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Abstract—Network Functions Virtualization (NFV) allows flex-
ibility, scalability, agility, and easy manageability of networks
by leveraging the features of virtualization and cloud comput-
ing technologies. However, softwarization of network functions
imposes many challenges. Reliability and latency are major
challenges in NFV-enabled 5G networks that can lead to customer
dissatisfaction and revenue loss. In general, redundancy is used
to improve the reliability of communication services. However,
redundancy requires the same amount of additional resources
and thus increases cost. In this work, we address the reliability-
aware, delay guaranteed, and resource efficient Service Function
Chain (SFC) placement problem in softwarized 5G networks.
First, we propose a novel SFC subchaining method to enhance the
reliability of an SFC without backups. If reliability requirement
is not met after subchaining method, we add backups to VNFs to
meet the reliability requirement. Then, we formulate the reliable
SFC placement problem as an Integer Linear Programming
(ILP) problem in order to solve it optimally. Owing to high
computational complexity of the ILP problem for solving large
input instances, we propose a modified stable matching algorithm
to provide near-optimal solution in polynomial time. By extensive
simulations we show that our proposed solutions consume lesser
physical resources compared to state-of-the-art solutions for
provisioning reliable communication services.

Index Terms—5G network, Communication service, Network
functions virtualization, Virtual network function, Service func-
tion chaining, Reliability, Resource management, Service level
agreement, Queueing theory, Matching theory.

I. INTRODUCTION

THE current traditional networks have certain limitations
such as long design and testing time to bring network

functions to market, location dependent functionalities (mi-
gration of network functions is not an easy task without
interrupting services), and not being able to support the
required flexibility and scalability to meet the demands of
communication services. Network operators need to design
and deploy additional network functions to adapt to new
technology and accommodate the growth of mobile con-
nected devices, which results in increased capital expenditure
(CAPEX) and operational expenditure (OPEX). To reduce the
costs, and make networks more flexible and scalable to handle
the ever increasing demands and future business opportunities,
communication service providers and network operators are
moving towards softwarized 5G networks.

Softwarization in 5G networks to support services such
as enhanced mobile broadband and ultra-reliable low-latency

communications has revolutionized the networking industry. It
is expected that 5G networks will meet the stringent require-
ments of communication services of various industry verticals
and business models of 2020 and beyond [1]. Network Func-
tions Virtualization (NFV) and Software-Defined Networking
(SDN) are the two new promising technologies in the field of
networking, which are designed to overcome the limitations
of traditional networks. NFV and SDN are considered as key
technology enablers for softwarization in 5G networks [2].

NFV allows network functions (or middleboxes) to run as
software modules on commercial-off-the-shelf servers rather
than on specialized hardware appliances. Such virtualized soft-
ware modules are called as Virtual Network Functions (VNFs).
SDN [3] enables network programmability by decoupling
control plane and data plane of networking devices. Data plane
and control plane separation makes networking devices con-
trollable through a centralized entity. The centralized control
plane or controller can orchestrate multiple data plane flows
dynamically. SDN can be used to route the traffic dynamically
through multiple VNFs. NFV leverages virtualization, cloud
computing, and SDN technologies to provide anything as a
service (e.g., core network as a service, security as a service,
etc.) dynamically over the network, and reduces CAPEX and
OPEX. NFV provides an effective way to design, deploy,
and manage network functions and services over the cloud
environment.

Traditionally, network/communication services are provided
through one or more network functions to deliver an end-to-
end (e2e) service. SFC involves instantiation of an ordered list
of network/service functions (e.g., firewalls, load balancers,
and mobile network gateways), and connecting them together
as a chain of network functions to provide e2e services [4]
[5]. SFC is used to design a tailor-made specific communica-
tion service based on the demand. Service chain deployment
includes SFC design and placement of SFCs. NFV facilitates
easy provisioning of services by dynamically placing VNFs
in the virtual environment and chaining them together as an
SFC. Efficient mapping and placement of SFCs onto substrate
nodes is a challenging task [4] [6].

Although NFV and SDN provide many benefits in terms
of cost reduction and flexible management of resources to
dynamically provide diverse services, they create avenues for
reliability, availability, and latency related issues. Particularly,
softwarization of network and service functions impose higher
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possibility of network failures due to software issues than
due to hardware issues. For instance, failure of a VNF or
a virtual link in an SFC will bring down the entire chain
and disrupt the service which may result in customer dissat-
isfaction and revenue loss. Failures may happen both at the
substrate network and the virtual network, but the frequency
of failures is higher at virtual networks than at substrate
networks [7]. In NFV infrastructure, a VNF may fail to do
its intended function due to various reasons such as software
bugs, misconfiguration, API failures, malicious attacks, and
network operator errors. Abrupt failure of any function or
connected link results in delay, data loss, and resource wastage.
Since failure of a single component of an SFC has high
impact on the ongoing services and revenue, reliable service
provisioning is of paramount importance in NFV-enabled 5G
networks. Therefore, merely placing primary VNFs of an SFC
is not sufficient to ensure the service continuity in case of
failures. Service continuity is not only expected from user side,
but it is also considered as a regulatory requirement for critical
infrastructures like telecom networks [8]. Hence, reliability
is an important issue when purpose-built dedicated hardware
based network function with high reliability is moved to off-
the-self general purpose servers.

The reliability of a communication service is estimated
based on the reliability of constituent network functional
blocks [9]. Higher reliability of SFC minimizes the impact of
service outages due to unexpected VNF failures. Another im-
portant aspect of NFV-enabled 5G network is meeting Service
Level Agreements (SLAs) in terms of delay, availability, and
reliability. A common approach for achieving higher reliability
and meeting delay constraints is placing redundant network
elements (also called as backups) [10] [11] [12]. However,
such an approach is expensive and ineffective in terms of
utilization of available resources. In this paper, we propose
novel methods to address the reliability issues and efficiently
place SFCs onto the substrate network.

The significant contributions of this paper are listed below.

• We present two ways of assigning backups to an SFC
and propose a novel subchaing method to enhance the
reliability of the SFC without redundancy.

• We propose an algorithm to calculate the reliability of
multiple subchains of an SFC. In the case that the relia-
bility enhancement obtained by SFC subchaining method
is not sufficient, we propose an algorithm to guarantee
the reliability requirement of diverse service requests with
minimal redundant resources.

• We formulate the reliable SFC placement problem as an
Integer Linear Programming (ILP) problem, and prove
that the SFC placement problem is NP-hard.

• We use JuMP and Gurobi optimization solver for model-
ing and solving the ILP problem, respectively. To over-
come high computational complexity of ILP for large in-
put instances, we propose a modified matching algorithm
to obtain near-optimal solution in polynomial time.

• Finally, we evaluate the performance of our proposed
solutions via simulation, and show that our proposed
solutions outperform the state-of-the-art related works.

The rest of this paper is organized as follows. Section II
presents background and related work. Section III presents
system model and problem definition. Section IV describes
a novel SFC subchaining method to enhance the reliability,
and algorithms to guarantee the reliability requirement of
SFCs. Section V presents the ILP formulation and solution
for efficient reliable SFC design placement. We evaluate and
analyze the performance of the proposed solutions in section
VI. Finally, we conclude the paper with future work in section
VII.

II. BACKGROUND AND RELATED WORK

NFV concept was introduced in 2012 by a group of lead-
ing telecom operators, who later created the NFV Industrial
Specification Group (NFV ISG) in European Telecommuni-
cations Standards Institute (ETSI) to call for collaboration
and standardization activities [13]. ETSI NFV ISG has been
creating a number of technical requirement documents includ-
ing NFV reference architectural frameworks [14] [15]. NFV
architectural framework [14] consists of NFV Infrastructure
(NFVI) layer, VNF layer, service layer, and management
and orchestration (MANO) layer. Both physical and virtual
resources reside at the NFVI layer, which form a cloud
network infrastructure to provide services through VNF layer
and SFC layer. MANO layer [15] is responsible for dynamic
resource management and life-cycle management of VNFs and
services.

Since NFV is considered as one of the key technology
enablers for 5G softwarized networks [2], it has gained sig-
nificant attention of the researchers from both industry and
academia. VNF/SFC placement strategy is not standardized
by standard development organizations and it is up to the
choice of network operators and service providers to use their
own strategies to efficiently allocate the resources for service
provisioning. In the context of VNF/SFC placement in NFV-
enabled networks, [16] [17] and their corresponding references
mainly focused on reducing operational cost and network
resource allocation with the goal of maximizing the revenue
of network operators and service providers. However, simply
placing VNFs in order to reduce the resource consumption or
cost may not meet the SLA requirements of service requests.

A set of works in the literature dealt with delay/latency
aspects of VNF placement in addition to minimizing pro-
visioning cost or resource consumption. A Alleg et al [18]
modeled the delay-aware VNF placement and chaining prob-
lem as mixed integer quadratically constrained program to
provide a solution with the goal of minimizing the resource
consumption while meeting the SLA latency requirement.
H A Alameddine et al [19] [20] formulated SFC mapping,
routing, and scheduling problem as mixed ILP problem to
meet the deadline of service requests, and proposed heuristic
algorithm for scalable networks. G Garg et al [21] proposed
delay-aware VNF selection algorithm by considering the rela-
tionship between VNF delay and CPU utilization to increase
the acceptance rate and throughput of service requests. Y Bi
et al [22] proposed resource allocation method for ultra-low
latency virtual network services in hierarchical 5G network.
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TABLE I: Comparison of existing related studies

References
Latency-aware
SFC placement

Reliability-aware
SFC placement

Full backup
is required

Partial backup
is enough

Physical node
reliability

VNF
reliability

[18]–[23] X × × × × ×
[10] × X X × X ×
[11] × X X × × X
[24] × X X × X ×
[25] X X X × X ×
[26] × X X × X ×
[27] × X × × X ×
[28] × X X × × X
[29] × X X × X ×
[30] × X X × X X
[31] × X X × X ×

Our work X X × X X X

The problem was modeled as mixed ILP to obtain optimal
solution, and data rate-based heuristic algorithm was proposed
for scalable networks. D Harutyunyan et al [23] studied
latency-aware SFC placement in 5G mobile networks by
formulating the problem as ILP to minimize the e2e latency
and service cost and proposed a heuristic algorithm to address
the scalability issue. However, these research works mainly
focused on latency-aware service provisioning and assumed
that the network functions were active all the time without any
failure. It may not be the case in real-time service provisioning
scenario because there is a possibility for service interruptions
due to service degradation and failure of network functions and
resources.

A few works considered reliability aspects of VNFs/services
along with the objective of minimizing the resource con-
sumption or operational cost. J Fan et al [10] proposed joint
protection online algorithm which allocates a joint backup for
two VNFs on a single server to enhance the reliability and
reduce the physical resource consumption. However, in this
work only physical node reliability was considered and two
backup VNFs were assigned at each iteration. S Herker et al
[24] proposed heuristic algorithm with two backup deployment
strategies (with and without load balancer) for reliable VNF
chains in the data center networks. However, the proposed
strategies consumed more physical resources to meet the relia-
bility requirements. A Hmaity et al [25] proposed a method for
VNF placement and resilient service chain provisioning, and
formulated the problem as ILP problem to minimize the num-
ber of active physical nodes used while satisfying the latency
constraints. However, the proposed method can solve only a
small number of input instances due to the high computational
complexity and consumed more than twice the amount of net-
work resources to provide resiliency. Z Ye et al [26] proposed
joint optimization of topology design and mapping of SFCs to
minimize the total bandwidth consumption and compared the
amount of consumption of resources in order to enhance the
reliability of SFC requests. However, they did not provide any
methods to guarantee the reliability and latency requirements
of service requests. T Taleb et al [27] proposed restoration
mechanism for VNF failures, particularly considered Mobility

Management Entity (MME) control plane VNF failure restora-
tion process by proposing bulk signalling and profile creation
to reduce the load. However, the failure restoration mechanism
focused on specific VNF type and hence it may not meet
the reliability requirements of mission critical service requests
in general. Y Kanizo et al [28] proposed a novel approach
for planning and deploying backups optimally to guarantee
the survivability of service chain. However, full backup was
required to guarantee the survivability, and latency aspect was
not considered. H Chantre and N Fonseca [29] proposed two
redundancy based models for reliable broadcasting in 5G NFV-
based networks, which determine the number of redundant
VNFs required to meet the service reliability requirement.
However, these methods required full backups, and latency
aspect was not considered. W Ding [30] et al proposed cost-
efficient redundancy scheme for enhancing the reliability of
services in NFV-enabled networks. However, full backup was
required for enhancing the reliability of services, and latency
aspect was not considered.

In Table I, we compare our approach with different
reliability-aware and latency-aware VNF/SFC placement tech-
niques proposed in the literature. The closest research works to
this current work are [11] [31] [32]. L Qu et al [11] proposed
reliability-aware approach for service chaining in carrier-grade
softwarized networks. However, this approach considered only
physical node reliability and required full backups to guarantee
the reliability requirement, and did not take into account the
latency aspect. A Engelmann and A Jukan [31] proposed
parallelized VNF chaining to enhance the reliability of SFC,
in which a large flow was split into multiple smaller sub-
flows and each sub-flow was processed by replicated VNF in
parallel. Though this approach aimed to process the sub-flows
in parallel, VNFs were replicated to process subflows and
dedicated full backup was assigned to enhance the reliability
of network functions. Also, this work did not take into account
the latency and resource minimization aspects. C Pham et
al [32] proposed VNF placement for service chaining us-
ing sampling and matching approach. However, their work
primarily focused on minimizing cost by considering energy
consumption and traffic flow, and did not consider reliability
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and latency aspects.
In our previous work [33], we showed that dividing an

SFC (single chain) into multiple subchains of lesser capacity
enhances the reliability of the SFC. Also, we assumed that
the underlying physical infrastructure is completely reliable.
In the current work, we relax this assumption and consider
that underlying substrate nodes are also subject to failures.

Almost all the proposed methods in the literature used
redundancy techniques directly to improve the reliability of
communication services. However, such techniques are expen-
sive and ineffective in terms of effective utilization of available
resources. In this work, we propose a novel method to address
the reliability requirement with minimal redundant resources
and efficiently place SFCs on the substrate network.

III. NETWORK MODEL AND PROBLEM DEFINITION

In this section, we present a network model of 5G ar-
chitectural framework, which consists of underlying substrate
network, virtual network, and service functions.

A. Substrate Network

The physical/substrate network is modeled as an undirected
graph denoted by 𝐺 𝑝 = (N ,L), where N represents a set
of physical/substrate nodes which include both the processing
and forwarding nodes and L represents the set of physical
links. VNFs are placed on the processing nodes to process
incoming service traffic and the forwarding nodes are used
to interconnect a set of processing nodes and forward service
traffic in the network. Each processing node 𝑛 ∈ N has a finite
resource capacity 𝑐𝑛 ∈ R+ (CPUs, Memory, Disk Space, etc.)
and multiple VNFs can be hosted on a single processing node.
Similarly, each substrate link has a finite bandwidth capacity
and interconnects the physical nodes. Physical resources are
virtualized to create virtual networks and controlled with the
help of MANO and SDN controller.

B. Virtual Network

We represent the virtual network as an undirected graph
denoted by 𝐺𝑣 = (V, E), where V represents a set of VNFs
(e.g., load balancer, firewall, intrusion detection system, proxy,
mobility management entity, serving/packet gateway, home
subscriber server, etc.) and E represents a set of virtual links
which interconnect VNFs in the virtual network. Each VNF
𝑣 ∈ V has a resource demand of 𝑐𝑣 . Here, the resource
demand for VNF 𝑐𝑣 represents the number of vCPUs required
to process the incoming service traffic. Different types of
VNFs can be customized and chained in various ways de-
pending on the service type and requirements to obtain a set of
templates. Each virtual link has certain bandwidth requirement
(with respect to communication requirements between the
nodes) and interconnects two VNFs in a chain. VNFs are
hosted on the physical servers and virtual links are created
to interconnect the VNFs and to carry the network traffic over
the physical links. The physical and virtual network resources
together form cloud network infrastructure.

C. Service Function Chaining

SFCs consist of logically interconnected multiple indepen-
dent network/service functions. It is assumed that Communi-
cation Service Providers (CSPs) offer finite number of services
using SFCs [1]. Let the set of all SFCs provided by a CSP
be denoted by S. Each SFC 𝑠 ∈ S provides a particular
service and is represented as a directed sequence of linear
chain of functions, a special form of an acyclic directed graph,
𝐺𝑠 = (V𝑠 , E𝑠), where V𝑠 and E𝑠 represent the set of VNFs
in sequential order (i.e., it is the topological ordering such
that the incoming traffic is processed by VNF i before it is
being processed by VNF i+1 in the SFC chain) and the set of
links that interconnect these VNFs, respectively. For example,
consider a Voice over IP service request 𝑠, where the set
of VNFs V𝑠 required to cater to the service 𝑠 in an order
are network address translation, firewall, and traffic monitor.
Each VNF 𝑣 ∈ V can be associated with only one SFC
𝑠 ∈ S in order to avoid multiple SFC failures (due to VNF
sharing). VNFs of an SFC can be placed on the same node
in order to minimize the resources of active physical nodes
used, bandwidth consumption, and inter VNF communication
delay. Tens to hundreds of SFCs can be created to provide
diverse services. As each SFC provides a particular service,
we use terms SFC and service request interchangeably. Service
orchestrator takes care of life-cycle-management of SFCs.

D. Service Requests and SLAs

Different industry verticals have different service require-
ments based on the application/service type. SLAs between
CSPs and customers define the specific requirements and
contracts in terms of expected quality of service. CSPs should
satisfy SLAs of service requests in order to gain high revenue.
For instance, a service request 𝑠 ∈ S can have specific
requirements in terms of high data rate, bandwidth demand,
maximum allowed delay, reliability, and availability. There can
be a penalty policy for violation of SLAs. The penalty amount
is paid to the users if a service requirement is not satisfied.

E. Problem Definition

As an SFC placement, merely mapping primary VNFs
of the SFC onto the substrate network is not sufficient for
provisioning reliable communication services. In this work, we
first redesign SFC requests to meet the reliability requirement
and then efficiently place them onto the substrate network.
We define the reliable SFC placement problem as two sub-
problems.
Sub-problem 1: Reliable SFC design. Given a set of SFC
requests, each with a specific delay and reliability require-
ments, design reliability-aware SFC service graphs such that it
minimizes the redundant resources needed to guarantee the re-
liability requirements while satisfying the delay requirements.
Sub-problem 2: Placement of reliable SFC graphs. Given a
physical network graph and a set of reliability-aware SFC
service graphs, find an efficient way of placing reliability-
aware SFC service graphs onto the substrate network such
that it minimizes the number of physical nodes required to
provide reliable communication services.
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TABLE II: List of Notations

𝐺𝑝 = (N, L) Physical network 𝐺𝑝 with N nodes and L links
𝑐𝑛 ∈ R+ Resource capacity of physical node 𝑛 ∈ N
𝐺𝑣 = (V , E) Virtual network 𝐺𝑣 with V VNFs and E virtual links
𝑐𝑣 Resource requirement of vCPUs for a VNF 𝑣 ∈ V
S Set of SFCs
𝐺𝑠 = (V𝑠 , E𝑠) SFC 𝑠 ∈ S with an ordered VNFs V𝑠 and links E𝑠
𝑐𝑠 Resource requirement of an SFC 𝑠 ∈ S
N𝑠 SFC 𝑠 is placed in a physical node 𝑛 ∈ N𝑠

𝑝𝑛 Node 𝑛 is reliable with probability 𝑝𝑛
𝑝𝑣 VNF 𝑣 is reliable with probability 𝑝𝑣
𝑟𝑠 Reliability of an SFC 𝑠

Δ𝑠 Reliability requirement of an SFC 𝑠

Ψ𝑠 Latency requirement of an SFC 𝑠

𝜓𝑣 Mean response time of a VNF 𝑣

𝐷𝑠 Mean response time of an SFC 𝑠

𝑏𝑣 Number of dedicated backups of the VNF 𝑣 ∈ 𝑉
𝑏𝑐 Number of dedicated SFC backup chains
𝑙𝑐 Number of subchains
𝜆𝑠 Arrival rate of an SFC 𝑠

𝜇𝑣 Processing rate of a VNF 𝑣

𝑝𝑙 (𝑠) Preference list of an SFC 𝑠

𝑝𝑙 (𝑛) Preference list of a node 𝑛

IV. RELIABLE SFC DESIGN

A. Enhancing Reliability of SFCs with Backups

Usually, redundant backup VNFs are placed to enhance
the reliability of the service chain. Backups are placed to
ensure the service continuity in the case of VNF failures. We
present two backup methods to enhance the reliability of an
SFC. In this work, it is assumed that the incoming traffic of
service request 𝑠 follows Poisson distribution with arrival rate
𝜆𝑠 and the serving time of each VNF in an SFC follows an
exponential distribution with the serving rate 𝜇𝑠 [34]. Let 𝜓𝑣

be the mean response time of VNF 𝑣 ∈ V. Table II gives the
list of notations and symbols used in this work.

In NFV environment, availability of a component (VNF or
physical node) is defined as the ratio of the mean time the
component is up for delivering services to the sum of the
mean time the component is up for delivering services and
the mean time the component is down for repairing. Formally,
it is defined as follows [9] [11]:

Availability =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
, (1)

where MTBF stands for mean time between failures of the
component and MTTR stands for mean time to repair the failed
component. Reliability of a component (VNF or physical
node) is defined as the probability that the component is
available for providing services without failure for a stated
period of time.

Consider an SFC 𝑠 ∈ S, which is placed onto the substrate
nodes as shown in Figure 1. Let N𝑠 denotes the set of all such
substrate nodes in which VNFs of an SFC 𝑠 is placed. If each
VNF 𝑣 ∈ V𝑠 in the SFC is reliable with a probability 𝑝𝑣 and
each substrate node 𝑛 ∈ N𝑠 where VNFs are placed is reliable
with the probability 𝑝𝑛, then the overall reliability of the SFC
chain 𝑟𝑠 is calculated as,

𝑟𝑠 =
∏
𝑣∈V𝑠

𝑝𝑣 ×
∏
𝑛∈N𝑠

𝑝𝑛 (2)

VNF1 VNF2Start 
Node

End 
Node

Incoming 
traffic 1 2

VNF1b1 VNF2b1

VNF1b2 VNF2b2

Substrate Network

node 2node 1

VNF3b2

VNF3b1

VNF3

3

node 2 node 3

(a) An SFC with dedicated backup VNFs.

VNF1 VNF3Start 
Node

End 
Node

Incoming 
traffic 1 3

VNF1b1 VNF3b1

VNF1b2 VNF3b2

Substrate Network

node 3node 1

VNF2

2

VNF2b1

VNF2b2

node 2

(b) An SFC with separate chains as backup.

Figure 1: An SFC with different backup settings.

We use 𝑐𝑣 to denote the CPU resource requirement for each
VNF 𝑣 ∈ V𝑠 . The resource requirement 𝑐𝑠 of the entire service
chain 𝑠 ∈ S can be calculated as,

𝑐𝑠 =
∑︁
𝑣∈V𝑠

𝑐𝑣 (3)

We consider that any service request 𝑠 ∈ S has the
reliability and the latency requirements denoted by Δ𝑠 and Ψ𝑠 ,
respectively. Hence, the service chain 𝑠 ∈ S should satisfy the
following conditions, ∑︁

𝑣∈V𝑠

𝜓𝑣 ≤ Ψ𝑠 (4)

𝑟𝑠 ≥ Δ𝑠 (5)

To analyze the delay, we model every VNF in a chain as an
M/M/1 queue and the entire SFC as tandem of M/M/1 network
of queues. By Burke’s theorem, the arrival rate 𝜆𝑠 is same for
all the VNFs in tandem of M/M/1 network of queues. The
average response time of the SFC can be calculated as,

𝐷𝑠 =
∑︁
𝑣∈V𝑠

𝜓𝑣 =
∑︁
𝑣∈V𝑠

1
𝜇𝑣 − 𝜆𝑠

(6)

Backups for an SFC can be added in two ways. One way
is to assign a dedicated backup for each VNF of an SFC as
shown in Figure 1a. If any primary VNF component of the
SFC fails, then the corresponding backup VNF is activated.
The reliability of the SFC with dedicated backup VNFs can
be calculated as,

𝑟𝑠𝑏1 =
∏
𝑣∈V𝑠

(
1 − (1 − 𝑝𝑣 )𝑏𝑣+1

)
×

∏
𝑛∈N𝑠

𝑝𝑛 (7)

where 𝑏𝑣 is the number of dedicated backups of the same VNF
type 𝑣 ∈ V𝑠 (𝑏𝑣 ≥ 1), and 𝑛 ∈ N𝑠 is the set of substrate nodes
in which the VNFs (primary and its corresponding backup) are



6

placed. We consider that a primary VNF and its corresponding
backup VNFs are placed in the same substrate node to
minimize the resource usage. VNFs can be placed in different
substrate nodes with additional resource consumption.

The resource requirement for the service chain with dedi-
cated backups can be calculated as,

𝑐𝑠𝑏1 =
∑︁
𝑣∈V𝑠

(𝑏𝑣 + 1) × 𝑐𝑣 (8)

The other way of adding backups for service continuity is
to assign an entire SFC as backup as shown in Figure 1b. If
a VNF component of a primary SFC fails, then backup SFC
will be activated. The reliability of SFC with separate SFC
chains as backup can be calculated as,

𝑟𝑠𝑏2 =

(
1 − (1 −

∏
𝑣∈V𝑠

𝑝𝑣 )𝑏𝑐+1
)
×

∏
𝑛∈N𝑠

𝑝𝑛 (9)

where 𝑏𝑐 is the number of separate SFC backup chains.
The resource requirement for the service chain with separate

SFC chains as backups can be calculated as,

𝑐𝑠𝑏2 = (𝑏𝑐 + 1) ×
∑︁
𝑣∈V𝑠

𝑐𝑣 (10)

From Equations (2), (7), and (9), it can be inferred that
the service chain with backups has higher reliability than the
one which does not have any backups. However, service chain
with backups consumes more amount of resource in order
to enhance the reliability. Hence, this approach is inefficient
with respect to utilization of resources. The redundant backup
resources are idle until a failure happens in the primary VNFs.
Also, since failure may happen randomly at any point of time,
assigned redundant backup resources cannot be used for any
other purpose.

B. Enhancing Reliability of SFCs without Backups
To efficiently utilize the available resources and enhance

the reliability of service chains without assigning backups, we
propose to divide the VNFs of an SFC into multiple lesser
capacity VNFs and place them onto the substrate nodes. VNFs
of an SFC can be divided into lower capacity VNFs and
chained in parallel (rather than assigning dedicated backups
in parallel) as shown in Figure 2. We call this method
as subchaining. A reduced capacity (processing rate) VNF
performs the same software functionality as that of the original
VNF, and the reliability of each VNF is still 𝑝𝑣 .

If we divide an SFC into 𝑙𝑐 number of subchains with
each VNF 𝑣 ∈ V𝑠 having processing capacity of 𝜇𝑣

𝑙𝑐
, then

the incoming traffic is equally divided to all the subchains
(𝜆𝑠

𝑙𝑐
). Each subchain of the SFC can be modeled as tandem

of M/M/1 network of queues as shown in Figure 2a. The
reliability and average response time of 𝑙𝑐 subchains of the
SFC in the tandem of M/M/1 queueing network setting can
be calculated as,

𝑟𝑠𝑀/𝑀/1 =

(
1 − (1 −

∏
𝑣∈V𝑠

𝑝𝑣 )𝑙𝑐
)
×

∏
𝑛∈N𝑠

𝑝𝑛 (11)

𝐷𝑠𝑀/𝑀/1 =
∑︁
𝑣∈V�̄�

1
𝜇𝑣

𝑙𝑐
− 𝜆𝑠

𝑙𝑐

=
∑︁
𝑣∈V�̄�

𝑙𝑐

𝜇𝑣 − 𝜆𝑠
(12)
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(a) Subchaining an SFC as tandem of M/M/1 network of queues.
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(b) Subchaining an SFC as tandem of M/M/m network of
queues.

Figure 2: An SFC subchaining methods.

If we divide each VNF of an SFC into 𝑙𝑐 number of
lesser capacity VNFs with processing capacity of 𝜇𝑣

𝑙𝑐
, then the

incoming traffic 𝜆𝑠 can be processed by any of the 𝑙𝑐 number
of VNFs. It can be modelled as tandem of M/M/m network
of queues as shown in Figure 2b. The reliability and average
response time of 𝑙𝑐 subchains of the SFC in this M/M/m setting
can be calculated as,

𝑟𝑠𝑀/𝑀/𝑚 =
∏
𝑣∈V𝑠

(
1 − (1 − 𝑝𝑣 )𝑙𝑐

)
×

∏
𝑛∈N𝑠

𝑝𝑛 (13)

𝐷𝑠𝑀/𝑀/𝑚 =
∑︁
𝑣∈V𝑠

𝑙𝑐

𝜇𝑣

×
(
1 + 𝜚

𝑙𝑐 (1 − 𝜆𝑠

𝜇𝑣
)

)
(14)

where,

𝜚 =
( 𝑙𝑐𝜆𝑠

𝜇𝑣
)𝑙𝑐

𝑙𝑐!(1 − 𝜆𝑠

𝜇𝑣
)
×

(
1

1 +
( 𝑙𝑐𝜆𝑠

𝜇𝑣
)𝑙𝑐

𝑙𝑐!(1− 𝜆𝑠
𝜇𝑣
)
+

𝑙𝑐−1∑
𝑖=1

( 𝑙𝑐𝜆𝑠
𝜇𝑣
)𝑖

𝑖!

)
Dividing a single chain SFC into multiple subchains of

SFC with lesser capacity VNFs enhances the reliability of the
service chain without using backups [33]. At the same time,
as shown in Equations (12) and (14), dividing the VNFs of
SFC into lesser capacity VNFs of multiple subchains increases
the response time linearly. Therefore, SFC subchaining should
be done without violating the delay constraint Ψ𝑠 of service
request in the process of enhancing the reliability without
backups.

C. Guaranteeing the Reliability Requirement of SFCs

The number of SFC subchains that can be created to
enhance the reliability of an SFC depends on the maximum
allowed delay Ψ𝑠 of a service request. Hence, enhancing the
reliability by SFC subchaining may not be sufficient to meet
the reliability requirements of all the service requests. In such
cases, in addition to the subchaining, redundant backups are
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Algorithm 1 The reliability calculation and subchaining pro-
cedure

Input: 𝐺𝑠 = (V𝑠 , E𝑠) ,Ψ𝑠 , Δ𝑠

Output: Reliability of an SFC 𝑟𝑠 , and number of SFC subchains 𝑙1 and
𝑙2 are created for M/M/1 and M/M/m settings, respectively

1: Calculate the reliability of an SFC 𝑟𝑠 using Equation (2)
2: Initialize the number of subchains 𝑙1 = 1 and 𝑙2 = 1
3: if 𝑟𝑠 ≥ Δ𝑠 then
4: Return 𝑟𝑠 , and 𝑙1 and 𝑙2
5: else
6: while 𝑟𝑠 < Δ𝑠 do
7: if M/M/1 setting then
8: 𝑙1 = 𝑙1 + 1
9: Create 𝑙1 number of subchains from an SFC with the

resource capacity of 𝑐𝑣
𝑙1

, ∀𝑣 ∈ V𝑠

10: Compute the overall delay of new subchains 𝑙1 using
Equation (12) and assign it to 𝐷𝑠

11: if 𝐷𝑠 ≤ Ψ𝑠 then
12: Compute the reliability of new subchains using

Equation (11) and assign it to 𝑟𝑠
13: else
14: 𝑙1 = 𝑙1 − 1
15: Return 𝑟𝑠 and 𝑙1
16: end if
17: else if M/M/m setting then
18: 𝑙2 = 𝑙2 + 1
19: Create each VNF of an SFC into 𝑙2 number of replicas

with the resource capacity of 𝑐𝑣
𝑙2

20: Compute the overall delay of new subchains 𝑙2 using Equation
(14) and assign it to 𝐷𝑠

21: if 𝐷𝑠 ≤ Ψ𝑠 then
22: Compute the reliability of new subchains using

Equation (13) and assign it to 𝑟𝑠
23: else
24: 𝑙2 = 𝑙2 − 1
25: Return 𝑟𝑠 and 𝑙2
26: end if
27: end if
28: end while
29: end if

added one by one to the less reliable VNFs to guarantee
the reliability requirement of service requests. Methods for
calculating reliability and guaranteeing the reliability require-
ment of service requests are given in Algorithms 1 and 2,
which utilize the SFC subchaining technique to reduce the
number of redundant backup resources required to guarantee
the reliability requirement. In this work, we assume that the
links between physical nodes and virtual nodes are completely
reliable.

The reliability calculation and subchaining procedure is
given in Algorithm 1. For the given input of service request
graph and its requirements, Algorithm 1 applies subchaining
procedure and outputs the reliability of an SFC chain along
with the number of subchains created. First, the reliability of
an SFC chain 𝑟𝑠 is calculated using Equation (2) and returned
if it satisfies the requirement Δ𝑠 (lines 1 to 4). If the reliability
value 𝑟𝑠 is less than the requirement Δ𝑠 , then subchain count 𝑙1
(or 𝑙2) is increased and the SFC chain is divided into 𝑙1 (or 𝑙2)
number of subchains in each iteration to enhance the reliability.
The process continues till either the reliability requirement is
met or the maximum delay constraint Ψ𝑠 is violated (lines 6
to 16 for M/M/1 and lines 17 to 28 for M/M/m setting). The
maximum number of subchains that can be created is limited
by the delay constraint Ψ𝑠 . Algorithm 1 always finds a solution
in finite number of iterations irrespective of the number of SFC

Algorithm 2 The reliability calculation and reliability require-
ment guaranteeing procedure

Input: 𝐺𝑠 = (V𝑠 , E𝑠) ,Ψ𝑠 , Δ𝑠 , 𝑟𝑠 , 𝑙1, 𝑙2, 𝑝𝑛
Output: Guarantees the reliability requirement Δ𝑠 for the service

request 𝑠 ∈ S
1: if 𝑟𝑠 ≥ Δ𝑠 then
2: Redundant backup is not required
3: else
4: Sort the VNFs of an SFC with respect to reliability in ascending order
5: Start assigning backups from least reliable VNF to highest reliable

VNF in a circular manner
6: 𝑟𝑠 is the reliability of an SFC computed by the subchaining procedure

using Algorithm 1
7: 𝑙1 and 𝑙2 are number of subchains created by subchaining procedure

of M/M/1 and M/M/m settings, respectively
8: 𝑝𝑛 is the reliability of substrate nodes
9: Initialise 𝑢 = 2 (initially, one backup is assigned along with primary

VNFs of a subchain), 𝑤 = 0 (number of subchains in which the same
number of backups assigned to all VNFs of subchains), 𝑗1 = 0, 𝑗2 = 0

10: Let 𝑄 be the set of VNFs for which backup is assigned and initially
it is null

11: while 𝑟𝑠 < Δ𝑠 do
12: if M/M/1 setting then
13: 𝑄 = 𝑄 ∪ {arg min

𝑣∈V𝑠−𝑄
𝑝𝑣 }

14: ℎ1 =
∏

𝑣∈V𝑠

(
1 − (1 − 𝑝𝑣 )𝑢

)
15: ℎ2 =

( ∏
𝑣∈𝑄

(
1 − (1 − 𝑝𝑣 )𝑢

)
×

∏
𝑣∈V𝑠−𝑄

(
1 − (1 − 𝑝𝑣 )𝑢−1

))
16: ℎ3 =

∏
𝑣∈V𝑠

(
1 − (1 − 𝑝𝑣 )𝑢−1

)
17: Reliability 𝑟𝑠 =

((
1−

(
(1−ℎ1)𝑤×(1−ℎ2)×(1−ℎ3)𝑙1−1−𝑤

))
×

∏
𝑛∈N𝑠

𝑝𝑛

)
18: 𝑗1 = 𝑗1 + 1
19: if 𝑗1 == |V𝑠 | then
20: 𝑗1 = 0, 𝑤 = 𝑤 + 1, 𝑄 = {}
21: end if
22: if 𝑤 == 𝑙1 then
23: 𝑤 = 0, 𝑢 = 𝑢 + 1
24: end if
25: else if M/M/m setting then
26: 𝑄 = 𝑄 ∪ {arg min

𝑣∈V𝑠−𝑄
𝑝𝑣 }

27: Reliability 𝑟𝑠 =

( ∏
𝑞∈𝑄

(
1 − (1 − 𝑝𝑞)𝑙2+1

)
×

∏
𝑖∈V𝑠−𝑄

(
1 − (1 − 𝑝𝑖)𝑙2

)
× ∏

𝑛∈N𝑠
𝑝𝑛

)
28: 𝑗2 = 𝑗2 + 1
29: if 𝑗2 == |V𝑠 | then
30: 𝑙2 = 𝑙2 + 1, 𝑗2 = 0, and 𝑄 = {}
31: end if
32: end if
33: end while
34: end if

subchains created. Because either average response time of the
latest subchains of SFC 𝐷𝑠 violates the delay constraint Ψ𝑠

or the improved reliability of the latest subchains of SFC 𝑟𝑠
meets the reliability requirement Δ𝑠 . Therefore, Algorithm 1
terminates in a finite number of iterations.

Algorithm 2 is designed to guarantee the reliability re-
quirement of service requests for the cases the subchaining
procedure described in Algorithm 1 could not satisfy the
reliability requirement. For the given input of service request
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graph and its requirements and the output of the Algorithm
1, Algorithm 2 outputs the service graph which guarantees
the reliability requirement by adding backups in incremental
manner. If the output of Algorithm 1 satisfies the reliability
requirement, then backups are not required (lines 1 to 3). First,
the VNFs of an SFC are sorted with respect to reliability value
in ascending order to provide backups in a circular manner
from least reliable VNF to highest reliable VNF of a subchain
and the input parameters are initialized (lines 4 to 10). At
any point, backup is added to only one VNF of a subchain
in order to reduce the number of redundant resources (line 13
for M/M/1 and 26 for M/M/m). Since backup is added one by
one, the SFC can consist of three different subchain structures
in M/M/1 setting as shown in Figure 3a: i) backup is already
assigned to all the VNFs in the subchain (line 14), ii) backup
is assigned to part of the VNFs of the subchain and backup
is not yet added to the remaining VNFs of the subchain (line
15), and iii) backup is not yet added to any of the VNFs in
the subchain (line 16). Since the subchains are in parallel and
multiple subchains can have the same backup structure, the
reliability of the whole chain is computed based on the three
backup structures reliability values (ℎ1, ℎ2, ℎ3) and reliability
of the substrate nodes (𝑝𝑛,∀𝑛 ∈ N𝑠) where the subchains are
placed (line 17). In M/M/m setting, two different subchain
structures are possible while adding backups as shown in
Figure 3b: i) the VNFs to which a backup is added (i.e., such
VNF has an additional redundant VNF), ii) the VNFs to which
no backups are added (line 27). In both M/M/1 and M/M/m
settings, backups are added one by one until the reliability
requirement is met (lines 18 to 24 for M/M/1 and 28 to 33
for M/M/m). Algorithm 2 always finds a solution in finite
number of iterations irrespective of the number of redundant
VNFs assigned. This is because the reliability of an SFC is
increasing after each iteration by adding a new backup VNF to
the least reliable VNF in the SFC chain. Therefore, Algorithm
2 terminates in a finite number of iterations in polynomial
time. The average running times of Algorithms 1 and 2 are
given in Table VII in Section VI B.

V. PLACEMENT OF RELIABLE SFCS

This section describes about optimal placement of the de-
signed reliable SFC graphs in the NFV based 5G infrastructure
with minimal number of physical resources. Optimal on-
demand dynamic resource allocation is crucial to provide
diverse set of communication services using SFCs in 5G
networks, and also reduce CAPEX and OPEX. SFC placement
or resource allocation problem is the process of mapping SFCs
to physical/substrate network in optimal manner while meeting
the SLAs. First, we mathematically model the reliable SFC
placement problem using ILP and prove that the problem is
NP-hard. Then, we propose a modified matching algorithm
for solving large scale instances of the problem in polynomial
time.

A. ILP Mathematical Formulation

1) Decision variables: The binary variable 𝑥𝑛𝑠 is used to
represent that all VNFs of an SFC 𝑠 are placed on the
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(a) Backup structures for an SFC with M/M/1 tandem network
of queues.

Start 
Node

End 
Node

b1

VNF12 VNF22

VNF11 VNF21

VNF13 VNF23

VNF13b

VNF32

VNF31

VNF23

node 1 node 2 node 3
Substrate Network 

(b) Backup structures for an SFC with M/M/m tandem network
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Figure 3: Subchaining and backup structures of an SFC.

processing node 𝑛, which can be expressed as,

𝑥𝑛𝑠 =


1, if all VNFs of the SFC 𝑠 ∈ S are placed

on the processing node 𝑛 ∈ N ,

0, otherwise.
(15)

We assume that all subchained VNFs from the original
VNF should be placed on the same physical node
because it reduces the consumption of physical resources
to minimize operational expenditures for network oper-
ators. Moreover, placing the VNFs of an SFC on the
same physical node reduces switchover time, amount
of bandwidth consumed to transfer VNF internal state
information from primary to backup VNFs, and inter
VNF communication delays.
The binary variable 𝑎𝑛, used to represent that a process-
ing node 𝑛 is active, which can be expressed as,

𝑎𝑛 =


1, if the processing node 𝑛 ∈ N is active, i.e.,

if it hosts at least one SFC 𝑠 ∈ S,
0, otherwise.

(16)
2) Objective function: The objective is to minimize the

number of active physical nodes allocated for SFCs
deployment, which can be expressed as,

𝑍 : min
∑︁
𝑛∈N

𝑎𝑛 (17)

3) Capacity constraint: The capacity requirements of SFCs
placed on any physical node should not exceed that
server’s available resource capacity, which can be math-
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ematically expressed as,∑︁
𝑠∈S

𝑥𝑛𝑠 × 𝑐𝑠 ≤ 𝑐𝑛 × 𝑎𝑛,∀𝑛 ∈ N (18)

where 𝑐𝑛 denotes the available CPU resource capacity in
the physical node 𝑛 and 𝑐𝑠 is the total CPU requirement
of the SFC chain 𝑠 defined in Equation (3). We assume
that all substrate nodes have the same resource capacity
to host VNFs of an SFC.
In general, multiple resource type (e.g., CPU, memory,
and storage) constraints can be modeled based on the
service type requirements, which can be expressed as,∑︁

𝑠∈S
𝑥𝑛𝑠 × 𝑐𝑠𝑟 ≤ 𝑐𝑛𝑟 ,∀𝑛 ∈ N ,∀𝑟 ∈ R (19)

where 𝑟 is a particular resource type (e.g., memory) from
the resource type set R which includes CPU, memory,
and storage. 𝑐𝑠𝑟 denotes resource requirement of type 𝑟

for the SFC 𝑠 and 𝑐𝑛𝑟 denotes the available capacity of
resource type 𝑟 in the node 𝑛. For simplicity, we consider
only virtual CPU resource requirement for VNFs to
process the incoming traffic [35].

4) Placement constraint: The SFC should be placed in any
one of the physical nodes only, which can be expressed
as, ∑︁

𝑛∈𝑁
𝑥𝑛𝑠 = 1,∀𝑠 ∈ S (20)

Theorem 1. Reliable SFC placement problem 𝑍 is NP-hard.

Proof. Let A be the reliable SFC placement problem and B
be the bin packing problem. Bin packing problem is one of
the famous combinatorial optimization problems and it is an
NP-hard problem [36], which is defined as follows: given a set
of items, each having an integer weight, and a set of identical
bins each having an integer capacity 𝑐, the problem consists of
packing all the items into minimum number of bins, without
exceeding the maximum capacity 𝑐 for any bin. To prove
that the problem A is NP-hard, it is sufficient to show that
an instance of problem B can be reduced to an instance of
problem A in polynomial time, i.e., B ≤𝑃 A [37].

We can transform an instance of problem B into an instance
of problem A in the following way: i) consider each item in the
bin packing problem as an SFC in SFC placement problem, ii)
set the integer weight of each item to be equal to the resource
requirement of each SFC iii) consider total number of available
bins as total number of substrate nodes, iv) set the capacity
of each bin to be equal to the resource availability in each
substrate node, and v) consider that each item is placed in only
one bin as an SFC is placed in only one of the substrate nodes.
The transformation operation can be done in polynomial time
of the input size.

Hence, problem B is reducible to problem A in polynomial
time. If A is not NP-hard, then B is also not NP-hard (since B
is reducible to A), which is a contradiction. Therefore, it can
be concluded that A is also an NP-hard problem. �

B. Matching Algorithm Based Reliable SFC Placement

SFC placement problem, being an NP-hard problem, takes
super-polynomial time to solve when the input size is large.
We devise a matching game based solution to overcome the
computational complexity. A well-known Gale-Shapley [38]
matching algorithm framework based on deferred acceptance
concept is used to place SFCs onto the substrate nodes. There
are three types of matching techniques: one-to-one matching,
many-to-one matching, and many-to-many matching. Since
multiple SFC chains can be placed on the same substrate node
and an SFC is placed on only one substrate node, many-
to-one matching technique is used in our solution design.
Since each SFC may have different set of VNFs, and resource
requirement for each SFC may vary for different service
types, classical matching theory approach cannot be applied
directly for resource-efficient SFC placement problem. Hence,
we propose a modified matching algorithm to place SFCs
on the substrate nodes efficiently. SFCs propose to substrate
nodes based on the preferences of SFCs in SFC-optimal stable
matching procedure, whereas substrate nodes propose to SFCs
based on the preferences of substrate nodes in substrate node-
optimal stable matching procedure. We consider SFC-optimal
stable matching in order to meet the SLAs of user/service
requests.

A many-to-one matching game consists of two disjoint sets
of groups with finite number of players N = {𝑛1, 𝑛2, . . . , 𝑛 |N |}
and S = {𝑠1, 𝑠2, . . . , 𝑠 |S |}, where N ∩ S = ∅. Each player
prepares a preference list to match with the player in the other
group. A preference list is the order of preference in which a
player in one group ranks all the players in the other group
based on some performance metric. We use the preference
relation symbols �𝑠 𝑗 and �𝑛𝑖 to denote the preference order-
ings of players 𝑠 𝑗 ∈ S and 𝑛𝑖 ∈ N , respectively. For example,
𝑠2 �𝑛1 𝑠1 indicates that player 𝑛1 gives higher preference to 𝑠2
than to 𝑠1. The preference list of a player 𝑠 𝑗 is represented as
𝑝𝑙 (𝑠 𝑗 ) = {𝑛2, 𝑛5, 𝑛3 . . . , 𝑛 |N |}, if player 𝑠 𝑗 ’s first choice is 𝑛2,
second choice is 𝑛5, and so on. Each player’s preference list
in both the groups should be strict, complete, and transitive.
Strict preference relation indicates that each player 𝑠 𝑗 ∈ S has
a strict preference relation �𝑠 𝑗 over the set of players 𝑛𝑖 ∈ N
(i.e., no two players can be ranked with the same preference),
and vice versa. Complete preference relation indicates that the
preference list should include all the players in the opposite
group. Transitive preference relation for a player 𝑠 𝑗 indicates
that if 𝑛2 has higher preference than 𝑛5 and 𝑛5 has higher
preference than 𝑛3, then 𝑛2 has higher preference than both
𝑛5 and 𝑛3. Individual rationality of all the players of both
the groups is considered in this matching algorithm based
approach.

Matching is a function 𝜏 : S ∪ N → 2S∪N which maps
from the set S∪N into the subsets of S∪N (in other words,
every player of S is mapped to exactly one player of N ). We
consider that the sets N and S indicate the set of substrate
nodes and SFC requests, respectively. Each node belonging
to the group N (i.e., 𝑛𝑖 ∈ N ) has positive resource capacity
𝑐𝑛𝑖 ∈ Z+ to accommodate multiple SFCs, say g number of
SFCs, from the group S. The SFCs 𝑠 𝑗 ∈ S have resource
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Figure 5: Resource-efficient assignment of SFCs to nodes.

requirement of 𝑐𝑠 𝑗 ∈ Z+ ≤ 𝑐𝑛. Multiple SFCs in S can be
mapped to a single node of N based on the available resource
(residual capacity). 𝜏(𝑠 𝑗 ) represents a node 𝑛𝑖 ∈ N to which
an SFC 𝑠 𝑗 ∈ S is assigned to, and 𝜏(𝑛𝑖) represents an SFC
𝑠 𝑗 ∈ S assigned to a node 𝑛𝑖 ∈ N . A pair (𝑠 𝑗 , 𝑛𝑖) is said to
be acceptable pair iff both 𝑠 𝑗 and 𝑛𝑖 prefer each other based
on their preference lists, i.e., 𝜏(𝑛𝑖) = 𝑠 𝑗 and 𝜏(𝑠 𝑗 ) = 𝑛𝑖 .

A pair is said to be a blocking pair (𝑠 𝑗 , 𝑛𝑖) if both of them
prefer to be matched with each other rather than being matched
according to matching function 𝜏. A matching can be blocked
by an individual player as well if the player prefers being
single to being matched with a partner from the preference
list. If a matching 𝜏 is not blocked by an individual or pair,
then it is said to be stable.

In classical many-to-one stable resource allocation problem
[32] [38], if there is a request from higher ranked SFC and
the available resource (residual capacity) in the node is not
enough to accept the proposal, then all the lesser preferred
accepted SFCs are rejected. It is done in order to accept the
higher ranked SFC. In this method, the rejected SFCs are
not allowed to propose again to the same node in the next
iterations. It results in inefficient utilization of resources. We
illustrate this with an example shown in Figure 4. We consider
three substrate nodes (n1, n2, and n3) each with the capacity of
48 vCPUs and five SFCs (s1, s2, s3, s4, and s5) with capacity
requirements of 15, 10, 5, 20, and 30 vCPUs, respectively.

For an easy illustration of example, we consider that all SFCs
have the same node preference list pl(s) which is (n1, n2, n3)
and all nodes have the same SFC preference list pl(n) which
is (s5, s4, s1, s2, s3).

As shown in Figure 4 (a), initially, the node n1 accepts
the proposals of s1, s2, s3 (total vCPUs requirement is 30)
in iteration 1. When the node n1 receives proposal from a
higher ranked SFC s4 in iteration 1, since the total resource
requirement of SFCs s1, s2, s3, and s4 exceeds the total
capacity of node n1 (50 > 48), the node n1 rejects all the
already accepted SFC proposals (s1, s2, s3) in order to accept
the higher ranked SFC s4. Similarly, when s5 proposes to the
node n1, s4 is rejected in favor of s5. Since rejected SFCs (s1,
s2, s3, s4) are not allowed to propose to the node n1 again,
they propose to the node n2 in iteration 2. In iteration 2 also,
the SFCs s1, s2, and s3 are rejected by the node n2 in favor of
s4 when capacity requirement exceeds the available resource
limit. Hence, in iteration 3 the rejected SFCs propose to the
node n3 and are accepted. This strategy requires three nodes
to accommodate all the five SFCs.

Consider an SFC 𝑠 𝑗 is rejected by a node 𝑛𝑖 in iteration
1. In our design, we allow 𝑠 𝑗 to propose again to the node
𝑛𝑖 in further iterations until either the available resource in
𝑛𝑖 is not enough to accommodate 𝑠 𝑗 or 𝑠 𝑗 is lesser preferred
to the already accommodated SFCs in the node 𝑛𝑖 . We also
precompute the resource to be reclaimed when rejecting the
lesser preferred SFCs before actually rejecting them. Hence,
the already accommodated lesser preferred SFCs are rejected
only if the total (residual + reclaimed) resource is enough
to accommodate the higher ranked SFC. Resource-efficient
assignment of SFCs to nodes is shown in Figure 5.

As shown in Figure 4 (b), SFCs s1, s2, and s3 are accepted
initially in iteration 1 since there is enough resource in the
node n1. When s4 proposes to the node n1, the required
resource amount exceeds the available resource capacity (50 >
48) to accommodate all SFCs s1, s2, s3, and s4. Since s4 has
higher preference in the node n1’s preference list than s1, s2,
s3 and the additional capacity to be obtained by rejecting the
lesser preferred SFCs is more than the required amount, the
node n1 rejects the lesser preferred SFCs one by one till the
resource requirement is met. Hence, only s3 and s2 are rejected
in order to accommodate s4. At this point of time, s1 and s4
are accepted and s2 and s3 are rejected. Similarly, when s5
proposes to the node n1, s1 and s4 are rejected in favor of s5
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Algorithm 3 Modified matching algorithm based reliable SFC
placement

Input: The set of SFCs S and the set of available nodes N in
the substrate network

Output: SFC-optimal stable matching result is produced such
that all SFCs are placed on the substrate network

1: Check resource availability at the substrate network
2: Prepare SFCs’ preference list 𝑝𝑙 (𝑠 𝑗 ) , ∀𝑠 𝑗 ∈ S
3: Prepare substrate nodes’ preference list 𝑝𝑙 (𝑛𝑖) , ∀𝑛𝑖 ∈ N
4: while do ∃𝑠 𝑗 ∈ S and all the available nodes are not marked in

its preference list 𝑝𝑙 (𝑠 𝑗 )
5: 𝑛𝑖 ← choose the most preferred unmarked node from the pref-

erence list 𝑝𝑙 (𝑠 𝑗 )
6: if 𝑐𝑛𝑖 ≥ 𝑐𝑠 𝑗 then
7: for ∀𝑣 ∈ V𝑠 𝑗 do
8: Map 𝑣 to 𝑛𝑖
9: end for

10: 𝑐𝑛𝑖 = 𝑐𝑛𝑖 − 𝑐𝑠 𝑗
11: Mark SFC 𝑠 𝑗 on the node 𝑛𝑖 preference list 𝑝𝑙 (𝑛𝑖)
12: Mark node 𝑛𝑖 on the SFC 𝑠 𝑗 preference list 𝑝𝑙 (𝑠 𝑗 )
13: else
14: if SFC 𝑠 𝑗 is most preferred than the already mapped

(marked) SFCs 𝑠′
𝑗
∈ S on 𝑝𝑙 (𝑛𝑖) , i.e., 𝑠 𝑗 �𝑛𝑖 𝑠′

𝑗
, and( ∑

𝑠′
𝑗
∈S 𝑐𝑠′

𝑗

)
+ 𝑐𝑛𝑖 ≥ 𝑐𝑠 𝑗 then

15: repeat
16: Reject the least preferred 𝑠′

𝑗
17: 𝑐𝑛𝑖 = 𝑐𝑛𝑖 + 𝑐𝑠′𝑗
18: Unmark node 𝑛𝑖 on the preference list 𝑝𝑙 (𝑠′

𝑗
)

19: Unmark SFC 𝑠′
𝑗

on the preference list 𝑝𝑙 (𝑛𝑖)
20: until 𝑐𝑛𝑖 ≥ 𝑐𝑠 𝑗
21: else if 𝑐𝑛𝑖 < 𝑐𝑠 𝑗 then
22: The node 𝑛𝑖 rejects the proposal from the SFC 𝑠 𝑗
23: Mark node 𝑛𝑖 on the preference list 𝑝𝑙 (𝑠 𝑗 )
24: end if
25: end if
26: end while

in iteration 1. In iteration 2, the rejected SFCs propose again
to node 1 (remaining capacity 18 vCPUs). First, s1 is accepted
by node 1 (remaining capacity 3 vCPUs), then s2 and s3 are
rejected by the node 1 due to lack of resource availability in
node 1 (10 > 3, 5 > 3) and they are lesser preferred compared
to s1 in the node 1’s preference list. When s4 proposes to
the node 1, the available remaining capacity is not sufficient
(20 > 3) to accommodate both s1 and s4. Though the SFC
s4 has higher preference than s1, rejecting the SFC s1 and
reclaiming the assigned capacity of s1 is not sufficient (20
> 18) to accommodate s4. Therefore the SFC s4 is rejected
by the node 1. At the end of iteration 2, only the SFC s1 is
accepted and the remaining SFCs s2, s3, and s4 are rejected.
Since s1, s2, and s4 are rejected due to lack of resource in the
node 1, they propose to the node 2 in the third iteration and
are being accepted because of enough resource availability.
Our strategy requires only two nodes to accommodate all five
SFCs and improves the overall resource utilization.

Algorithm 3 provides the procedure for placing SFCs in
substrate nodes based on the modified matching algorithm.
The same procedure is given in flow chart format in Figure
5. For the given input of the set of reliable SFC design
graphs and physical network graph, Algorithm 3 outputs SFC-
optimal stable matching result. First, resource availability is
checked to place a set of SFCs in the substrate nodes (line 1).
Preference lists of both SFCs and nodes are prepared (lines
2 and 3). According to [32], nodes give higher preference to

SFC requests which utilizes the maximum available resources
i.e., leave out the least residual capacity unused, and SFCs
give higher preference to nodes which have enough resource
capacity to provide services and have higher reliability in the
substrate network.

Algorithm 3 runs until all the SFCs are placed in appropriate
substrate nodes. Initially, all SFCs and substrate nodes are free
i.e., no SFC is assigned to any node. If there is an SFC 𝑠 𝑗
which is not yet placed on any node, then 𝑠 𝑗 first proposes
to the highest ranked substrate node from its preference list.
Likewise, all the SFCs make proposals to their respective
highest ranked substrate nodes sequentially (line 5). Each
substrate node has capacity of 𝑐𝑛𝑖 and it can hold up to
certain, 𝑔 (maximum number of SFCs that a substrate node
can accommodate based on its resource capacity), number
of proposals from SFCs at a time (lines 6 to 12). Nodes
accept all the first 𝑔 number of proposals from the SFCs
irrespective of their positions/ranking in the preference lists of
nodes 𝑝𝑙 (𝑛𝑖). If a new SFC request 𝑠𝑘 comes to the substrate
node after accommodating 𝑔 number of SFC requests and 𝑠𝑘
has higher preference than the already accommodated SFC
requests, then first precompute the resource to be reclaimed
by rejecting the lesser preferred SFCs before actually reject
them. Hence, the already accommodated lesser preferred SFCs
are rejected only if the total (residual + reclaimed) resource is
enough to accommodate the higher ranked SFC. The rejection
happens sequentially with reclamation of the assigned resource
of lesser preferred SFC 𝑠′

𝑗
, and this process continues until

𝑐𝑛𝑖 + 𝑐𝑠′
𝑗
≥ 𝑐𝑠𝑘 (lines 14 to 20). If either the SFC 𝑠𝑘

has lesser preference than the already accepted SFCs or the
estimated resource by precomputation is not enough (even
after reclaiming the resource of all the previously allocated
SFCs), then the SFC 𝑠𝑘 is rejected (lines 21 to 24). Rejected
SFC proposes to its next highest ranked substrate node from
the preference list in the subsequent iterations. This procedure
continues until the SFC 𝑠𝑘 is assigned to one of the preferred
substrate nodes. This principle is called as deferred acceptance
because initially an SFC 𝑠 𝑗 can be accepted by a substrate node
𝑛𝑖 if there is resource availability and later 𝑠 𝑗 can be rejected
if there is a proposal from a higher ranked SFC to the same
node 𝑛𝑖 . The deferred acceptance based algorithm produces
stable matching.

Theorem 2. Many-to-one matching which employs deferred
acceptance algorithm produces at least one stable matching
result for general preferences such that all SFCs allowed to
participate in the game are placed on the substrate network
nodes.

Proof. We assume that substrate nodes have enough capacity
to accommodate all the SFC requests [38]. SFCs on one side
propose to the nodes based on their respective preferences.
Each node on the other side accepts all the proposals until
its quota/residual capacity is over. Once the quota/residual
capacity of the node is over, SFC requests are processed based
on preference order of the node. An SFC request which has
higher preference should be accepted, and to accommodate
that the less preferred (already accepted) requests are rejected
if there is not enough residual capacity on the node. A rejected
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SFC request is allowed to propose again to the same node till
either the available resource in the node is not enough or it
is less preferred than all the already accepted SFC requests.
The same procedure is followed until all the SFC requests
are placed in one of their preferred nodes. If an SFC would
prefer to be matched to a node other than the assigned node,
then according to our algorithm, the SFC must have already
proposed to the preferred node and the preferred node must
have rejected the SFC due to either lack of the resources or the
SFC being less preferred than the already accepted SFCs. It
means that the preferred node has another SFC that it strictly
prefers, hence there cannot be a blocking pair. Therefore,
our modified many-to-one matching algorithm which follows
deferred acceptance procedure produces a stable matching
result. �

Theorem 3. Algorithm 3, which follows deferred acceptance
procedure, produces not only a stable but an optimal assign-
ment of SFC requests onto substrate nodes.

Proof. In the process of deferred acceptance matching proce-
dure, no higher ranked SFC request is rejected by any node
in order to accept a lower ranked SFC request. If a higher
ranked SFC is rejected due to insufficiency of resources, then
the lower ranked SFCs can be accommodated for maximum
utilization of resources. The node does not prefer the rejected
higher ranked SFC request to the accepted lower ranked SFC
request. This procedure only rejects requests which could not
be accommodated in any stable assignment. Therefore, our
modified algorithm which follows deferred acceptance proce-
dure not only yields a stable but an optimal assignment. �

From theorems 2 and 3, we conclude that the modified
matching algorithm produces stable and optimal assignment
of SFC requests onto substrate nodes based on the preference
lists. In matching theory, optimal assignment means there
is no better matching/assignment than the current one. Note
that optimal assignment in matching theory is different from
optimal solution to the ILP (SFC placement) problem. The
time complexities of preference list preparation for SFCs and
nodes are 𝑂 (S𝑙𝑜𝑔S) and 𝑂 (N 𝑙𝑜𝑔N), respectively. In the
worst case, 𝑂 (S2) proposals are executed in each node 𝑛 ∈ N
in Algorithm 3. Hence, the time complexity of Algorithm 3 is
𝑂 (NS2).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
solutions presented in the previous sections.

A. Performance Analysis of Subchaining an SFC to Enhance
the Reliability

We analyse the performance of SFC subchaining method
proposed in section IV to enhance the reliability of an SFC.
Simulation parameters considered in our simulation are shown
in Table III. Simulation parameters are chosen such that the
system is stable. For the system to be stable, traffic intensity
𝜌 = 𝜆𝑠/𝜇𝑣 should be less than one [39]. Reliability rate
parameters 𝑝𝑣 and 𝑝𝑛 are taken from [11] [40] and SFC

TABLE III: Simulation parameters for subchaining

Parameters Values
Arrival rate, 𝜆𝑠 100
Serving rate of VNFs, 𝜇𝑣 200
Size of SFC, |V𝑠 | 5
Reliability rate of VNFs, 𝑝𝑣 0.9
Reliability rate of substrate nodes, 𝑝𝑛 0.999

size parameter is taken from [35]. Simulation results are
obtained using discrete-event simulator MATLAB Simulink.
We compare our proposed M/M/1 and M/M/m settings with i)
service chain backup setting where there is a dedicated backup
for every VNF in an SFC (SCB1) and ii) service chain backup
setting where a separate SFC chain is assigned as backup for
a primary SFC (SCB2). We compare our results in terms of
reliability, expected response time, and amount of resources
required for an SFC.

Figures 6a and 6b show the effect of reliability on number
of subchains placed on the same node and different substrate
nodes, respectively. The reliability difference on placing VNFs
of an SFC on the same node and on different nodes is very
less. Placing subchains on different nodes provides higher
robustness than placing them on the same node, however it
comes with additional resource costs (a trade-off). It is clear
that M/M/m setting provides higher reliability than that of
M/M/1 setting. Since M/M/1 and M/M/m settings are chained
based on the two actual backup settings (dedicated VNFs and
separate SFC chains), they also provide the same reliability
rate which is equal to SCB1 and SCB2, respectively. However,
SCB1 and SCB2 methods consume more additional resources
(with respect to serving rate of VNF) as we increase the
number of subchains, which is shown in Figure 6c. In the
subchaining methods, we consider number of virtual cores
(directly relates to 𝜇𝑣 ), assigned to all VNFs in V𝑠 to process
the traffic of requested service, as the resources. Since the
primary SFC chain is divided into lesser capacity subchains,
M/M/1 and M/M/m settings consume almost the same number
of resources as a single chain primary SFC. Figure 6d shows
the effect of average response time (in seconds) on number
of subchains. Simulation results obtained using MATLAB
Simulink are compared with the analytical results. It is clear
that M/M/m setting has less average response time than that
of M/M/1 setting, and the average response time increases
linearly as we increase the number of subchains in both the
settings.

We compare the performance of SFC subchaining methods
with the related work [29]. Two redundancy models are
proposed to improve the reliability of NFV-based 5G networks
[29]: i) series-parallel backup model, in which for series of
VNFs in service chain backups are assigned in parallel for each
VNF (SPB) and ii) parallel-series backup model, in which an
entire VNF chains are assigned as backup in parallel for series
of VNFs in service chain (PSB). We consider unit cost VNFs
and backup VNFs are operationally synchronized with primary
VNFs and be ready to replace primary VNFs in case of failure
[29]. Total cost to construct parallel backups for an SFC with
size five are compared in Figure 7a and it can be seen from
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Figure 6: Subchaining analytical and simulation results.

this figure that the total SFC construction cost increases for
SPB and PSB models as we increase the number of parallel
backups. Since the same VNFs of an SFC is divided into lesser
capacity VNFs to construct parallel backpus, the construction
cost is less for M/M/1 and M/M/m based subchaining models.
Mean delay of different backup models is compared in 7b.
As dedicated individual backups are assigned for SPB and
PSB models, and the processing capacity of VNFs is same
for both primary and backup VNFs, the mean delay is same
irrespective of the number of parallel backups. Since the
processing capacity is equally shared with backup VNFs, mean
delay for M/M/1 and M/M/m models increases as we increase
the number of parallel backups for an SFC.

B. Performance Analysis of Reliable SFC Design

We analyze the performance of reliable SFC design pro-
posed in section IV. For the evaluation purpose, we consider
four service types which are [35] [41]: web service, Voice over
IP, video streaming, and online gaming. For each service type
request, ordered list of VNFs, bandwidth, delay, reliability,
and traffic generation percentage requirements are given in
Table IV. Six different VNFs are considered to construct
SFCs, which are Network Address Translator (NAT), Firewall
(FW), Traffic Monitor (TM), WAN Optimization Controller,
Video Optimization Controller (VOC), and Intrusion Detection
and Prevention System (IDPS). Service requests are generated
based on the traffic generation percentage. For instance video
streaming service has traffic generation percentage of 69.9%,
which is the highest.

Each service type request has different delay Ψ𝑠 and relia-
bility Δ𝑠 requirements as shown in Table IV. For each service
type request, we assign reliability requirement similar to G
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Figure 7: Performance analysis of SFC subchaining.

Suite SLA assigned for various Google applications [40]. For
given requirements of a service request, we design a service
chain based on the Algorithms 1 and 2 such that the delay
and reliability requirements are met with minimal additional
backup resources without violating SLAs. Algorithm 1 uses
the subchaining procedure to meet the reliability of an SFC
without assigning any dedicated backup resources. Table V
shows the results of SFC subchaining procedure for both
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TABLE IV: SFC requirements [41]

Service Types Ordered VNFs of SFCs Bandwidth Delay (Ψ𝑠) Reliability (Δ𝑠) Traffic
1. Web service NAT-FW-TM-WOC-IDPS 100 kbps 500 ms 0.90 18.2%
2. Voice over IP NAT-FW-TM-FW-NAT 64 kbps 100 ms 0.999 11.8%
3. Video streaming NAT-FW-TM-VOC-IDPS 4 Mbps 100 ms 0.99 69.9%
4. Online gaming NAT-FW-VOC-WOC-IDPS 50 kbps 70 ms 0.99 0.1%

TABLE V: SFC request subchaining results based on Algo-
rithm 1

𝑙
M/M/1 setting M/M/m setting

Delay Reliability vCPUs Delay Reliability vCPUs
1 50 ms 0.5899 5×4×1=20 50 ms 0.5899 5×4×1=20
2 100 ms 0.8315 5×2×2=20 66.7 ms 0.9500 5×2×2=20
3 150 ms 0.9304 5×2×3=30 86.8 ms 0.9940 5×2×3=30
4 200 ms 0.9709 5×1×4=20 108.7 ms 0.9985 5×1×4=20

M/M/1 and M/M/m settings. From the results, it is clear that
SFC subchaining enhances the reliability as well as increases
the processing delay. It is observed that making two subchains
is enough to meet the requirements (both delay and reliability)
of service type 1 web service (Ψ𝑠 = 500 ms, Δ𝑠 = 0.90) in
M/M/m setting, hence no backup is required. For other service
types, we can make the maximum of only three subchains
because making more than three subchains violates the delay
constraint. In M/M/1 setting, making three subchains meets
the reliability requirement of service type 1 (web service). For
other service types, it is possible to make only two subchains
without violating the delay constraints. In both M/M/1 and
M/M/m settings, if reliability requirement is not met after
subchaining, then backups are added in an efficient manner
to meet the SLAs.

According to [35], each VNF of an SFC requires 4 vCPUs
to perform an operation. If we divide the SFC into multiple
subchains 𝑙, then each VNF in the subchain requires d 4

𝑙
e

vCPUs to perform the operation. Since each service request
has five ordered VNFs on a chain, the total amount of
resources (vCPUs) required to place the entire chain after
dividing into multiple subchains 𝑙 is calculated as 5×d 4

𝑙
e × 𝑙,

which is shown in the Table V.
Although subchaining enhances the reliability of SFCs, in

some cases it may not meet the reliability requirement of
service requests. For instance, VoIP service request reliability
requirement (required is 0.999) is not met by the subchaining
procedure (obtained is 0.995). It is because of delay constraint.
We proposed a novel way of satisfying reliability require-
ments of service requests with minimal additional redundant
resources using SFC subchaining and incremental backups in
Algorithms 1 and 2, respectively. From the results shown in
Table VI, it is observed that to meet the SLAs (particularly
reliability requirement) some service requests do not require
backups while other service requests require backups. For
instance, web service (Δ𝑠 = 0.9) and video streaming (Δ𝑠

= 0.99) service types do not require backups to meet the
reliability requirements in M/M/m setting. In M/M/1 setting,
web service request does not require backup but it needs three
subchains 𝑙 (one more than the M/M/m setting) while the video
streaming service type requires nine redundant backups (no
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Figure 8: Performance comparison with REACH [11].

backups are required in M/M/m setting) to meet the expected
reliability requirement. As we can see in Table VI, a maximum
of fifteen and five redundant backups are required for Voice
over IP service type to meet the reliability requirement in
M/M/1 and M/M/m settings, respectively. Total number of
resources (vCPUs) required to meet the SLAs is shown in
Table VI, which is calculated as resources required after
subchaining plus the resources required for redundant backups.
Since web service request does not require backups, the total
amount of resources required to guarantee the reliability is
30 vCPUs and 20 vCPUs in M/M/1 and M/M/m settings,
respectively. The running times of Algorithms 1 and 2 are
given in Table VII. As shown in the table, both the algorithms
terminated in a few seconds, i.e., in polynomial time.

For the same setup, we calculate the number of backups
required to meet the reliability requirement of service requests
and the number of resources required to place the primary
and backup network functions based on the solution proposed
in a state-of-the-art related work REACH [11]. The results
are shown in Table VIII. From Figure 8, it is clear that
our proposed solutions perform better than REACH [11]
in terms of number of backups and resources required for
reliable placement. Since we divide the SFC into multiple
subchains of lesser capacity, the resource required for backups
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TABLE VI: SFC request reliability guaranteeing results based on Algorithm 2

Service types M/M/1 setting M/M/m setting
𝑙 #backups Reliability vCPUs 𝑙 #backups Reliability vCPUs

Web service 3 0 0.9300 5×2×3 + 0 = 30 2 0 0.9500 5×2×2 + 0 = 20
Voice over IP 2 15 0.9983 5×2×2 + 15×2 = 50 3 5 0.9990 5×2×3 + 5×2 = 40
Video stream 2 9 0.9924 5×2×2 + 9×2 = 38 3 0 0.9940 5×2×3 + 0 = 30
Online gaming 1 10 0.9940 5×4×1 + 10×4 = 60 2 5 0.9940 5×2×2 + 5×2 = 30

TABLE VII: Average running times of Algorithms 1 and 2 in
seconds

# of service
requests

Algorithm 1 Algorithm 2
M/M/1 M/M/m M/M/1 M/M/m

25 0.28 0.18 0.62 0.58
50 0.39 0.31 0.97 0.89
100 0.62 0.51 1.59 1.49
200 0.93 0.98 2.85 2.72
300 1.32 1.64 4.14 3.96
400 1.64 2.43 5.45 5.27
500 1.87 3.36 6.72 6.52

TABLE VIII: SFC request reliability guaranteeing results
based on REACH [11]

Service types REACH [11]
No. of backups Reliability vCPUs

1. Web service 5 0.9500 5×4 + 5×4 = 40
2. Voice over IP 15 0.9990 5×4 + 15×4 = 80
3. Video streaming 10 0.9940 5×4 + 10×4 = 60
4. Online gaming 10 0.9940 5×4 + 10×4 = 60

in our design is much lesser than the resource requirement of
original undivided network functions. Therefore, compared to
REACH [11] our proposed solution consumes 25% to 50%
lesser redundant resources for M/M/1 and M/M/m settings,
respectively.

C. Performance Analysis of Placement of Reliable SFCs

We analyse the performance of reliable SFC design place-
ment proposed in section V. Since M/M/m setting performs
better than M/M/1 setting as shown in Tables V and VI, we
consider only the placement of subchains of M/M/m setting
along with backups based on the design results of Algorithms
1 and 2. If a VNF is shared to create multiple service chains
to serve multiple requests, then a failure of one common VNF
may bring down all the chains. To avoid disruption of multiple
services due to a single network element failure and to enhance
the reliability, an individual SFC chain is created for each
service request. Note that we have assumed that the primary
VNFs and their corresponding backup VNFs of an SFC chain
are placed on a single substrate node to easily activate the
backups and synchronize the primary VNFs operations with
backup VNFs, and to reduce energy consumption, bandwidth
consumption, and inter VNF communication delays.

We consider that each substrate node has the resource capac-
ity of 28 CPU cores and it is enabled by hyper-threading [42].
Therefore, 56 vCPUs are available at each substrate node to
host the virtual nodes. We assume that the underlying substrate
network has 400 nodes to accommodate multiple SFCs [43].
We consider four types of service requests as shown in Table
IV. Resources required for each service request to meet the
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Figure 9: Performance analysis of reliable SFC placement
algorithms.

SLAs are shown in Table VI. For an M/M/m setting, the
minimum and maximum vCPUs required for different service
types are 20 and 40, respectively. To have various vCPU
requirement size, we randomly generate vCPU requirement
between 20 and 40 for each service request.

We use JuMP [44] for modeling ILP problem and Gurobi
as solver to solve the ILP optimization problem. We compare
the performance of our modified matching algorithm (MMA)
with ILP (optimum), and multi-dimension matching algorithm
(MDM) [32]. The comparison is done in terms of objective
value (i.e., number of substrate nodes required for provisioning
services) and running time. As shown in Figure 9a, it is clear
that MMA provides near-optimal solution which is closer to
the optimal solution of ILP. As MMA allows to propose the
SFCs as long as the resource is available on the nodes and
utilizes the available resources of activated nodes efficiently,
it performs better than MDM. Figure 9b shows the results
for large service requests, in which MMA is compared with
MDM. The results show that MMA performs better than MDM
and the performance gap increases with increasing number
of service requests. We compare the running time of ILP
and matching-based placement algorithms in Table IX. It can
be seen that as we increase the number of service requests
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TABLE IX: Average running time comparison of ILP and
matching algorithms (in seconds)

#Service
requests

10 20 30 40 50 60

ILP 0.739 19.799 75.498 189.762 735.321 2143.962
MDM 0.03 0.046 0.091 0.151 0.242 0.334
MMA 0.024 0.049 0.109 0.17 0.28 0.394

in the network, the running time increases exponentially for
the ILP model. On the other hand, matching algorithm based
solutions take only a few seconds, which is significantly much
lesser than the ILP. It can be seen that ILP provides optimal
solution in reasonable time for small input instances. However,
ILP takes longer time to converge for large input instances
and hence not viable for practical deployment. Owing to
high time complexity of the ILP, we designed many-to-one
matching algorithm based MMA method to provide near-
optimal solution in polynomial time. Since the SFCs are
allowed to propose to the rejected nodes again as long as the
resource is available, number of rejections in MMA is higher
than in MDM. Hence, MMA takes more time than MDM as we
increase the number of service requests. Although our MMA
solution takes slightly more time than MDM, MMA requires
less number of substrate nodes to place SFCs compared to
MDM. As it can be seen in Figure 9b, the gap increases
as we increase the number of service requests. In terms of
percentage, our MMA algorithm requires 8% to 24% lesser
physical resources than MDM for placement of reliable SFCs.

VII. CONCLUSION

In this work, we focused on reliability assured, delay-
guaranteed, and resource efficient SFC placement problem.
We solved this problem in two phases. In the first phase, we
proposed a novel method for reliable SFC design with the ob-
jective of minimizing the additional redundant resources while
meeting the SLAs, and in the second phase we formulated the
reliable SFC placement problem using ILP to minimize the
physical resources and proposed a matching algorithm based
solution to overcome the computational complexity of ILP
in large input instances. Through extensive simulations we
showed that our proposed solution outperforms the state-of-
the-art solutions. Compared to the existing works, our reliable
SFC design technique requires very less number of additional
redundant resources to assure the required reliability while
meeting SLAs, and our reliable SFC placement technique is
more efficient and consumes minimal physical resources for
provisioning the reliable communication services. We plan to
extend this work by relaxing the assumption that the links
between physical nodes and virtual nodes are completely
reliable. Also, efficiently placing VNFs of an SFC in various
data center locations under different administrative domains
with different costs is an interesting and challenging problem
that we plan to address in our future work.
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