried the value

wp =


(wp,t, . . . , wp,j+p

, 0, . . . 0, 0,︸︷︷︸
j+i

0, . . . 0) for j+p > j+i ,

(wp,t, . . . , wp,j+p
, 0, 0, . . . 0) for j+p = ji+

.

That is, at time slot i the register R
j+i

holds Xwp . In the time slots
between p and i, the value of the w vectors were in the range

N(wp) < N(Ω) < N(wp) + qj
+
i

because the counter generates an increasing series of numbers; namely,
all the registers with indices smaller than j+i were changed, and the
registers with indices greater or equal than j+i remained untouched.
In other words, at time slot i, the wi vector is of the form

wi = (wi−1,t, . . . , wi−1,j+i +1
, w

i−1,j+i
+ 1, 0, . . . 0)

= wp + (0, . . . , 0, 1, 0 . . . 0). (8)

Hence, Pi = x
w

j
+
i Xwp = Xwi and the block outputs the correct

value.

C. Examples
In the following examples the computations were run over the finite

field F8
2. We used the primitive polynomial π(x) = x8 + x4 + x3 +

x2 + 1 to construct the field.

Example 8 (The error-free case). Consider the following consecutive
basic block complied for an ARM architecture.

add.w r2, r7, #16
subs r2, #8
bl 558 //end of BB1

movs r1, #1
bl 0 //end of BB2

The binary of BB1 is the following (3× 32)-bit vector

Y = (y12, . . . , y1) = ( 0xEB, 0x00, 0x00, 0x87,
0xE2, 0x52, 0x20, 0x08,
0xE2, 0x87, 0x20, 0x10 ).

Assume that the randomly chosen part attached to Y is

X = (x3, x2, x1) = (0x87, 0x37, 0x1C),

then the pre-computed tag is f(X,Y ) = 0x3C. In an error-free
scenario, the checker recomputes the tag and sees that it equals the
tag stored in the tamper-resistant memory. In this case, the checker
works as follows:

When the previous basic block ends and BB1 begins the counters
and registers are initialized to:

(2, 9)-cnt(0) = (0, 1), R
(0)
1 = 1, R

(0)
2 = 1,

(2, 8)-cnt(1) = (0, 0), R
(1)
1 = x3, R

(1)
2 = x3,

(2, 7)-cnt(2) = (0, 0), R
(2)
1 = x23, R

(2)
2 = x23,

(2, 6)-cnt(3) = (0, 0), R
(3)
1 = x33, R

(3)
2 = x33.

The first fetched instruction (0xE2, 0x87, 0x20, 0x10) is bought to the
checker, and the four bytes are split between the four parallel units.
The values at the output of the Polynomial Evaluation module are

f1,0(X,Y ) = y1x1 = x4 · (x4 + x3 + x2) mod π(x) = 0xDD

f1,1(X,Y ) = y2x3 = 0x5A

f1,2(X,Y ) = y3y
2
3 = 0x35

f1,3(X,Y ) = y4x
3
3 = 0xDA

f1(X,Y ) =

3⊕
i=0

f1,i = 0x68

The tag value at the end of the first cycle is 0x68.
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At the beginning of the second cycle the values of the counters and
registers are

(2, 9)-cnt(0) = (0, 2), R
(0)
1 = x1, R

(0)
2 = 1,

(2, 8)-cnt(1) = (0, 1), R
(1)
1 = x3, R

(1)
2 = x3,

(2, 7)-cnt(2) = (0, 1), R
(2)
1 = x23, R

(2)
2 = x23,

(2, 6)-cnt(3) = (0, 1), R
(3)
1 = x33, R

(3)
2 = x33.

In this cycle, the second instruction, (0xE2, 0x52, 0x20, 0x08), is
fetched and the checker computes

f2,0(X,Y ) = f1,0 ⊕ y5x21 = 0x8F

f2,1(X,Y ) = f1,1 ⊕ y6x3x1 = 0x71

f2,2(X,Y ) = f1,2 ⊕ y7x23x1 = 0xA6

f2,3(X,Y ) = f1,3 ⊕ y8x33x1 = 0x2A

f2(X,Y ) =

3⊕
i=0

f2,i = 0x72.

That is, the value of the tag at the end of the second cycle; i.e., the
tag accumulated so far, is 0x72.

Finally, in the third cycle, the last instruction of the basic block,
(0xEB, 0x00, 0x00, 0x87) is bought to the checker;

the values of the counters and registers are

(2, 9)-cnt(0) = (0, 3), R
(0)
1 = x21, R

(0)
2 = 1,

(2, 8)-cnt(1) = (0, 2), R
(1)
1 = x3x1, R

(1)
2 = x3,

(2, 7)-cnt(2) = (0, 2), R
(2)
1 = x23x1, R

(2)
2 = x23,

(2, 6)-cnt(3) = (0, 2), R
(3)
1 = x33x1, R

(3)
2 = x33.

The checker computes

f3,0(X,Y ) = f2,0 ⊕ y9x31 = 0x07

f3,1(X,Y ) = f2,1 ⊕ y10x3x21 = 0x71

f3,2(X,Y ) = f2,2 ⊕ y11x23x21 = 0xA6

f3,3(X,Y ) = f2,3 ⊕ y12x33x21 = 0xEC

f3(X,Y ) = 0x3C

After the third cycle the block ends; as expected, the computed tag
0x3C equals the pre-computed one.

�

Example 9 (An adversary tampering with the content of a basic block).
Assume that the BB1 from Example 8 has been altered by an adversary
that has injected bit-flips to obtain the following code (the tampered-
with parts are written in bold):

add.w r2, r1, #16
add.w r3, r4, #1
bl 558 //end of BB1

movs r1, #1
bl 0 //end of BB2

The corresponding binary vector is

Ŷ = (Ŷ12, . . . , Ŷ1) = ( 0xEB, 0x00, 0x00, 0x87,
0xE2, 0x84, 0x30, 0x01,
0xE2, 0x81, 0x20, 0x10 )

(the differences between Y and Ŷ are marked in bold).
The tag computation process is similar to the computation in

Example 8. After the third instruction the computed tag which equals
f(X, Ŷ ) = 0xB2 is compared with the tag stored in memory (0x3C).
Since the tags differ, the checker signals that an error has been
detected.

It is important to note that in this case the actual error masking

probability Q(E) is smaller than the error masking probability of the
code Q̄ = 8 · 2562/(2563 − 1); since

max{deg(f(X,Y ),deg(f(X, Ŷ )} = 3,

at least 2562(256 − 3) X’s out of 2563 are able to detect this code
manipulation. In other words, the error masking probability for this
specific error vector,

E = ( 0x00, 0x00, 0x00, 0x00,
0x00, 0xD6, 0x10, 0x09,
0x00, 0x06, 0x00, 0x00 )

,

is Q(E) ≤ 3
256−1

< Q̄.

�

Example 10 (An adversary shortening a basic block). Consider BB1
from Example 8. By injecting bit-flips it is possible to change the
second instruction (subs) into a branch instruction. This way the
adversary shortens the basic block by one instruction:

add.w r2, r7, #16
bl 100 //end the modified BB1

bl 558 //end the original BB1

movs r1, #1
bl 0 //end of BB2

Now the checker will ”see” a shorter vector

Ŷ = (ŷ8, . . . , ŷ1) = ( 0xEB, 0x00, 0x00, 0x16,
0xE2, 0x87, 0x20, 0x10 )

and will check the signature at the end of the second cycle. The
computed signature is

f1(X, Ŷ ) = ŷ1x1 ⊕ ŷ2x3 ⊕ y3x23 ⊕ y4x33 = 0x68

f2(X, Ŷ ) = f1(X, Ŷ )⊕ ŷ5x21⊕ ŷ6x3x1⊕ ŷ7x23x1⊕ ŷ8x33x1 = 0x7D

Hence, f(X, Ŷ ) = 0x7D 6= f(X,Y ), and the error is detected.

Similar to Example 9, max{deg(f(X,Y ), deg(f(X, Ŷ )} = 3.
Consequently, at least 2562(256−3)X’s out of 2563 are able to detect
this code manipulation. In other words, the error masking probability
for this specific error vector,

E = ( 0xEB, 0x00, 0x00, 0x87,
0x00, 0x52, 0x20, 0x1E,
0x00, 0x00, 0x00, 0x00 )

,

is Q(E) ≤ 3
256−1

< Q̄. �

Example 11 (An adversary lengthening a basic block). Consider
BB1 from Example 8. Assume that an adversary has lengthened this
basic block by changing the branch instruction into a non-branch
instruction. For example, assume that the tampered-with code becomes

add.w r2, r7, #16
subs r2, #8
add.w r1, r1, #2 //end of the original BB1

bl 100 //end of the modified BB1

bl 0 //end of BB2
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The checker will ”see” the vector

Ŷ = (ŷ16, . . . , ŷ1) = ( 0xEB, 0x00, 0x00, 0x14,
0xE2, 0x81, 0x10, 0x02,
0xE2, 0x52, 0x20, 0x08,
0xE2, 0x87, 0x20, 0x10 ).

The checker will compare the computed tag value after the fourth
cycle. Since the first two instructions were not changed, the computed
tag value in the first and second cycles are identical to the first two
tags in Example 8. In other words, we have,

f1(X, Ŷ ) = ŷ1x1 ⊕ ŷ2x3 ⊕ ŷ3x
2
3 ⊕ ŷ4x

3
3 = 0x68

f2(X, Ŷ ) = f1(X, Ŷ ) ⊕ ŷ5x
2
1 ⊕ ŷ6x3x1 ⊕ ŷ7x

2
3x1 ⊕ ŷ8x

3
3x1 = 0x72

f3(X, Ŷ ) = f2(X, Ŷ ) ⊕ ŷ9x
3
1 ⊕ ŷ10x3x

2
1 ⊕ ŷ11x

2
3x

2
1 ⊕ ŷ12x

3
3x

2
1 = 0xBA

f4(X, Ŷ ) = f3(X, Ŷ ) ⊕ ŷ13x
4
1 ⊕ ŷ14x3x

3
1 ⊕ ŷ15x

2
3x

3
1 ⊕ ŷ16x

3
3x

3
1 = 0x3B

Since the computed tag f(X, Ŷ ) = f4(X, Ŷ ) = 0x3B differs from the
tag read from the tamper-resistant memory, the error will be detected.

Note that in this case 2563 − 4 · 2562 X’s out of 2563 are able
to detect this code manipulation. In other words, the error masking
probability for this error

E = ( 0xEB, 0x00, 0x00, 0x14,
0x09, 0x81, 0x10, 0x85,
0x00, 0x00, 0x00, 0x00
0x00, 0x00, 0x00, 0x00 ).

is Q(E) ≤ 4
256

< Q̄.
�

Example 12 (The weakness of linear codes). This example shows
that a linear code; e.g., the code in [11], will always have an error
masking probability Q̄ = 1. Furthermore, even the use of a random
vector X for masking the signature cannot solve the problem.

Assume that a basic block is protected by a CRC32 code with the
generator polynomial g(z) whose coefficients are G = 0x82F63B78
and a random mask X . Formally, let RY be the coefficients of the
reminder polynomial

rY (z) = Y (z)z32 mod g(z),

then the tag function is f(Y ) = RY ⊕X.
Consider the basic block from Example 8, and let the (secret)

random mask be X = 0xFFFFFFFF. The corresponding tag, f(Y ) =
0x47718DEF ⊕ X = 0xB88E7210 , is stored in a tamper-resistant
memory. Assume that an adversary with the ability to inject precise
errors injects the error vector

E = ( 0x00, 0x00, 0x00, 0x07,
0xB7, 0x1B, 0xD0, 0x50,
0x00, 0x00, 0x00, 0x00 ).

.

Then, the corresponding tampered code will be

add.w r2, r1, #16
strbpl pc, [sb, #-0x58]
bl 528 //end of BB1

movs r1, #1
bl 0 //end of BB2

For this error vector we have rY (z) = rŶ (z) for every random mask
E. Since the calculated tag of the modified basic block, f(Ŷ ), is
identical to one stored in the memory, the error will never be detected
( Q(E) = 1). In fact, any error vector E which is a multiple of the
generator polynomial, will be masked. �

Example 13 (Error-recovery mechanism can help the adversary).
Throughout this paper, we assumed that the adversary has the ability

to choose the error. In practice, it is hard to inject precise errors,
and thus, a fault can yield a non-valid opcode . As we show next,
a decoder with error correction capabilities that attempts to recover
from this error and correct the opcode may cause security issues.

Consider the basic block, Y , and the corresponding CRC32 tag,
f(Y ), from Example 12. Assume that the adversary failed to inject
the intended error E, and instead flipped the bits such that the actual
error is

E′ = ( 0x00, 0x00, 0x00, 0x07,
0xB1, 0x1B, 0xD0, 0x50,
0x00, 0x00, 0x00, 0x00 ).

.

(the differences between E and E′ are marked in bold).
In this case, the decoder finds out that the second instruction in the

erroneous basic block, Ŷ , yields an invalid opcode. Consequently, the
tuple ĉ = (Y + E′, f(Y )) is not a valid codeword and the decoder
activates the error correction mechanism. It decodes the erroneous
word ĉ into a codeword c′ ∈ C for which the Hamming distance
d(c′, ĉ) is minimal. From the properties of the CRC32 code it follows
that c′ is the codeword (Y + E, f(Y )) from Example 12. In other
words, rather than correcting the basic block, the decoder helped the
attacker to conduct a successful attack. �
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