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Abstract—Chip manufacturers define voltage margins on top
of the “best-case” operational voltage of their chips to ensure
reliable functioning in the worst case settings. The margins
guarantee correctness of operation, but at the cost of performance
and power efficiency. Violating the margins is tempting to save
energy, but might lead to timing errors. This paper proposes an
algorithmic solution that enables reliable removal of the margins
by detecting errors on the fly. In contrast to previous approaches
that require special hardware to detect timing errors, the pro-
posed method is fully implementable using high-level synthesis
tools without reliance on additional hardware. The approach is
demonstrated using a 32 x 32 matrix-matrix multiplication and
a simple multi-layer neural network implemented on two Xilinx
Z.C702 Field-Programmable Gate Array (FPGA) System-on-Chip
(SoC) platforms, showcasing its utility in detecting errors that
may originate from different sources of logic circuits, clock tree
or memory. Results show that the energy dissipation is halved,
while the implementation is clocked at 2.5x faster than specified
by the design tool of the vendor.

Index Terms—low power, high level synthesis, matrix multi-
plier, low voltage, deep neural networks

I. INTRODUCTION

XPECTED global energy demand of the ICT sector is
projected to be 7% of total consumption by 2030. An
increasing share of this energy is consumed for Deep Neural
Networks training and inference [1] in data centers, or network
infrastructure computations of wireless communications.
Thanks to their flexibility and high performance, Field-
Programmable Gate Arrays (FPGA) have found their way into
high-performance System-On-Chips (SoC) as accelerators [2].
In particular, matrix arithmetic forms the core operations in
telecommunication algorithms, and FPGAs are attractive in
fast-tracked development of their implementations using High-
Level Synthesis (HLS) tools [1], [3]. Gate level programma-
bility of FPGAs and recent support of HLS based EDA tools
enables approaching ASIC level performance with far smaller
investment times. However, the energy efficiency gap between
ASIC designs and FPGA designs still remains considerable
(1], [4].
The energy consumption in digital circuits consists of dy-
namic and static power dissipation, which are due to transistor
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switching activity and transistor leakage current in off-state,
respectively. Dynamic power has a quadratic, and static power
has a linear relation to the supply voltage (V4), so operating at
a reduced voltage lowers total energy consumption [5]. Unfor-
tunately, scaling down the voltage leads to longer propagation
delays and, to avoid timing errors, the clock rate and hence
performance should also be reduced [6]. The challenge with
voltage reduction schemes is the uncertainty in choosing the
optimal, or close to optimal, operation point: the minimum
voltage and maximum clock frequency without sacrificing
either reliability or performance [6]. Process, Voltage and
Temperature (PVT) variations result in modeling uncertainties
for timing analysis, in particular at reduced voltages [6]. The
impact of PVT variations can amount to even a 100x difference
in gate delay between the slowest and fastest process corners
[7].

Aiming to maximize the yield, manufacturers define mar-
gins (or ‘“guardbands”) on top of the “best-case” supply
voltages to guarantee correct functionality for all manufactured
chips [5]. The presence of large voltage margins, up to 30%,
has been demonstrated for commercial CPUs and GPUs [8].
Similar studies have been conducted on voltage scaling of
Block RAMs of FPGAs, demonstrating up to 60% energy
saving [8], [9]. However, computational errors in logic fabric,
e.g., Look-Up-Tables and DSP units, are difficult to tackle,
while being the largest energy sink [9].

In this paper, a low-overhead error detection method is
proposed to enable reliable reduction of operational voltage
of FPGAs. The approach detects virtually all errors in matrix-
matrix multiplications, regardless of whether they originate
from the logic fabric or memory.

In contrast to the state of the art methods [6], [10], the
implementation is simply carried out using only High Level
Synthesis (HLS) tools without any intervention in vendor
provided EDA tools or the generated netlist.

II. PRIOR APPROACHES

One of the earliest approaches to set the voltage adaptively
is the employment of logic delay measurement circuits [6]. The
idea is to measure the circuit’s critical-path delay to set the
voltage to the optimum. The longest delay path of the circuit
is imitated by, e.g., a chain of inverters, a ring oscillator, or a
Linear-Feedback Shift Register (LFSR) [9]. However, voltage
tuning with this approach has restrictions, as local temperature
and process variations, and circuit aging and cross-coupled
noise, cannot be faithfully modeled [6], hence necessitating a
voltage headroom.
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General concept of Timing Error Detection [6].

A more complex circuit level approach is to detect timing
errors in-situ by adding Timing Error Detection (TED) circuits
to the identified critical paths of circuitry. As depicted in
Fig. 1, an extra register is added at the tail of the combinatorial
logic path to sample the output with a slightly delayed clock.
In the case of a late arriving signal, a conflict between the
original sample and the delayed sample reveals the timing
error [6]. In reduced voltage operation, TED circuits help in
optimizing the operating point to maximise energy efficiency
[6]. However, TED circuits cannot be utilized with hard
FPGA blocks such as BRAM or DSP units [9]. Furthermore,
TED schemes add non-trivial circuit complexity and power
consumption overheads, which scale up with the size of the
design. Using the approach presented in this paper, the share
of the extra logic is reduced as the design grows. Finally,
the TED schemes require significant design effort to integrate
them into FPGA designs.

An apparently straightforward approach is to determine
the voltage-frequency dependencies of the circuit at every
power-up. Such a calibration-based approach, described in [9],
utilizes the reconfigurability of the FPGA. Running “offline
calibration” before the actual application is configured on the
FPGA was shown to give 40% energy savings or, alternatively,
a 25% performance improvement. While the optimization
scheme captures the parameters of the FPGA, calibrations
are temperature, design and chip-specific. The approach is
probably most suitable for sustained data center computing,
as the energy needed in the start-up is not included in
the savings estimate. Furthermore, phenomena such as the
Inverse Temperature Dependence might render the “offline
calibrations” inaccurate. Then errors could be generated by
factors that remain hidden from the calibrations.

Concerning error tolerance, [11] demonstrates that Neural
Networks can operate with reduced voltage. However, without
error feedback, the voltage down-scaling cannot be stopped
before system failure. In this paper, we propose a simple ef-
fective error feedback mechanism that enables reliable reduced
voltage operation without harming functionality. Compared to
earlier schemes, it is straightforward to implement. For our
demonstration design, common high-level languages (C/C++)
were used.

III. PROPOSED SOLUTION

The focus of the following is on the energy savings achiev-
able through voltage reductions. Matrix multiplication has
been selected as an example case due to it being the core of
key operations for wireless communications and deep neural
networks. The matrix multiplier design used on the FPGA is
a run-of-the-mill scheme generated using a vendor provided
HLS tool.

A. Algorithm Based Fault Tolerance

The Algorithm Based Fault Tolerance (ABFT) technique
proposed by Huang and Abraham [12], briefly described be-
low, is the foundation of the solution that we present. Starting
from the matrix Anyn, a row checksum matrix A?\,X( N4+1)
is defined as follows:

AT =[A AcT) (1)

where e is ey = [1,1,...,1]. This means the nth element of
the vector Ae is the sum of all elements in the nth row of the
matrix A4, i.e., a27(N+1) = Zi Gy, ;- Similarly, we can define
the column checksum, A€, and full checksum, AT matrices as
in equations (2) and (3), respectively [12].
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The checksum property is preserved in many linear algebra
operations, including matrix multiplication, dot product, trans-
pose, etc., as well as in more sophisticated signal processing
algorithms such Fast Fourier Transform (FFT) and multi-
dimensional convolutions. In the case of matrix multiplication
the checksum property is illustrated in Fig. 2. It can be
exploited to detect errors in the result matrix by comparing
the checksum vector against the sums of elements of the
corresponding rows of the matrix. As the analysis by Huang
and Abraham showed [12], the ABFT checksum technique
provides high error detection coverage.
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Figure 2. The mismatch in the checksum reveals the existence and location
of errors.

B. Reduced Voltage Matrix Multiplication with ABFT

We leverage ABFT in reduced voltage matrix multiplication
to detect errors and to adjust the operation point accordingly.
Checksum augmentations are added to matrices before com-
putations through the FPGA. The matrix multiplier in the
FPGA is considered a black-box, while error checking can be
an external add-on implementation powered from a different
voltage rail. Both correct and incorrect error detections, true
and false positives, respectively, result in the adjustment of
the operating point. However, the latter ones drive the system
further from the energy optimum. The silent errors, false
negatives, propagate to the output without being detected
and may cause erroneous actions. The checking and voltage
control can be done either using hardware and/or software.
The voltage is reduced until the first error appears.



IV. EXPERIMENTATION

To detect possible inter-chip variations, two Xilinx Zyng-
XC7Z020 FPGA SoCs on evaluation boards were employed
to demonstrate the approach [2]. A 32 X 32 single-precision
floating-point matrix-matrix multiplier was synthesized on the
Programmable Logic (PL) side of the SoC while the Process-
ing System (PS) was harnessed for monitoring and communi-
cation. The clock of the PL was set to 250 MHz. Reduction
of guardband voltages was performed using the on-board
UCD7242 voltage regulators that control the voltage-rails
supplying the subsystems. Three of the voltage-rails power
the PL: VCCINT feeds the internal circuitry (LUTs, DSPs,
etc.), VCCBRAM powers the Block-RAMs, and VCCAUX the
auxiliary parts. Each rail can be adjusted separately through
Power Management BUS (PMBUS) commands transmitted via
the serial 12C bus connected to either the host PC or the PS
[2]. The setup is depicted in Fig. 3.
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Figure 3. Setup for scaling FPGA supply voltages.

Furthermore, a Fully Connected Neural Network (FC-NN)
[13] with ABFT in matrix multiplications on the largest layers
was synthesized on the FPGA. The checksum augmentation
of the inputs and the inspection of the results were both done
by circuit logic on the fly. The neural network was fed with
inputs from the test dataset.

In our implementation, matrix A was augmented with

}
x B. The
eA

checksum vector of the matrix A, i.e., eA, is computed on the
fly by accumulation of the rows of matrix A as they are read
and multiply the columns of matrix B. Similarly, the results of
each row-column multiplication of A and B are accumulated
in a row-wise manner to form vector eC'. Once all the rows
of A have been consumed, vector eA becomes available and
multiplies B. The PS receives the computed eC, eAB and C
at the same time, and compares the vectors eC' and eAB to
detect errors, verifying the results. In the experiments, once
the onset of errors was reported by the ABFT mechanism,
the host controller increased the voltage gradually until the
errors disappeared. In practical applications, the frequency
drop would come first. For each operating point, at least
100 000 multiplications with random values were carried out.
The checksum violation was detected by inspecting the output
checksum property at the PS side.

The focus of the experimentation was the detection of
hardware related errors at each voltage-temperature operation
point. Therefore, to avoid false positives from floating point
mantissa round-off errors, the matrices adhered to the error

C
checksums, hence computing C° as =
eAB

avoidance restrictions laid out by Dutt and Assaad [14]. The
detections by the ABFT were compared against the actual
errors captured by element-wise comparison of the result and
the pre-computed matrices.

ABFT Overheads: Employing ABFT for a N x N matrix
multiplication increases the number of arithmetic operations
from (2N3 — N?) to (2N3 + 5N2 + 4N), while checking
for errors inspecting the row checksums requires additional
N? summations and N comparison. This totals in (2N3 +
6N?2 + 5N) operations. The overheads from ABFT for large
matrices met in neural network implementations, e.g., 128 x
128 elements is only 2%. For storage, the overhead is simply
an extra row and/or column.

V. RESULTS

The setup was used to investigate the potential of ABFT
in operating the FPGA at reduced voltages. The important
voltage rails of the FPGA were investigated separately and
together.

A. Voltage Reduction of Internal Logic Circuits

The internal logic circuitry of the FPGA section of the SoC
dominates the power dissipation. Fig. 4 shows the power con-
sumption of the section when the operating voltage is reduced
towards 0.70V in 0.01V steps (from right to left in the figure).
Down-scaling the supply voltage levels beyond the crashing
points of the FPGA, i.e., 710mV, 570mV and 1100mV for
VCCINT, VCCBRAM and VCCAUX, respectively, causes the
FPGA to stop operating. The clocking for PL was set to
250MHz exploiting all the timing margins at the crashing
voltage. Reduction from the default 1V to 0.77V saves half of
the power dissipation without incurring any errors.
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Figure 4. Error rate and power consumption through a VCCINT voltage-rail.

Different temperature points of operation were explored as
well, using one of the evaluation boards, and plotted in Fig. 4.
This was done by warming the chip up to slightly over 100°C
and cooling it down to -10°C. The temperature was monitored
with the internal temperature sensor of the Zynq device [2].
Due to the Inverse Temperature Dependence phenomena !,

the device can operate at even higher frequencies with a

Uhttps://www.youtube.com/watch?v=5kIGBAmTmdA



reduced voltage when the chip is at a higher temperature,
as shown in Fig. 4 [7]. The same trend was observed for
—10°C but the error on-set voltage was measured to be around
0.806mV, i.e. 30mV and 55mV higher than that of 55°C
and 100°C, respectively. The ABFT approach can manage
such temperature dependency and exploit the performance
opportunity.

Silent errors here are defined as the existing errors in matrix
elements that “neutralize” each other when the checksum is
inspected. The ABFT scheme has a non-zero silent error rate
[12]. However, in our experiments with randomly generated
matrices, no silent errors were detected. The inputs in the
experiments were iid. Gaussian random matrices, but the
potential dependence of the silent error rate on the matrix
type and distribution of element values has been recognized.
We surmise that substantially prolonged experimentation with
different matrices may expose a non-zero, but probably negli-
gible silent error rate, as the analysis by Huang and Abraham
indicates [12].

B. Voltage Reductions of BRAMs

In the previous experiments, errors in BRAM and com-
munications could not be discriminated from computational
errors. When the voltage is reduced, the data might be stored
or retrieved incorrectly. Therefore, a study on both the power
and error impacts of BRAM voltage reductions is necessary.

We employed ABFT as the error detection mechanism for
the memory instead of ECCs [15], adjusting the operating volt-
age and frequency based on error detection. The input matrices
augmented with checksums were stored in the BRAM. The
recalculation of the checksums, and verifying them against
the stored ones was done by the PS when reading the matrices
back from the BRAM. The BRAM voltage was reduced from
the default 1V towards 0.5V. In total, 91% of the BRAM
capacity was utilized. Power dissipation was reduced from
~32mW at 1.0v to ~17mW at 0.58V, where errors start
appearing, as shown in Fig. 5. This experiment demonstrated
ABFT in detecting BRAM errors independently from the PL.
With large matrices ABFT incurs low memory overheads,
while it suffers from higher computational cost in comparison
to ECCs that support error correction to some extent. However,
ECCs do not enable the detecting of computation errors.

C. Voltage Reductions of Auxiliary Circuits

Auxiliary circuitry for PL, including the mixed-mode clock
manager, amplifiers, buffer circuits of IO, etc. are powered
from the VCCAUX voltage-rail. The experiment in this section
is to ensure that overheads from auxiliaries do not end up
canceling gains from the main FPGA components at reduced
voltages. Their voltage dependency was investigated to iden-
tify the threshold for system crashing. The power dissipation
and error rate are shown in Fig. 6 against voltage. A minimal
margin exists between the onset-of-errors voltage and system
crash, which advises against aggressive voltage scaling of
auxiliary components, unless done with extreme care.
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Figure 6. VCCAUX error rate and power consumption versus voltage.

D. Total Energy Optimization

Based on the above results, the voltages of the FPGA
SoC should be controlled in a manner that the errors appear
first in computations and BRAM to avoid an unrecoverable
crash. Aiming for the lowest achievable energy dissipation,
the voltages of all three domains of interest were reduced one
after the other using 1% steps from the default voltages. When
errors appeared, the most recent change was backtracked, oc-
casionally by several steps before recovery, and then stepping
forward to the detected threshold. The results of this process
are shown in Fig. 7.
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The voltage reductions of the VCCINT that powers the
PL section generated the first errors. While VCCBRAM and



VCCAUX could be set at a lower voltage, VCCINT could
not be dropped below 0.77V. The total power consumption
was cut from ~~380mW to ~220mW. It can be seen in
Fig. 7, that in this experiment, the error threshold voltage for
auxiliary circuits was at around a 200mV higher level than
when VCCAUX was reduced independently from VCCINT
and VCCBRAM, see Fig. 6.

The power measurements do not include the small power
dissipation in the ARM processor, used for control and run-
ning the ABFT error checking of the matrix multiplication
results on the SoC platform. Checking all the results in the
experiments required 3 MCycles out of 660 MCycles/s of
the processor, corresponding to approximately 2.5mW. Exper-
iments on the second board revealed similar results, except for
negligible differences in error on-set voltage. The utilization
report shows =~ 7% of FPGA resources being used for ABFT
checksum computations at a 32 x 32 matrix size. With larger
matrices, the resource utilization drops significantly, since the
overhead ratio scales with O(1/N).

By operating at reduced voltages our run-of-the-mill design
for the effective matrix size 31 x 31 achieves a power efficiency
of 6.2 GFLOPS/W with ABFT augmentation. That is close to
highly optimized designs [1].

Fully connected neural network with ABFT: As shown by
Fig. 8, the ABFT error detections appear slightly earlier than
the point where the output of the NN differs from the golden
result. The difference is probably due to the fault-tolerance of
the neural network. As ABFT in this case acts as an early
warning, it can be used to control the operating point. Zhao et
al. [16] integrated ABFT in convolution operations of DNNs
and showed it incurred up to only 8% overheads.
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VI. DISCUSSION

To the best knowledge of the authors, this is the first con-
tribution in which a low overhead algorithmic error detection
technique was employed to realize a low-voltage processing
solution. The proposed scheme can be used with any matrix
multiplier design. Implementations of other algorithms can be
foreseen to benefit from matching ABFT schemes. Designing
chips to operate at optimum near-threshold points is notori-
ously difficult. The demonstrated ABFT-based error feedback
mechanism, is an enabling approach that suits extreme low-
power applications where occasional errors can be tolerated.
We envisage ASIC designs utilizing our scheme.

VII. SUMMARY

The objective of the current contribution is to present and
showcase safe voltage reduction of matrix accelerators using
ABFT. The results demonstrate that the energy efficiency of
FPGA based matrix multiplication can be improved substan-
tially by using HLS tools and eliminating conservative voltage
margins. The utility of ABFT as a low-cost feedback mech-
anism was shown in controlling the voltages and detection
of errors originating from the internal logic, BRAM, and
auxiliary circuits '
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