
120 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Information Set Monte Carlo Tree Search
Peter I. Cowling, Member, IEEE, Edward J. Powley, Member, IEEE, and Daniel Whitehouse, Student Member, IEEE

Abstract—Monte Carlo tree search (MCTS) is an AI technique
that has been successfully applied to many deterministic games
of perfect information. This paper investigates the application
of MCTS methods to games with hidden information and uncer-
tainty. In particular, three new information set MCTS (ISMCTS)
algorithms are presented which handle different sources of hidden
information and uncertainty in games. Instead of searching min-
imax trees of game states, the ISMCTS algorithms search trees of
information sets, more directly analyzing the true structure of the
game. These algorithms are tested in three domains with different
characteristics, and it is demonstrated that our new algorithms
outperform existing approaches to handling hidden information
and uncertainty in games.

Index Terms—Artificial intelligence (AI), game tree search,
hidden information, Monte Carlo methods, Monte Carlo tree
search (MCTS), uncertainty.

I. INTRODUCTION

M ONTE CARLO TREE SEARCH (MCTS) methods
have gained popularity in recent years due to success

in domains such as Computer Go [1]. In particular, the upper
confidence bound for trees (UCT) algorithm [2] forms the
basis of successful MCTS applications across a wide variety
of domains. Many of the domains in which MCTS has proved
successful, including Go, were considered challenging for
the application of traditional AI techniques (such as minimax
search with – pruning), particularly due to the difficulty of
forecasting the winner from a nonterminal game state. MCTS
has several strengths. It requires little domain knowledge,
although including domain knowledge can be beneficial [1].
It is an anytime algorithm, able to produce good results with
as much or as little computational time as is available. It also
lends itself to parallel execution.
This paper investigates the application of MCTS to games of

imperfect information. In particular, we consider games which
have as elements three different types of imperfect information.
• Information sets are collections of states, which appear in
a game when one player has knowledge about the state
that another player does not. For example, in a card game
each player hides his own cards from his opponents. In
this example, the information set contains all states which
correspond to all possible permutations of opponent cards.

Manuscript received November 09, 2011; revised February 10, 2012; ac-
cepted May 15, 2012. Date of publication May 22, 2012; date of current version
June 12, 2012. This work was supported by the U.K. Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/H049061/1.
The authors are with the Artificial Intelligence Research Centre, School of

Computing, Informatics andMedia, University of Bradford, Bradford BD7 1DP,
U.K. and also with the Department of Computer Science, University of York,
York YO10 5GH, U.K. (e-mail: peter.cowling@york.ac.uk; e.powley@brad-
ford.ac.uk; d.whitehouse1@student.bradford.ac.uk).
Digital Object Identifier 10.1109/TCIAIG.2012.2200894

A player knows which information set they are in, but not
which state within that information set.

• Partially observable moves appear in gameswhere a player
performs an action but some detail of the action is hidden
from an opponent.

• Simultaneous moves arise when multiple players reveal de-
cisions simultaneously without knowing what decision the
other players have made. The effect of the decisions is
resolved simultaneously. The well-known game of Rock-
Paper-Scissors is an example of this.

Hidden information poses many challenges from an AI point
of view. In many games, the number of states within an infor-
mation set can be large: for example, there are 52 8 10
possible orderings of a standard deck of cards, each of which
may have a corresponding state in the initial information set of
a card game. If states are represented in a game tree, this leads
to a combinatorial explosion in branching factor. Furthermore,
players may be able to infer information about an opponent’s
hidden information from the actions they make, and in turn may
be able to mislead (bluff) their opponents into making incorrect
inferences. This leads to an increased complexity in decision
making and opponent modeling compared to games of perfect
information.
The majority of existing work on MCTS in particular, and

game AI in general, focuses on games of perfect information.
However, there are several existing methods of applying MCTS
to games with hidden information. One popular approach is
determinization (of hidden information) which has been suc-
cessful in games such as Bridge [3] and Klondike Solitaire [4].
The determinization technique makes decisions by sampling
states from an information set and analyzing the corresponding
games of perfect information. However, determinization has
several known weaknesses. One weakness is that the compu-
tational budget must be shared between the sampled perfect
information games. The trees for these games will often have
many nodes in common, but the determinization approach does
not exploit this and the effort of searching those nodes is dupli-
cated. Another weakness is known as strategy fusion [5]: since
different states in the same information set correspond to dis-
tinct tree nodes, the search effectively makes the erroneous as-
sumption that different decisions can be made from these states.
These are not the only weaknesses with determinization, but
they are the main ones addressed in this paper.
We introduce a family of algorithms, information set Monte

Carlo tree search (ISMCTS), that overcome some of the weak-
nesses of the determinization approach. Instead of searching
the minimax tree produced by a determinization, we construct
a tree where the nodes represent information sets rather than
states. This offers the advantage that statistics about moves are
collected together in one tree, thus using the computational
budget more efficiently, whereas determinization constructs

1943-068X/$31.00 © 2012 IEEE

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 121

several trees and does not share any information between them.
Furthermore, this approach offers an improved model of the
decision-making process compared to determinization, since
the search is able to exploit moves that are good in many states
in the information set and the effects of strategy fusion can be
lessened or eliminated entirely.
The benefit of ISMCTS is investigated in three domains.
• Lord of the Rings: The Confrontation [6] is a board game
with elements similar to Stratego [7] and has several fea-
tures which make it even more challenging from an AI
perspective. It has hidden information, partially observable
moves, and simultaneous moves, all of which make the de-
cision making process highly complex. The game also has
an asymmetry between the two players since they have dif-
ferent win conditions and different resources available to
them, which necessitates different tactics and strategies.

• , , -games [8] are a generalization of games such as
Noughts and Crosses and Renju where players try to place
pieces in a row on an grid. We will investigate

the phantom 4, 4, 4-game where players cannot see each
other’s pieces. This leads to a game with hidden informa-
tion and partially observable moves.

• We extend our previous work [9], [10] on the popular Chi-
nese card game Dou Di Zhu [11], a game with hidden in-
formation.

The relative performance of ISMCTS versus determinized
UCT varies across these three domains. In Lord of the Rings:
The Confrontation a deep search is required for strong play,
and so ISMCTS has the advantage due to its more efficient
use of the computational budget. In the Phantom (4, 4, 4)
game the effects of strategy fusion are particularly detrimental,
so again ISMCTS outperforms determinization. However, in
Dou Di Zhu, neither of these effects has a particularly large
impact on playing strength and the information set tree has
an orders-of-magnitude larger branching factor than a de-
terminization tree, so the two algorithms are on a par. One
advantage of the ISMCTS approach over determinized UCT is
that it finds better quality strategies, which are less susceptible
to the effects of strategy fusion and more accurately model the
decision making process of the players.
In games such as Poker, computation of accurate prior be-

lief distributions through inference and opponent modeling is
one of the keys to strong play [12]. However, in many games,
accurate belief distributions are less important as it is possible
to find strategies that are robust to most or all possibilities for
the hidden information. We have observed this previously for a
simplified version ofDouDi Zhu [10], where a perfect opponent
model leads to only a small increase in performance over uni-
form belief distributions. This suggests that situations in which
useful hidden information can be inferred from our opponent’s
actions are rare. Our intuition is that the other games studied in
this paper are also of this type: when we as humans play the
games, situations where we infer hidden information based on
opponent actions are much rarer than situations where we aim
for robustness in the face of uncertainty. Thus, we do not con-
sider belief distributions in this paper and instead assume uni-
form distributions over the states in information sets.
In many games of imperfect information, all pure policies are

dominated and thus a strong player must find a mixed policy.

Rock-Paper-Scissors and Poker are two examples where this
is clearly the case, where mixing strategies is important to
achieving a strong level of play. The algorithms described in
this paper are not designed explicitly to seek mixed policies
but they often do so anyway, in the sense of choosing different
actions when presented with the same state. This arises from the
random nature of Monte Carlo simulation: the MCTS algorithm
is not deterministic. Shafiei et al. [13] demonstrate that the
UCT algorithm finds a mixed policy for Rock-Paper-Scissors,
and our preliminary investigations suggest that ISMCTS finds
mixed policies for the small, solved game of Kuhn Poker [14].
However, MCTS often fails to find optimal (Nash) policies
for games of imperfect information. Ponsen et al. [15] suggest
that algorithms such as Monte Carlo counterfactual regret
(MCCFR) [16] are a better fit for approximating Nash equi-
libria in games whose trees contain millions of nodes, whereas
the strength of an MCTS approach lies in finding a strong
suboptimal policy but finding it in reasonable computation time
for complex games with combinatorially large trees.
The paper is structured as follows. Section II defines the

notation used to describe a game and formally defines the three
different types of imperfect information. Section III presents
relevant background material, including an introduction to
MCTS (Section III-A), a review of existing approaches for
games of imperfect information (Section III-B), and remarks on
handling simultaneous moves and chance nodes in tree search
(Section III-C). Section IV describes in detail the algorithms
presented in this paper, including the novel ISMCTS algorithms.
Section V describes Lord of the Rings: The Confrontation and
presents experimental results. Section VI discusses results for
the Phantom (4, 4, 4) game. Section VII describes the game
Dou Di Zhu and discusses some of the challenges this domain
presents. Section IX ties together the results from the three
preceding sections and offers concluding remarks. Finally,
ideas for future work are presented in Section X.

II. DEFINITIONS AND NOTATION

This section introduces the terminology and associated nota-
tion that we use throughout this paper. The notation is our own,
but more detail on the concepts can be found in a standard text-
book on game theory, e.g., [17].
A game is defined on a directed graph . The nodes in
are called states of the game; the leaf nodes are called ter-

minal states, and the other nodes nonterminal states. A game
has a positive number of players, numbered . There
is also an environment player numbered 0. Each state has as-
sociated with it a number , the player about
to act. Each terminal state has associated with it a vector

, the reward vector.
The game is played as follows. At time the game be-

gins in the initial state . At time , if state is
nonterminal, player chooses an edge and
the game transitions through that edge to state . This con-
tinues until a time when is terminal. At this point,
each player receives a reward equal to the relevant entry in the
vector , and the game ends.

122 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Players typically do not choose edges directly, but choose ac-
tions. Actions are equivalence classes of edges, with the restric-
tion that two edges starting from the same node cannot be in
the same action. We also require that all edges in an action have
the same player about to act in their start nodes. Actions cap-
ture the notion that different edges from different states can be
in some sense equivalent: for example, an action may consist of
all edges leading from a state where player 1 holds an ace (and
some other cards) to the state where player 1 has just played the
ace; such an action would be labeled “player 1 plays an ace.”
The set of actions from a state is denoted ; this is simply
the set of action classes restricted to edges outgoing from .
The transition function maps a (state, action) pair to

a resulting state , by choosing an edge . Note
that the domain of does not include all (state, action) pairs, as
not all actions are available in each state.
A policy for player maps each state with to a

probability distribution over . This distribution specifies
how likely the player is to choose each action from that state.
One way of stating the fundamental problem of game AI (and
indeed of game theory) is as finding the policy that leads to the
highest expected reward, given that all other players are trying
to do the same. The exception here is the environment player,
whose policy is fixed as part of the game definition and specifies
the probabilities of outcomes for chance events.
This paper studies games of imperfect information. In these

games, each player partitions the state set into information
sets. Note that, in general, each player’s partitioning is different.
See Fig. 3 for example. The players do not observe the actual
state of the game, but rather the information set containing the
actual state. Essentially, the states in a player’s information set
are indistinguishable from that player’s point of view. In par-
ticular, this means that the player’s choices of actions must be
predicated on information sets, not on states.
This paper also studies games with partially observable

moves. Here each player further partitions the actions into
moves. We require that the partitions for a player’s own actions
are singletons, i.e., that players can fully observe their own
moves. When a player plays an action, the other players do not
observe that action directly but observe the move to which the
action belongs. The set of moves from player ’s point of view
from a state is denoted , and is the set of move classes
restricted to edges outgoing from . In the case where ,
we have .
We make the restriction that two edges leading from states

in a player information set, and contained within the same
move from player ’s point of view, must lead to states in the
same player information set. In other words, all available in-
formation about the game can be gathered by observing moves,
without the need to directly observe information sets. This also
allows a transition function on (information set, move) pairs to
be well defined. This property can be achieved if necessary by
addition of environment states, in which the environment player
has exactly one action available; this action may depend upon
(and thus provide an observation of) the actual state, but dif-
ferent states in the same information set from the point of view
of some other player may have different actions available. This
is exemplified in Section V-A4.

In summary, we have the following definitions.
Definition 1: A game of imperfect information is a 9-tuple

(1)

where is a finite nonempty directed graph, with the set
of states and the set of state transitions; is the initial
state; is the number of players; is the
utility function, where is the set of leaf nodes (terminal
states); is the player about to act in each
state; , where for all with
we have , is the environment policy;
is an equivalence relation on , whose classes are player

’s information sets; is an equivalence relation on , whose
classes are moves as observed by player . Classes consisting of
edges with are also known as player ’s actions.
Definition 2: Consider a game , a state , and a player . The

set of legal moves from from player ’s point of view is

(2)

The set of legal actions from is

(3)

i.e., the set of legal moves from the point of view of the player
about to act.
Definition 3: Consider a game . Let

, the set of all pairs of states
and their legal actions. The transition function for is the
function such that implies .
In other words, means that the single edge in
that starts from ends at . (There is exactly one edge in
starting from , so this is well defined.)
The transition function is extended to a function from (infor-

mation set, move) pairs to information sets, where all observa-
tions are from the point of view of the same player, in the natural
way.

III. BACKGROUND

A. Monte Carlo Tree Search

MCTS is a class of game tree search algorithms that make use
of simulated games to evaluate nonterminal states. Simulated
games select random actions until a terminal state is reached
and the reward is averaged over multiple simulations to esti-
mate the strength of each action. MCTS algorithms have gained
in popularity in recent years due to their success in the field of
Computer Go [1]. In particular, the UCT algorithm [2] proposed
in 2006 has led to the recent upsurge of interest in MCTS algo-
rithms.
MCTS algorithms build a subtree of the entire decision tree

where usually one new node is added after every simulation.
Each node stores estimates of the rewards obtained by selecting
each action and an improved estimate is available after every
simulation step. Each decision in the tree is treated as a multi-
armed bandit problem where the arms are actions, and the re-
wards are the results of performing a Monte Carlo simulation
after selecting that action. MCTS is an anytime algorithm, re-
quiring little domain knowledge.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 123

B. AI for Games of Imperfect Information

This section briefly surveys research on AI for games with
stochasticity and/or imperfect information.
1) Determinization: One approach to designingAI for games

with stochasticity and/or imperfect information is determiniza-
tion, also known as perfect information Monte Carlo (PIMC)
[18]. For an instance of a stochastic game with imperfect infor-
mation, a determinization is an instance of the equivalent deter-
ministic game of perfect information, in which the current state
is chosen from the AI agent’s current information set, and the
outcomes of all future chance events are fixed and known. For
example, a determinization of a card game is an instance of the
game where all players’ cards, and the shuffled deck, are visible
to all players. We then create several determinizations from the
current game state, analyze each one using AI techniques for
deterministic games of perfect information, and combine these
decisions to yield a decision for the original game. The term de-
terminization refers to the process of converting a game of im-
perfect information to an instance of a game of perfect informa-
tion. The AI technique of analyzing multiple determinizations
to make a decision is often called Monte Carlo sampling (of
determinizations). We refer to Monte Carlo sampling of deter-
minizations simply as determinization to avoid confusion with
the Monte Carlo sampling of game simulations used by MCTS
algorithms.
Ginsberg’s Intelligent Bridge Player (GIB) system [3] applies

determinization to create an AI player for the card game Bridge
which plays at the level of human experts. GIB begins by sam-
pling a set of card deals consistent with the current state of
the game. For each of these deals and for each available
action , the perfect information (“double dummy”) game is
searched to find the score resulting from playing action
in determinization . The search uses a highly optimized ex-

haustive search of the double dummy Bridge game tree. Finally,
GIB chooses the action for which the sum is
maximal.
Bjarnason et al. [4] present a variant of UCT for stochastic

games, called sparse UCT, and apply it to the single-player card
game of Klondike Solitaire. Bjarnason et al. [4] also study an
ensemble version of sparse UCT, in which several search trees
are constructed independently and their results (the expected re-
wards of actions at the root) are averaged. They find that en-
semble variants of UCT often produce better results in less time
than their single-tree counterparts. A special case of ensemble
sparse UCT, which Bjarnason et al. call HOP-UCT, is equiv-
alent to a straightforward application of determinization (more
specifically, hindsight optimization [19]) with UCT as determin-
istic solver, in which the determinization is constructed lazily as
UCT encounters each chance event.
Bjarnason et al. [4] treat Klondike Solitaire as a stochastic

game of perfect information: rather than being fixed from the
start of the game, the values of face down cards are determined
as chance events at the moment they are revealed. This works
for single-player games where the hidden information does not
influence the game until it is revealed, but generally does not
work for multiplayer games where the hidden information influ-
ences the other players’ available and chosen actions from the

beginning of the game. Hence, the specific methods of sparse
UCT and lazy determinization are not immediately applicable
to multiplayer games, but the general ideas may be transfer-
able. Bjarnason et al. [4] show that sparse UCT is able to win
around 35% of Klondike Solitaire games, which more than dou-
bles the estimated win rate for human players. Determiniza-
tion is also the state-of-the-art approach for card games such as
Bridge [3] and Skat [20], [21]. Determinized MCTS also shows
promise in games such as Phantom Go [22] and Phantom Chess
(Kriegspiel) [23], among others.
Despite these successes, determinization is not without its

critics. Russell and Norvig [24] describe it (somewhat dismis-
sively) as “averaging over clairvoyance.” They point out that
determinization will never choose to make an information gath-
ering play (i.e., a play that causes an opponent to reveal some
hidden information) nor will it make an information hiding play
(i.e., a play that avoids revealing some of the agent’s hidden
information to an opponent). Ginsberg [3] adds weight to this
claim by making the same observations about GIB specifically.
Russell and Norvig’s criticisms of determinization are valid

but equally valid are the experimental successes of determiniza-
tion. Frank and Basin [5] identify two key problems with deter-
minization.
• Strategy fusion: An AI agent can obviously not make dif-
ferent decisions from different states in the same informa-
tion set (since, by definition, the agent cannot distinguish
such states); however, different decisions can be made in
different determinizations.

• Nonlocality: Some determinizations may be vanishingly
unlikely (rendering their solutions irrelevant to the overall
decision process) due to the other players’ abilities to direct
play away from the corresponding states.

Building on the work of Frank and Basin, Long et al. [18]
identify three parameters of game trees and show that the effec-
tiveness of determinization is related to a game’s position in this
parameter space. The parameters measure the ability of a player
to influence the outcome of a game in its late stages (leaf cor-
relation), the bias in the game toward a particular player (bias)
and the rate at which hidden information is revealed (disam-
biguation). Long et al. [18] demonstrate how these parameters
can be used to predict whether determinization is an appropriate
method for a given game.
The effects of strategy fusion can manifest in different ways.

First, strategy fusion may arise since a deterministic solver may
make different decisions in each of the states within an informa-
tion set. In this situation, the issue is that the agent assumes a dif-
ferent decision can be made depending on the state and this in-
formation is not known. The SO-ISMCTS algorithm described
in Section IV-E addresses this issue by searching a single tree
of information sets. Second, strategy fusion may arise from par-
tially observable moves. When an opponent makes a partially
observable move, a deterministic solver will assume that the
move can be observed and that it can make a different deci-
sion depending on the actual move made by the opponent. The
MO-ISMCTS algorithm described in Section IV-G addresses
this by searching a tree for each player, which builds a tree based
on information sets which cannot be distinguished by a player
after observing a move made by an opponent.

124 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

2) Other Approaches: One alternative approach to tree
search for stochastic games is expectimax search [24]. This is
a modification of the well-known minimax algorithm to game
trees containing chance nodes. The value of a chance node is
the expected value of a randomly chosen child (i.e., the sum of
the values of its children weighted by the probabilities of the
corresponding chance outcomes).
Stochastic games of imperfect information have been well

studied in the field of game theory [17]. Thus, a popular ap-
proach to AI for such games is to compute (or approximate) a
Nash equilibrium strategy; examples of this approach include
Gala [25] and counterfactual regret [26]. The definition of Nash
equilibrium requires only that the strategy be optimal against
other optimal (Nash) strategies, so Nash strategies often fail to
fully exploit suboptimal opponents. Also for many domains the
number of states is far too large to compute or even approximate
a Nash equilibrium.
3) Belief Distributions: In games of imperfect information,

it is often possible to infer hidden information by observing the
moves of the other players, according to somemodel of the other
players’ decision processes. One way of capturing this notion is
via belief distributions, probability distributions over states in
the current information set where the probabilities are inferred
from the history of observed moves. This type of inference has
frequently been applied to the game of Poker [12], [27], but also
to other games such as Scrabble [28] and the card game Skat
[20], [21]. We do not consider belief distributions in this paper.

C. Handling Uncertainty in Tree Search

1) Simultaneous Moves: Simultaneous moves are a special
case of imperfect information, in which each player indepen-
dently chooses an action and these actions are applied at the
same time.
Simultaneous moves can be modeled by having players

choose their actions sequentially, while hiding their choices
from the other players, until finally an environment action
reveals the chosen actions and resolves their effects. With this
in mind, any algorithm that can handle imperfect information
in general can handle simultaneous moves in particular. How-
ever, some of our algorithms (particularly those not designed
to handle partially observable moves) perform poorly using
this model. Under a simple determinization approach, the
first player is overly pessimistic (assuming the opponent can
observe the chosen move and select the best response to it)
while the second player is overly optimistic (assuming the
first player’s move is fixed at the point of the second player’s
decision, and thus determinizing it randomly).
For this reason, we add a mechanism to the algorithms

studied in this paper specifically to handle simultaneous moves.
The UCT algorithm has been applied to the simultaneous move
game Rock-Paper-Scissors by Shafiei et al. [13], using an
approach where each player’s choice of action is treated as
a separate independent multiarmed bandit problem. In other
words, instead of selecting player 1’s move, descending the
corresponding tree branch, and selecting player 2’s move from
the resulting child node, both moves are selected independently
from the same node and the tree branch corresponding to the

resulting pair of moves is descended. Shafiei et al. [13] show
that this approach finds mixed policies, though not necessarily
Nash policies.
Teytaud and Flory [29] suggest a modification of this ap-

proach, in which the UCB bandit algorithm is replaced by the
EXP3 algorithm [30] at nodes with simultaneous moves only
(i.e., UCB is still used elsewhere in the tree). The justification
for using EXP3 rather than UCB is that the optimal policy at a si-
multaneous move node is often mixed; UCB is designed to con-
verge to a pure policy, whereas EXP3 explicitly seeks a mixed
policy. Teytaud and Flory [29] further strengthen this justifica-
tion by comparing the playing strength of UCB versus EXP3
for the card game Urban Rivals, showing that EXP3 performs
better and requires less tuning. In this paper, our algorithms use
the EXP3 approach to handle simultaneous moves.
In EXP3, the probability of selecting an arm is

(4)

where is the sum of rewards from previously selecting arm
, each divided by the probability of selecting on that trial, and
and are constant parameters. This equation is of a different

form to that given by Auer et al. [30], but is equivalent and more
numerically stable.
Naturally the performance of EXP3 depends on the choice of

coefficients. After [30, Corollary 4.2], we take

(5)

and

(6)

where is the number of arms, is the total number of
trials, and is the base of the natural logarithm.
2) Chance Nodes: Handling of chance events is not a pri-

mary focus of this paper. However, chance nodes do occur under
certain circumstances in one of our test domains (Section V-A),
so they cannot be ignored completely. Note that our chance
nodes have a small number of possible outcomes (at most four
but rarely more than two), all with equal probability. Techni-
cally, another test domain (Section VII-A) includes a chance
event with combinatorially many outcomes corresponding to
shuffling and dealing a deck of cards at the beginning of the
game, but since this occurs before any player has made a deci-
sion it never occurs as a chance node in our search tree.
Consider a chance node with branches. To ensure that each

branch is explored approximately equally, the first visits select
all outcomes in a random permutation, the second visits select
all outcomes in another random permutation, and so on. This
is almost trivial to implement in UCT: since we already use
UCB with random tie-breaking for action selection, it suffices
to treat the environment player as a decision-making agent who
has perfect information and receives a reward of zero for all
terminal states. The UCB exploration term then ensures that the
branches are visited in the manner described above.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 125

IV. DESCRIPTION OF ALGORITHMS

This section describes the algorithms studied in this paper.
Section IV-B introduces the subset-armed bandit problem, a
variant of the multiarmed bandit problem that is used in several
of the algorithms. Sections IV-C and IV-D describe how MCTS
(and specifically UCT) can be adapted to games of imperfect in-
formation, by “cheating” (gaining access to the hidden informa-
tion) and by determinization respectively. Section IV-E–IV-G
introduce the ISMCTS family of algorithms, novel variants of
MCTS for searching trees in which nodes correspond to infor-
mation sets rather than states. These algorithms also make use
of the techniques described in Section III-C for handling chance
nodes and simultaneous moves.

A. Choice of UCB1 Exploration Constant

UCT [2] uses the UCB1 algorithm [31] for action selection.
UCB1 calculates the score of a node as

(7)

where is the average reward of the simulations passing
through the node , is the number of times the parent of has
been visited by the algorithm, and is the number of times
the node was selected from its parent.
When using UCB1 an important issue is the choice of

coefficient for the exploration term in the UCB1 formula.
The choice of this parameter can affect playing strength and
the optimal value can depend on both the domain and the
MCTS algorithm used. We conducted an experiment where
determinized UCT, SO-ISMCTS, and MO-ISMCTS players
with exploration constant played
repeatedly against determinized UCT with exploration con-
stant 0.7 for each of the three games studied. It was observed
that none of the algorithms are particularly sensitive to the
coefficient value for these games, although performance does
decrease outside the range . The value of 0.7 was thus
used for all algorithms in all experiments in this paper.

B. Subset-Armed Bandits

In the following algorithms, we sometimes have the situation
where the set of actions available at a particular node in the tree
varies between visits to that node. If the observer of an infor-
mation set is not the player about to act, then different states in
the same information set can have different sets of legal actions:
for example, the actions available to an opponent may depend
on the cards in the opponent’s hand, which vary for different
states in the player’s information set. Consequently, a node for
an information set has a branch for every action that is legal in
some state, but which branches are valid depends on which state
is currently under consideration.
In other words, we have a multiarmed bandit where only a

subset, and generally a different subset, of the arms is avail-
able on each trial. We call this a subset-armed bandit. Since
this problem arises from considering legal action sets for dif-
ferent states in an information set, it is not enough to say that
each arm is available with some probability: the availability of
two different arms in the same trial is often correlated. We can,

Fig. 1. A game tree for a simple single-player game. Nodes represent game
states. Nodes shaped denote player 1 decision states, environment states,
and terminal states labeled with reward values for player 1. Nonterminal
nodes in corresponding positions in the and subtrees are in the same player
1 information set; this is shown by a dashed line for the root nodes. Adapted
from [18, Fig. 1].

Fig. 2. An information set search tree for the game shown in Fig. 1. Here nodes
shaped denote information sets where player 1 is both the observer and the
player about to act.

however, say that the subsets available on different trials are in-
dependent.
We apply a simple modification to UCB1 and other standard

bandit algorithms to handle subset-armed bandits. We replace
in (7) with the number of trials in which the parent was vis-

ited and node was available. Without this modification, rare
actions (i.e., actions available in few states in the information
set) are over-explored: whenever they are available for selec-
tion their ratio of visits to parent visits is very small, resulting
in a disproportionately large UCB value. If every state in the in-
formation set has a rare action, this results in the search doing
almost no exploitation and almost all exploration.
One drawback of this approach is that it does not allow an

action to have a different value depending on which subset of
actions it belongs to (instead the value is the average across
all visited subsets). An alternative approach was considered in
which the statistics used in (7) are calculated independently
for each subset. This allows the choice of action to depend on
the set of actions available, but requires many visits to each
subset to gather accurate statistics, making it impractical when
the number of subsets is large. An in-depth analysis of the math-
ematics of subset-armed bandits is a subject for future work.

C. Cheating UCT

As a benchmark we consider UCT agents that are allowed to
“cheat” and observe the actual state of the game. (Throughout

126 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 3. A game tree for a simple two-player game. Nodes shaped denote player 1 decision states, player 2 decision states, environment states, and
terminal states labeled with reward values for player 1 (the game is zero-sum, so player 2’s rewards are the negation of those for player 1). Player 1’s information
set relation is shown by dashed lines for selected nodes. The partitioning of the remaining nodes is determined by their positions in subtrees: if two nodes occupy
the same position in two subtrees, and the roots of those subtrees are in the same information set as each other, then the two nodes are in the same information set
as each other. The remaining nodes are partitioned in the obvious way. Player 2 has perfect information, i.e., her information sets are singletons.

the rest of this paper, the word cheat refers specifically to ob-
serving information that is supposed to be hidden or uncertain,
rather than any other violation of the game rules.) Cheating in
this way is not a valid approach to AI for games of imperfect
information, but it provides a useful benchmark for other algo-
rithms since it is an approach which is expected to work very
well compared to approaches that do not cheat.
For fair comparison with our other algorithms, we consider

two cheating UCT agents: one using plain UCT with a single
search tree, and one using ensemble UCT [32] with several in-
dependent search trees whose root statistics are combined at the
end of the search. As we will see, these are cheating versions of
information set MCTS and determinized UCT respectively.

D. Determinized UCT

Our simplest noncheating agent uses a determinization ap-
proach, as described in Section III-B1. It samples a number of
(not necessarily different) states from the current information
set uniformly at random, constructs independently a UCT tree
rooted at each of these states, and chooses a move for which the
number of visits from the root, summed across all trees, is max-
imal.

E. Single-Observer Information Set MCTS (SO-ISMCTS)

To overcome the problems associated with the determiniza-
tion approach, we propose searching a single tree whose nodes
correspond to information sets rather than states. In single-ob-
server information set MCTS (SO-ISMCTS), nodes in the tree
correspond to information sets from the root player’s point of
view, and edges correspond to actions (i.e., moves from the
point of view of the player who plays them). The correspon-
dence between nodes and information sets is not one–one: par-
tially observable opponent moves that are indistinguishable to
the root player have separate edges in the tree, and thus the re-
sulting information set has several nodes in the tree. We address
this in subsequent sections.
Fig. 1 shows a game tree for a simple single-player game of

imperfect information. The root information set contains two

states: and . The player first selects one of two actions: or
. Selecting yields an immediate reward of and ends

the game. If the player instead selects , he must then select
an action or . If the game began in state , then and
lead to rewards of and , respectively (this information

being revealed by means of environment action or); if
the game began in state , then the rewards are interchanged.
If states and are equally likely, action has an expec-

timax value of 0: upon choosing , both and have an ex-
pectimax value of 0. Thus, the optimal action from the root is .
However, a determinizing player searches trees corresponding
to each state and individually and assigns a minimax
value of in each (by assuming that the correct choice of
or can always be made), thus believing to be optimal. This
is an example of strategy fusion (Section III-B1).
Fig. 2 shows the tree searched by SO-ISMCTS for this game.

In this case, each node is in one–one correspondence with an in-
formation set. After a sufficiently large number of iterations the
algorithm assigns each environment node an expected value of
0 and thus assigns the same value to action , thus overcoming
strategy fusion and correctly identifying as the optimal move.
Fig. 3 shows a game tree for a more complex, two-player

game. The game starts in one of three states: , , or . These
states are distinguishable to player 2 but not to player 1. Player
1 first selects an action or . If he chooses , player 2
then selects an action , , or . However, only two of these
actions are available, and which two depends on the initial state.
Player 1 then selects or , and both players receive rewards
as shown. Note that if player 2 chooses or , then the rewards
do not depend on the initial state, but if player 2 chooses , then
the rewards do depend on the initial state.
Fig. 4(a) shows the tree searched by SO-ISMCTS for this

game. For an information set where the observer is not
the player about to act, i.e., , the set of avail-
able actions can differ for different states . The set
of legal actions may depend on information to which another
player does not have access. When searching trees of informa-
tion sets, this creates a problem at opponent nodes. There must

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 127

Fig. 4. An information set search tree for the game shown in Fig. 3. (a) The entire tree. (b) The restriction of the tree to determinization .

Fig. 5. Information set search trees for the game shown in Fig. 3 with partially observable moves, where player 2 cannot distinguish from or from
and player 1 cannot distinguish between , and : (a) the tree searched by SO-ISMCTS; (a) and (b) the pair of trees searched by MO-ISMCTS, where (a) is
from player 1’s point of view and (b) from player 2’s point of view.

be a branch for every action that can possibly be available from
that information set; this is illustrated in Fig. 4(a), where the op-
ponent decision node has branches for all three actions , ,
even though only two of those three actions are available in each
state , , in the corresponding player 1
information set. However, the exploitation and exploration of
actions must be balanced with how likely those actions are to
be available. For example, we wish to avoid overexploiting an
action that is a certain win for the opponent but is only avail-
able with probability 1/100 (i.e., in only one of 100 states in the
information set).
To address this, at the beginning of each iteration, we choose

a determinization, and restrict that iteration to those regions
of the information set tree that are consistent with that deter-
minization. Thus, the branches at opponent nodes are available
for selection precisely as often as a determinization is chosen
in which the corresponding action is available. In other words,
the probability of an action being available for selection on a
given iteration is precisely the probability of sampling a deter-
minization in which that action is available. The set of actions
available at an opponent node can differ between visits to that
node, and thus action selection is a subset-armed bandit problem

(Section IV-B). Fig. 4(b) demonstrates such a restriction of the
search tree shown in Fig. 4(a).
High-level pseudocode for the SO-ISMCTS algorithm is pre-

sented in Algorithm 1. More detailed pseudocode is given in
part A of the Appendix. In this and other pseudocode in this
paper, it is assumed that player 1 is conducting the search. The
pseudocode does not specify which bandit algorithm is used
during selection. The experiments in this paper all use UCB
modified for subset-armed bandits as described in Section IV-B,
or EXP3 as described in Section III-C-I at nodes with simulta-
neous moves (which only occur in LOTR:C, Section V).

Algorithm 1: High-level pseudocode for the SO-ISMCTS
algorithm. More detailed pseudocode is given in part A of
the Appendix. For the variant of this algorithm with partially
observable moves (SO-ISMCTS+POM) simply replace the
word “action” below with “move (from player 1’s viewpoint),”
and see the more detailed pseudocode in part B of the
Appendix.

1: function SO-ISMCTS

128 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

2: create a single-node tree with root corresponding to the
root information set (from player 1’s viewpoint)

3: for iterations do
4: choose a determinization at random from , and

use only nodes/actions compatible with this iteration
5:
6: //Selection
7: repeat
8: descend the tree (restricted to nodes/actions

compatible with) using the chosen bandit algorithm
9: until a node is reached such that some action from

leads to a player 1 information set which is not
currently in the tree or until is terminal

10:
11: //Expansion
12: if is nonterminal then
13: choose at random an action from node that is

compatible with and does not exist in the tree
14: add a child node to corresponding to the player

1 information set reached using action and set
it as the new current node

15:
16: //Simulation
17: run a simulation from to the end of the game using

determinization
18:
19: //Backpropagation
20: for each node visited during this iteration do
21: update ’s visit count and total simulation reward
22: for each sibling of that was available for

selection when was selected, including itself do
23: update ’s availability count
24:
25: return an action from the root node such that the

number of visits to the corresponding child node is
maximal

The idea of constructing trees of information sets and sam-
pling determinizations to restrict the region to be searched is
similar to the partially observable UCT (PO-UCT) approach of
Silver and Veness [33], although PO-UCT operates on the do-
main of partially observable Markov decision problems (i.e.,
single-player games of imperfect information) rather than ad-
versarial games. Schäfer [21] also applied an information set
tree approach for the game Skat using the UCB1 algorithm for
selection. The information sets are from the point of view of the
player about to play, rather than from the point of view of one
player as in SO-ISMCTS.
Consider the example tree in Fig. 4(b). Note that the restricted

tree is never explicitly constructed, but the tree policy is re-
stricted as it descends the tree by means of the determinization
. In turn, is updated as the tree is descended by applying the
selected actions. Otherwise, selection works as in plain UCT.
Suppose that we used determinization and the sequence of
actions selected is , , , . Let us identify each of the
visited nodes with its incoming action (i.e., the label of the in-

coming edge). At nodes , , , and the root, the visit
count and total reward is updated as usual. For these
nodes and for all siblings that were also available for selection,
i.e., including nodes and but not nodes and , the
availability count is incremented by 1. The availability
count replaces the parent node’s visit count in the UCB formula
in order to adapt UCB to the subset-armed bandit problem, as
discussed in Section IV-B.

F. Single-Observer Information Set MCTS With Partially
Observable Moves (SO-ISMCTS + POM)

SO-ISMCTS does not completely avoid the problem of
strategy fusion, as it treats all opponent moves as fully observ-
able. Suppose that the game in Fig. 3 is modified to include
partially observable moves, so that player 2 cannot distinguish
from nor from and player 1 cannot distinguish

between , and . Here the search assumes that different
actions can be taken in response to opponent actions and ,
for instance, whereas in fact these actions are indistinguishable
and lead to the same player 1 information set.
In SO-ISMCTS, edges correspond to actions, i.e., moves

from the point of view of the player who plays them. In
single-observer information set MCTS with partially observ-
able moves (SO-ISMCTS + POM), edges correspond to moves
from the point of view of the root player. Thus, actions that are
indistinguishable from the root player’s point of view share a
single edge in the tree. Fig. 5(a) shows the SO-ISMCTS + POM
search tree for the game in Fig. 3. The branches from player
1’s decision nodes are unchanged; however, player 2’s decision
node now has a single branch corresponding to the single move
from player 1’s point of view, rather than one branch for each
action.
As in SO-ISMCTS, each iteration is guided by a determiniza-

tion. This raises the problem of how to update the determiniza-
tion according to a selected partially observable opponent
move. For a determinization and amove , the set of com-
patible actions is . If is a singleton, then we
simply apply its single element to to obtain the determiniza-
tion for the next level in the tree. If , then we choose an
action from uniformly at random, since the tree does not store
any data with which to make a more informed choice.
High level pseudocode for the algorithm is as given in Al-

gorithm 1 for SO-ISMCTS, except that “action” must be re-
placed by “move (from player 1’s viewpoint).” Part B of the
Appendix has more detailed pseudocode which specifies how
the determinization should be maintained as we descend the tree
for SO-ISMCTS-POM.
Consider the example in Fig. 5(a). SO-ISMCTS + POM func-

tions in much the same way as SO-ISMCTS (recall the example
at the end of Section IV-E), except that branch is selected
in place of . When updating the determinization while de-
scending the tree, an action must be applied corresponding to
the selection of . In this case, one of , , or is applied
depending on which are legal actions in the current determiniza-
tion. For each determinization, there are two possibilities, so one
is chosen uniformly at random.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 129

G. Multiple-Observer Information Set MCTS (MO-ISMCTS)

SO-ISMCTS + POM solves the strategy fusion problem of
SO-ISMCTS, at the expense of significantly weakening the op-
ponent model: in particular, it is assumed that the opponent
chooses randomly between actions that are indistinguishable to
the root player. In the extreme case, when SO-ISMCTS + POM
is applied to a phantom game (as in Section VI) all opponent
actions are indistinguishable and so the opponent model is es-
sentially random.
To address this, we proposemultiple-observer information set

MCTS (MO-ISMCTS). This algorithmmaintains a separate tree
for each player, whose nodes correspond to that player’s infor-
mation sets and whose edges correspond to moves from that
player’s point of view. Each iteration of the algorithm descends
all of the trees simultaneously. Each selection step uses statistics
in the tree belonging to the player about to act in the current de-
terminization to select an action. Each tree is then descended by
following the branch corresponding to the move obtained when
the corresponding player observes the selected action, adding
new branches if necessary.
The information set trees can be seen as “projections” of the

underlying game tree. Each iteration induces a path through the
game tree, which projects onto a path through each information
set tree. Fig. 5 depicts these trees for the simple game of Fig. 3:
Fig. 5(a) corresponds to information sets and moves from player
1’s point of view, and Fig. 5(b) from player 2’s point of view.
The MO-ISMCTS approach is similar to the MMCTS al-

gorithm proposed by Auger [34]. However, there are several
differences between MO-ISMCTS and MMCTS, the most im-
portant being that MO-ISMCTS uses determinizations to guide
and restrict each search iteration whereas MMCTS does not.
Also, whereas Auger [34] describes use ofMMCTS in an offline
manner (running the algorithm for a very large number of sim-
ulations and querying the resulting tree for decisions during
play), MO-ISMCTS is designed for the more conventional on-
line mode of play.
Pseudocode for MO-ISMCTS is given in Algorithm 2 and

part C of the Appendix.

Algorithm 2: High-level pseudocode for the MO-ISMCTS
algorithm. More detailed pseudocode is given in part C of the
Appendix.

1: function MO-ISMCTS
2: for each player , create a single-node tree

with root (representing from player ’s
viewpoint)

3: for iterations do
4: choose a determinization at random from , and

use only nodes/actions compatible with this iteration
5:
6: //Selection
7: repeat
8: descend all trees in parallel using a bandit algorithm

on player ’s tree whenever player is about to move
9: until nodes are reached in trees

respectively, player is about to move at node

, and some action from leads to a player
information set which is not currently in the player
tree or until is terminal

10:
11: //Expansion
12: if is nonterminal then
13: choose at random an action from node that is

compatible with and does not exist in the player
tree

14: for each player do
15: if there is no node in player ’s tree corresponding

to action at node , then add such a node
16:
17: //Simulation
18: run a simulation from to the end of the game using

determinization , (starting with action if is
nonterminal)

19:
20: //Backpropagation
21: for each node visited during this iteration, for all

players do
22: update ’s visit count and total simulation reward
23: for each sibling of that was available for

selection when was selected, including itself
do

24: update ’s availability count
25:

26: return an action from such that the number
of visits to the corresponding child of is maximal

Consider the example in Fig. 5. We begin by randomly gen-
erating a determinization. We then select an action from the
root of Fig. 5(a) (i.e., player 1’s tree), say . We descend the
trees by following the branch for the move corresponding to ,
namely for player 1’s tree and for player 2’s tree. The de-
terminization is updated by applying action . We now have

so Fig. 5(b) (player 2’s tree) is used for selection, and
an action legal in is selected, say . The trees are descended
through and , respectively, and is updated by applying
. The selection process continues in this way. Backpropaga-

tion works similarly to SO-ISMCTS (as in the example at the
end of Section IV-E), but updates all visited nodes (and their
available siblings) in each player’s tree.

V. EXPERIMENTAL RESULTS FOR LORD OF THE RINGS:
THE CONFRONTATION

A. The Game

Lord of the Rings: The Confrontation (LOTR:C) [6] is a two-
player strategy game themed on J. R. R. Tolkien’s The Lord
of the Rings novels. The gameplay has common features with
Stratego [7], where identities (but not locations) of a player’s
pieces are hidden from the opponent. Furthermore, the iden-
tity of a piece specifies certain unique characteristics. LOTR:C
is an interesting game from an AI point of view since it fea-
tures hidden information, chance events, partially observable

130 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

moves and simultaneous moves. It is also asymmetric since both
players have different win conditions and thus require different
tactics and strategies.
1) Game Structure: The game is played on a 4 4 grid, with

the players’ home squares at opposite corners. Most squares can
be occupied by more than one piece simultaneously, subject to
restrictions. The players are designated Light and Dark, with
Dark playing first. Each player has nine character pieces, which
they place on the board at the start of the game subject to cer-
tain constraints. Each character has an associated strength value
between 0 and 9, and a special ability that changes the rules of
the game in certain situations. Light’s characters are different
from Dark’s. Generally characters move one space at a time to-
ward the opponent’s home square, although some characters and
some squares on the board allow for different moves.
The identities of a player’s characters are hidden from the op-

ponent until revealed in combat. This leads to a source of hidden
information, where the information set specifies the number of
opponent pieces in each square and the states in the informa-
tion set specify the identity of all the pieces. When an opponent
moves one of their pieces, this move is partially observable since
a player knows a piece moved (and this leads to a new infor-
mation set) but only the opponent knows which piece moved.
Knowledge about the locations of opposing characters can de-
crease as well as increase. For example, if a character whose
identity is known enters a square with an unknown character and
then later exits the square, the identities of both the exiting char-
acter and the remaining character are unknown. Since players
must move pieces forward (aside from a few special rules), the
LOTR:C game tree has very few cycles and random games are
almost always fairly short.
2) Objectives: LOTR:C has multiple win conditions, which

differ for each player. For the Light player there are three ways
to win:
• moving the character Frodo into Dark’s home square;
• killing all Dark characters;
• the Dark player being unable to move any characters.
For the Dark player there are also three ways to win:
• killing the character Frodo;
• moving any four characters into Light’s home square;
• the Light player being unable to move any characters.
3) Combat: When a character moves into a square that con-

tains opponent characters, combat is initiated. The moving char-
acter becomes the attacker and a randomly chosen opponent
character in the square is the defender, then both players si-
multaneously choose one of the combat cards from their hand.
This leads to simultaneous moves being a feature of the game.
Each player begins with nine cards (which are removed once
played) and each character has a strength value, as do some of
the cards. In combat, the player whose combined character and
card strength is greatest wins the combat. Some characters and
some cards feature text that can alter the outcome of the combat,
by either offering a player extra choices or altering the rules of
combat. Typically the outcome of combat is that one or both
characters are defeated and removed from play.
4) Implementation: Character movement in LOTR:C is par-

tially observable. We define actions such that they identify the

character and the source and destination squares (e.g., “move
Frodo from Cardolan to Eregion”). The move observed by the
opponent does not identify the character (e.g., “move a character
from Cardolan to Eregion”).
Some care is needed to ensure the structure of the game

tree, particularly around combat, conforms to that described
in Section II. An environment player is used to model actions
taken by the game. Specifically, the environment player is
responsible for deciding the outcome of chance events and
for revealing information to players. In our implementation, a
typical instance of combat consists of the following sequence
of actions:
1) the attacking player moves a piece into a square occupied
by an opponent piece;

2) the environment player reveals the identities of the attacker
and defender pieces, choosing a defender at random if nec-
essary (which leads to a source of chance events);

3) one player chooses a card;
4) the other player chooses a card (steps 3 and 4 occur simul-
taneously);

5) the environment player reveals the chosen cards and re-
solves the combat.

A skilled human player of LOTR:C remembers the information
revealed about the identities of characters. Our implementation
has perfect recall for all players: information about which char-
acters can possibly occupy which squares based on previously
revealed information is encoded in the game state. In particular,
our algorithms always sample determinizations that are consis-
tent with this information.
5) Initial Setup: Before each game, players can place their

characters on the board in any configuration subject to certain
constraints. The choice of initial setup has important strategic
consequences, however tree search is not well suited to solving
this problem: each player has a choice between
possible initial setups for their pieces, and both players choose
simultaneously. We do not tackle this problem in this paper;
instead, we conduct all of our experiments on a single, hand-
designed initial setup intended to be typical of those that a pair of
human players might choose. This reuse of the same initial setup
also has the effect of reducing the variance in our experimental
results. No information persists between trials, so there is no
danger of the algorithms adapting themselves to this particular
setup.

B. Balancing Determinizations and Iterations
in Determinized UCT

This experiment studies the effect on the playing strength of
determinized UCT of varying the number of determinizations
while keeping the total number of iterations fixed. We present a
similar experiment for Dou Di Zhu in [9], and find that as long
as the number of determinizations and the number of iterations
per determinization are sufficiently large, this tradeoff has little
effect on playing strength, although we will see in Section VII
that Dou Di Zhu is unusual in that revealing hidden information
has little effect, which may contribute to this result.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 131

Fig. 6. Results of the determinization balancing experiment for LOTR:C. (a)
The win rate for a Light player using determinized UCTwith determinizations
and iterations per determinization, against a Dark opponent with 40
determinizations and 10 000/40 250 iterations per determinization. (b) The
same with Light and Dark exchanged (in particular, win rates are for the Dark
player). Error bars show 95% confidence intervals.

Results of this experiment for LOTR:C are shown in Fig. 6.1

For brevity, let us write to refer to a determinized UCT
player with determinizations and iterations per determiniza-
tion. Contrary to our results for Dou Di Zhu, here the playing
strength appears to worsen as the number of determinizations
increases. For instance, a Light 1 10 000 player significantly
outperforms a 40 250 player by 22.9%. This is a consequence
of the increased number of iterations per determinization,
rather than the reduced number of determinizations: against
a 40 250 player a 40 10 000 player achieves win rates of
73.2% for Light and 83.0% for Dark, which exceed signifi-
cantly the corresponding win rates for 1 10 000. Naturally, the
40 10 000 player also takes approximately 40 times longer
to make each decision than a player using a total of 10 000
iterations. Our justification for choosing 10 000 iterations as the
standard benchmark is that, with an efficient implementation
on modern hardware, we expect 10 000 iterations to equate to
roughly one second of computation, which is an acceptable
delay for play against a human.
For the 1 10 000 player, the average depth of the tree con-

structed from the initial game state is 8.6, and the average depth
of a node is 4.0. For 40 250, the average tree depth is 4.1 and
the average node depth is 2.4. Given that a single instance of
combat in LOTR:C can account for five or more levels in the
tree, searching to a depth of 4.1 is simply insufficient to make
an informed decision.
The effect of worsening playing strength as the number of

determinizations is increased is more pronounced for the Light

1The confidence intervals shown in this and other figures are
Clopper–Pearson intervals [35], considering each game as a Bernoulli trial.

Fig. 7. Heat map showing the results of the LOTR:C playing strength experi-
ment. A white square would indicate a 100% win rate for the specified Light
player algorithm against the specified Dark player algorithm, while a black
square would indicate a 100% win rate for Dark against Light. Shades of gray
interpolate between these two extremes.

player. One possible reason for this is that Light’s primary win
condition (moving Frodo into Mordor) requires more long-term
planning and thus deeper search than Dark’s primary win con-
dition (kill Frodo).

C. Playing Strength

In this experiment, the following algorithms play in a
round-robin tournament: cheating UCT, cheating ensemble
UCT, determinized UCT, SO-ISMCTS, SO-ISMCTS + POM,
and MO-ISMCTS. Each algorithm runs for 10 000 iterations
per decision. Determinized UCT uses ten determinizations with
1000 iterations for the Dark player, and applies all 10 000 iter-
ations to a single determinization for the Light. These values
were chosen based on the results in Section V-B. Cheating
ensemble UCT uses ten trees with 1000 iterations each for both
Light and Dark; devoting all iterations to a single tree would
be equivalent to cheating single-tree UCT. The results of this
experiment are shown in Figs. 7 and 8.
Cheating single-tree UCT consistently outperforms the other

algorithms by a large margin. For the Dark player, cheating
ensemble UCT outperforms ISMCTS. However, for the Light
player, cheating ensemble UCT and ISMCTS are on a par. This
is slightly surprising, and would seem to suggest that the ben-
efit of cheating is balanced by the increased depth to which
ISMCTS is able to explore the tree (due to devoting all of its it-
erations to a single tree). That this only holds true for one of the
players may shed some light on the differences in approaches re-
quired for strong Light and Dark play in LOTR:C: as discussed
in Section V-B, to Dark the locations of Light’s characters are
the most important factor, but to Light it is equally important to
be able to plan further ahead.
For the Dark player, determinized UCT is outperformed by

the other algorithms by a large margin. In particular, deter-
minized UCT is outperformed by all three ISMCTS variants.
The success of ISMCTS here is probably due to the reduction
in the effects of strategy fusion caused by using a tree of
information sets, as well as the additional tree depth that arises

132 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 8. Results of the playing strength experiment for LOTR:C. In the “Light” graph, each algorithm indicated on the -axis plays an equal number of games as
the Light player against each algorithm as the Dark player, and the proportion of wins averaged over all Dark algorithms is plotted. The “Dark” graph is similar,
with Light and Dark players interchanged. The “Light Dark” graph averages these results for each algorithm regardless of player identity. In all cases, error bars
show 95% confidence intervals.

by collecting all simulations in a single tree. For the Light
player determinized UCT is also worse than ISMCTS, but less
dramatically so: the difference between determinized UCT and
MO-ISMCTS is around 4.4%, which is significant with 95%
confidence. Since the Light player devotes all its computational
resources to a single determinization the tree depth argument
does not hold, but evidently there is still some benefit to the
ISMCTS approach over determinized UCT, most likely the
reduced impact of strategy fusion.
There is no significant difference in playing strength be-

tween the variants of ISMCTS. SO-ISMCTS + POM seems
to perform slightly worse than the other variants of ISMCTS,
but this difference is not statistically significant. That there
is no significant difference between the algorithms seems to
imply that the strategy fusion effects of assuming that opponent
moves are fully observable in SO-ISMCTS, and the assumption
that the opponent values indistinguishable actions equally in
SO-ISMCTS + POM, are not as harmful as intuition may
suggest.
As noted above, each trial in this experiment starts from the

same hand-designed initial setup. We repeated the experiment
with each game beginning from a different randomly gener-
ated initial setup. This biases the game slightly toward the Dark
player, since a random initial setup is more likely to disadvan-
tage the Light player (e.g., by placing Frodo in a vulnerable
starting position). We carried out the same number of trials (750
for each combination of players) in order to achieve similar con-
fidence intervals. Similar results to those above were observed,
which support the same conclusions.

D. Playing Strength Versus Human Opponents

The previous section assesses the relative playing strengths
of several algorithms for LOTR:C, but gives no indication of
their absolute strength. We are not aware of any existing AI,
commercial or otherwise, for this game. To test the playing
strength of MO-ISMCTS, we played several games between
an MO-ISMCTS agent and a range of human opponents. The
human opponents can be characterized as experienced game
players with two having expert ability at LOTR:C and five
having intermediate ability.

For this experiment, playing all games with the same ini-
tial setup would not be a fair test: our AI agents cannot learn
the opponent’s initial setup between games, but a human player
certainly can. We use random initial setups, with constraints to
avoid generating particularly bad placements: certain characters
(Frodo, Sam, and the Balrog) are always placed in their player’s
home cell. Since this information is known to the human player,
it is also made available to the AI agent by appropriate construc-
tion of the initial information set.
When humans play LOTR:C, the game is partly a test of

memory: one must remember the identities of revealed enemy
characters. Since this is trivial for the AI agent, our graphical
interface makes this information available to the human player.
This ensures that the human and AI players are compared solely
on the strength of their decisions, and not on the inherent advan-
tage of a computer player in a test of memory.
We played 32 games with a human player as Dark and the

MO-ISMCTS player as Light, and 32 games with a human
as Light and MO-ISMCTS as Dark. MO-ISMCTS achieved
14 wins as Light and 16 as Dark. MO-ISMCTS was evenly
matched with intermediate to expert human players, so we may
conclude that MO-ISMCTS achieved strong play in an absolute
sense.
Our human LOTR:C players observed anecdotally that

MO-ISMCTS plays highly plausible moves, and is particularly
adept at engineering favorable endgame scenarios. Its weakest
aspect is card play during combat: for example, it has a ten-
dency to waste its more powerful cards in situations where less
powerful cards would suffice. Presumably this occurs when the
agent does not search deeply enough to see the value of holding
onto a more powerful card until later in the game.

VI. EXPERIMENTAL RESULTS FOR THE PHANTOM (4, 4, 4) GAME

A. The Game

An , , -game [8], [36] is a two-player game played on
an grid. Players take alternating turns to mark a square.
The winner is the first player to mark squares in a horizontal,
vertical, or diagonal row. For example, the well-known game of
Noughts and Crosses (or Tic-Tac-Toe) is the 3, 3, 3-game, and
Go-Moku [37] is the 19, 19, 5-game.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 133

Fig. 9. Heat map showing the results of the Phantom (4, 4, 4) game playing
strength experiment. A white square would indicate a 100% win rate for the
specified player 1 algorithm against the specified player 2 algorithm, while a
black square would indicate a 100% win rate for player 2 against player 1.
Shades of gray interpolate between these two extremes.

A Phantom , , -game is an , , -game in which nei-
ther player can see the positions of the opponent’s marks. If a
player tries to mark a square that is already occupied by his op-
ponent, he is told that this is an invalid action and is allowed
to choose again. There is no penalty associated with playing an
invalid move. Indeed, playing invalid moves is the only mecha-
nism by which the Phantom , , -game player can gain infor-
mation about his opponent’s previous plays, so doing so is never
detrimental and often beneficial. In terms of the game tree, each
player action is followed by an environment action specifying
whether the move is valid or invalid.
We are not aware of any previous study of Phantom , ,
-games in general, although phantom Tic-Tac-Toe (i.e., the
phantom 3, 3, 3-game) has been studied by Auger [34] and by
Teytaud and Teytaud [38], and other phantom games have been
studied in the context of MCTS [22], [23].
In this paper, we study the Phantom (4, 4, 4) game (which

has enough states that our algorithms do not exhaustively search
the full perfect information tree). The perfect information 4, 4,
4-game is known to be a draw [8]. However this analysis does
not carry over to the phantom version of the game: intuitively,
even a perfect (but noncheating) player cannot block a line that
he cannot see. We are not aware of a theoretical analysis of
the Phantom (4, 4, 4) game; our intuition based on empirical
evidence is that the game has no forced result, and while player
1 has a strategy that can lead to a fast win (create four in a row
as quickly as possible, hoping that player 2 does not discover or
block the line) the game is somewhat balanced overall.

B. Playing Strength

In this experiment, the six algorithms listed in Section V-C
again play a round-robin tournament. Each algorithm uses a
total of 10 000 iterations, with cheating ensemble UCT and de-
terminized UCT using 40 trees with 250 iterations per tree.
Results of this experiment are shown in Figs. 9 and 10. From

the “Players ” graph in Fig. 10(c) the algorithms can be or-

dered from best to worst as follows, with statistical significance
at 95% confidence in each case:
1) cheating ensemble UCT;
2) cheating UCT;
3) MO-ISMCTS;
4) determinized UCT;
5) SO-ISMCTS;
6) SO-ISMCTS + POM.
Unsurprisingly, the cheating players perform best. The de-

terminization approach appears to be strong for this game, al-
though not as strong as MO-ISMCTS.
There is some asymmetry between the two players in

terms of the relative strengths of the algorithms. For player 1,
SO-ISMCTS andMO-ISMCTS are on a par while SO-ISMCTS
+ POM underperforms. For player 2, SO-ISMCTS is outper-
formed by SO-ISMCTS + POM which is in turn outperformed
by MO-ISMCTS. The three algorithms differ mainly in the
assumptions they make about future play. SO-ISMCTS as-
sumes that all actions are fully observable, which is both
optimistic (I can respond optimally to my opponent’s actions)
and pessimistic (my opponent can respond optimally to my
actions). SO-ISMCTS hence suffers from strategy fusion, since
it is assumed the agent can act differently depending on infor-
mation it cannot observe. In a phantom game, SO-ISMCTS
+ POM optimistically assumes that the opponent plays ran-
domly. MO-ISMCTS’s opponent model is more realistic: each
opponent action has its own statistics in the opponent tree and
so the decision process is properly modeled, but whichever
action is selected leads to the same node in the player’s own
tree thus preventing the player from tailoring its response to
the selected action. This addresses the strategy fusion problem
which affects SO-ISMCTS.
Since player 1 has the advantage of moving first, it seems

likely that these optimistic and pessimistic assumptions will
have varying degrees of benefit and detriment to the two players.
For example, a pessimistic player 2 algorithmmay conclude (in-
correctly) that the game is a loss, and so make poor decisions
from that point. In short, we argue that solving the problem of
strategy fusion (see Section III-B-I) is the key to strong play
in the Phantom (4, 4, 4) game. Of the three ISMCTS variants,
MO-ISMCTS is the most successful in overcoming strategy fu-
sion. Indeed, the two SO-ISMCTS variants suffer more from the
effects of strategy fusion than does determinized UCT.
One weakness of a cheating player is that it is overly pes-

simistic regarding the strength of its opponent. In particular,
it assumes the opponent also cheats. In the Phantom (4, 4, 4)
game, it often arises that the current state is a draw in the per-
fect information game but the noncheating player has insuffi-
cient information reliably to force the draw. In other words,
there are states where a noncheating opponent is likely to choose
an action that a cheating player would consider a mistake. If
the cheating player could direct the game toward these states it
would often win, but it sees no incentive to aim for these states in
preference to any other state that leads to a draw. A noncheating
player rarely suffers from this problem, as it generally lacks the
information to identify the state as a draw in the first place. It
should be noted that this never causes a cheating player to lose a
game, only to draw a game that it could conceivably have won.

134 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 10. Results of the playing strength experiment for the Phantom (4, 4, 4) game. In the “Player 1” graph, each algorithm indicated on the -axis plays an equal
number of games as player 1 against each algorithm as player 2, and the proportion of wins averaged over all player 2 algorithms is plotted. The “Player 2” graph
is similar, with players 1 and 2 interchanged. The “Players ” graph averages these results for each algorithm regardless of player identity. In all cases, error
bars show 95% confidence intervals.

TABLE I
DOU DI ZHU MOVE CATEGORIES

For this experiment the cheating algorithms played a total of
37 880 games, and did not lose a single game.
The above is a possible explanation for why cheating en-

semble UCT outperforms cheating single-tree UCT. The former
searches less deeply, and so its estimates for the game-theoretic
values of states are less accurate. When the values of states are
influenced more by random simulations than by the tree policy,
there is a natural tendency to overestimate the value of states
in which the opponent has more opportunities to make a mis-
take. In [10], we make similar observations on the propensity
of noncheating players to make mistakes, and the benefit to
a cheating minimax player of a tie-breaking mechanism that
favors states from which the opponent has more suboptimal
moves available.

VII. EXPERIMENTAL RESULTS FOR DOU DI ZHU

A. The Game

1) Background: Dou Di Zhu is a three-player gambling card
game that originated in China, which falls into the class of ladder
games. The name Dou Di Zhu translates into English as “Fight
The Landlord” and is a reference to the class struggle during the

Cultural Revolution in China where peasants were authorized
to violate the human rights of their Landlords. In the original
version of the game, studied in this paper, two players compete
together against a third player, the Landlord. There are other
versions of the game involving four and five players but these
are less popular.
The game was only played in a few regions of China until

quite recently, when versions of the game on the Internet have
led to an increase in the popularity of the game throughout the
whole country. Today Dou Di Zhu is played by millions of
people online, although almost exclusively in China, with one
website reporting 1 450 000 players per hour. In addition, there
have been several majorDou Di Zhu tournaments including one
in 2008 which attracted 200 000 players.
Dou Di Zhu is interesting from an AI perspective as it neces-

sitates both competition (between the Landlord and the other
two players) and cooperation (between the two non-Landlord
players).
2) Rules: Dou Di Zhu uses a standard 52 card deck with the

addition of a black joker and a red joker. We give a brief de-
scription of the rules here; a complete description can be found
in [11]. Suit is irrelevant but the cards are ranked in ascending

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 135

order . A bidding phase, which is not
considered here, designates one of the players as the Landlord.
The Landlord receives 20 cards dealt from a shuffled deck, while
the other players receive 17 each. The goal of the game is to be
the first to get rid of all cards in hand. If the Landlord wins, the
other two players must each pay the stake to the Landlord. How-
ever, if either of the other two players wins, the Landlord pays
the stake to both opponents. This means the two non-Landlord
players must cooperate to beat the Landlord. The non-Landlord
players do not see each other’s cards, so the game cannot be re-
duced to a two-player game with perfect recall.
Card play takes place in a number of rounds until a player

has no cards left. The Landlord begins the game by making a
leading play, which can be any group of cards from their hand
provided this group is a member of one of the legal move cate-
gories (see Table I). The next player can play a group of cards
from their hand provided this group is in the same category and
has a higher rank than the group played by the previous player,
or may pass. A player who holds no compatible group has no
choice but to pass. This continues until two players pass, at
which point the next player may start a new round by making a
new leading play of any category.
One exception to the rule that successive plays are of the same

type is that a Bomb or a Nuke may be played at any point. Only
a Bomb of higher rank or a Nuke can follow a Bomb, and no
move can follow a Nuke. Some categories allow extra kicker
cards to be played with the group which have no effect on the
rank of the move being played. If a move with kickers is played,
the next player must play a move in the same category with the
same number of kickers.
Making a leading play is a good position to be in, allowing a

player to choose a move type where he holds multiple groups,
or holds a high-ranking group that opponents are unlikely to be
able to follow. The two non-Landlord players also need to work
together since they either both win or both lose.
3) Implementation: We do not consider the bidding phase,

instead assigning an arbitrary player as the Landlord. This al-
lows us to compare the strength of algorithms based on card
play alone. Also determinization is carried out in the natural
way, with all hidden cards from the point of view of a partic-
ular player being randomly reassigned amongst opponents.
The branching factor for leading plays is typically around 40,

and for nonleading plays is much smaller. However, in situa-
tions where moves with kickers are available each combina-
tion of move and kicker must be considered as a separate move,
leading to a combinatorial explosion in the branching factor for
leading plays. It should be noted that this is a problem specific
to Dou Di Zhu caused by the game mechanic of being able to
attach kicker cards to a play. To ameliorate this, we use an ap-
proach similar to the move grouping approach of Childs et al.
[39]: the player first chooses the base move and then the kicker,
as two separate consecutive decision nodes in the tree.

B. Comparison of ISMCTS and Determinized UCT

Experiments for Dou Dhi Zhu we conducted previously [10]
indicated that there was no significant difference in playing
strength between ISMCTS and determinized UCT for Dou

Di Zhu, when averaged across all deals. These comparisons
were made across 1000 preselected deals (details in [9]) with
ISMCTS, determinized UCT and cheating UCT as the Landlord
against determinized UCT players.
It should be noted that the structure of the trees searched by

determinized UCT and cheating UCT are the same on average
(this is discussed further in Section VII-C). The most significant
differences between the two are the access to hidden informa-
tion and the consistency due to each UCT tree in the cheating
player’s ensemble corresponding to the same perfect informa-
tion game. In deals where the cheating UCT player performed
better than determinized UCT, and hence where hidden infor-
mation and consistency in decision making had some impact, it
was observed that ISMCTS performed better than determinized
UCT. Since ISMCTS has no access to hidden information, this
would suggest that the single tree approach is providing some
of the same benefit the cheating ensemble player gains through
consistency of the UCT trees searched. Indeed our previous re-
sults [10] suggest that hidden information is not often important
in Dou Di Zhu and it is a highly unusual feature of this game,
that knowledge of information often has little impact on players
that use determinization.
Since the cards dealt is a significant deciding factor in the out-

come of a game of Dou Di Zhu, the observed results may have
been influenced by the small sample size of 1000 deals. This
experiment was repeated with a larger sample of 5000 new ran-
domly chosen deals, where each of the three algorithms played
each deal 75 times. Note that all three variants of ISMCTS are
equivalent for a game with fully observable moves. For this
reason, only SO-ISMCTS was tested for Dou Di Zhu, and we
refer to it simply as ISMCTS for the remainder of this section.
The overall win rate for determinized UCT was 43.6%, for

ISMCTS it was 42.3%, and for cheating UCT it was 56.5%. The
win rates are approximately the same as those we previously
obtained [10]. This is unsurprising: the 1000 deals we origi-
nally selected [9] were chosen to be a good indicator of typical
playing strength. Each deal was then put into one of three cate-
gories according to the difference in win rate between cheating
UCT and determinized UCT. If cheating UCT outperformed de-
terminized UCT (with 95% significance) the deal was put into
the category . If determinized UCT outperformed cheating
UCT (also with 95% significance) the deal was put into the cat-
egory . All other deals were put into the category . There
are 1421 deals in category , 3562 in category , and the
remaining 17 in category .
The win rates of ISMCTS and determinized UCT for the cate-

gories and are shown in Fig. 11. Since being in category
is such a rare event, we do not give results for this category.

In the deals in which cheating UCT is significantly better than
determinized UCT (category), the win rate of ISMCTS is
significantly better than that of determinized UCT. These deals
are arguably those where knowing hidden information has an
impact on the game and also deals where determinization may
suffer from strategy fusion issues. In deals where there is no
significant difference between cheating and determinization, we
observe that determinization is better than ISMCTS. This is also
a similar result to that obtained in [10]. It is arguable that hidden
information has little impact on these deals, for example, that

136 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 11. Playing strength of ISMCTS and determinized UCT for Dou Di Zhu.
The playing strength is shown for deals in which cheating UCT is better than
determinized UCT (category) or where the two algorithms perform approx-
imately equally (category).

one of the players has such a strong hand that a win is assured
irrespective of what other players hold.
Despite the fact that overall the strength of ISMCTS and de-

terminized UCT is approximately the same, there can be a great
difference in the behavior of the two depending on which cards
are dealt. In the 1421 deals where a cheating UCT player out-
performs determinized UCT, so does ISMCTS on average. This
suggests that ISMCTS may be benefiting from a lack of strategy
fusion issues along with the cheating player in these deals. It is
an unusual feature of Dou Di Zhu among hidden information
games that having access to hidden information only provides a
strong advantage in a minority of deals, and has little effect in
the rest.
In 3562 deals there is no significant difference between

cheating UCT and determinized UCT. In these deals, ISMCTS
has a slightly lower win rate than determinized UCT. In these
deals some factors other than hidden information and strategy
fusion may be causing a detrimental effect on the performance
of ISMCTS, but not on determinized UCT. The most significant
difference between the two algorithms is the structure of the
trees searched. The tree searched by ISMCTS offers several ad-
vantages over the determinization approach in general, but may
be disadvantageous in certain deals. We investigate whether
this difference is caused by branching factor in Section VIII.

C. Influence of Branching Factor on Playing Strength

The fact that there are some deals in which determinization
outperforms cheating and many in which there is no difference
between the two algorithms is a surprising feature of Dou Di
Zhu, since intuitively the cheating player should have a strong
advantage. One possible explanation for this is that branching
factor has a large influence on the playing strength of these al-
gorithms. In Dou Di Zhu, certain hands may have a large total
number of moves available when making a leading play since
there are many possible ways of choosing kicker cards to attach
to a main group. Another feature of the game is that every move
a player makes in the game is in the set of moves that player
could make as a leading play from their starting hand. This set

therefore forms an upper bound on the number of moves avail-
able in each state for a particular deal and if this set is large,
there is likely to be many more nodes in the tree than if this set
is small.
In the case that determinizations produce hands with com-

pletely different sets of moves, ISMCTS is at a disadvantage
compared to determinized UCT. This is because ISMCTS will
spend a lot of time adding new nodes near the root of the tree
(since many determinizations will have unique moves that are
not common to other determinizations) and consequently the
statistics in the search tree will mostly be derived from random
playouts near the root. On the other hand, determinizing players
will be able to perform a deeper search for each determiniza-
tion, since a large number of possible opponent moves will be
ignored.
The following measurements were made for each of the 5000

deals tested in Section VII-B:
• the total number of moves the non-Landlord players would
be able to make as a leading play from their starting hand
(using the actual cards these players hold for this particular
deal);

• the average of the above for 200 random determinizations
of the deal (where the cards held by the non-Landlord
players are randomized);

• the average number of unique leading plays for non-Land-
lord players that are discovered in 40, 250, and 1000 deter-
minizations, i.e., after generating a certain number of deter-
minizations how many possible unique leading plays have
been seen for the non-Landlord players.

These measurements, averaged across all 5000 deals, are pre-
sented in Table II. It should be noted that these measurements
are a function of the deal; the first measurement is exact for
each deal, while the second depends on the sampled deter-
minizations. These measurements were made only for the
non-Landlord players since the playing strength experiments
in Section VII-B were conducted from the point of view of
the Landlord player. This means the algorithms tested always
had the same number of branches at nodes where the Land-
lord makes a move, since the Landlord can see his cards in
hand. The first measurement is an indicator for the number
of branches that may be expected at opponent nodes for the
cheating UCT player as the Landlord. Similarly, the second
measurement indicates the number of branches for opponent
nodes with determinized UCT as the Landlord. Both of these
measurements are upper bounds, since if an opponent has
played any cards at all then the number of leading plays will be
smaller. The third, fourth, and fifth measurements indicate how
many expansions ISMCTS will be making at opponent nodes
after a certain number of visits, since a new determinization
is used on each iteration. Again this measurement is an upper
bound since only one move is actually added per iteration and
if there were moves unique to a determinization which were
never seen again, only one of them would be added to the tree.
As seen in Table II, from 1000 determinizations on average

1500 unique leading plays are seen and yet there are only
approximately 88 unique leading plays for a particular deter-
minization of a deal. What is apparent from these measurements
is that there are a lot of moves available within the information

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 137

TABLE II
AVERAGES OF DIFFERENT MEASUREMENTS OF LEADING PLAYS FOR THE OPPONENTS IN DOU DI ZHU ACROSS 5000 DEALS

Fig. 12. Playing strengths of a commercial AI, determinized UCT, and
ISMCTS for Dou Di Zhu. Error bars show 95% confidence intervals.

set and only a small number of them are available within each
state in the information set. After just 40 determinizations,
ISMCTS will on average have seen nearly ten times as many
unique moves as there are per determinization. This means
that at nodes in the information set tree where an opponent
makes a leading play, node expansion will happen for many
more simulations than if the moves were derived from one
single determinization. At other nodes in the tree where the
opponent must play a certain move type, any move that either
player could play will appear as branches at nodes for both
opponents. This suggests that nodes in the tree corresponding
to an opponent making a leading play act as a bottleneck for
ISMCTS; the algorithm very rarely explores beyond these
nodes with only 10 000 simulations. With 250 simulations per
determinization, it is likely that determinized UCT reaches a
similar depth in the tree, which would explain why the overall
performance of the two algorithms is broadly similar.
Another observation that can be made from these results is

that the average number of leading moves for the actual state
of the game and for each determinization is approximately the
same. This is unsurprising since both measurements are derived
from states constructed by randomly dealing unseen cards. This
implies that cheating UCT and determinized UCT are searching
trees of approximately the same size on average. Results from
[10] suggest that the extra knowledge gained by cheating does
not always provide a strong advantage.
We speculate that ISMCTS will strongly outperform deter-

minized UCT if the former is equipped with some mechanism
to handle the large number of moves accumulated near the root
of the tree. Quite often the precise cards chosen as kickers are
not of particular strategic importance; indeed attaching a card
as a kicker is often a way of getting rid of a “useless” card
that would be difficult to play otherwise. Dou Di Zhu also has

many features which are unusual (and arguably pathological)
for games of hidden information. As shown in Sections V and
VI, the performance of ISMCTS is better in domains which lack
this pathology.

D. Playing Strength Against a Commercial AI

To assess the absolute strength of determinized UCT and
ISMCTS for Dou Di Zhu, we test them against a strong AI
agent developed commercially by AI Factory Ltd.2 This agent
uses flat Monte Carlo evaluation coupled with hand-designed
heuristics.
For implementation reasons the methodology of this experi-

ment differs from that of other experiments in this section. For
each game, the identity of the Landlord player is decided by a
bidding phase. Since we concentrate on card play in this paper,
all agents use the AI Factory agent’s AI for bidding. We test
three algorithms: the AI Factory agent, determinized UCT with
40 determinizations and 250 iterations per determinization, and
ISMCTS with 10 000 iterations. Each plays 1000 games against
two copies of the AI Factory agent. When all three agents are
identical the expected number of wins for each is 500.
Results of this experiment are shown in Fig. 12. We see that

both determinized UCT and ISMCTS significantly outperform
the AI Factory agent. For reasons of computational efficiency,
the AI Factory agent uses only a small number of Monte Carlo
simulations. A further experiment was conducted to show that
if we give the AI Factory player 100 times as many iterations
as in the commercial version, the playing strength of all three
agents is not significantly different. Thus, we can conclude in
absolute terms that both determinized UCT and ISMCTS pro-
duce plausible, and indeed strong, play for Dou Di Zhu.

VIII. COMPUTATION TIME

It has been demonstrated that SO-ISMCTS andMO-ISMCTS
offer advantages over determinized UCT, however both of these
algorithms are more complex and computationally expensive.
Experiments so far have performed a fixed number of itera-
tions without consideration of the algorithm used. It could be
that a simpler algorithm could perform more iterations in the
same amount of time as a more complex algorithm and achieve
a better result. This sort of comparison is dependent on the effi-
ciency of the implementation of each algorithm and may be dif-
ficult to test in practice. Instead, it has been observed that MCTS
algorithms can reach a point where additional simulations lead
to increasingly diminishing returns in terms of playing strength.
If two MCTS-based algorithms reach this point (independent

2www.aifactory.co.uk.

138 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 13. Average number of simulations performed in 1 s by determinizedUCT,
SO-ISMCTS, andMO-ISMCTS on a desktop PC runningWindows 7 with 6 GB
of RAM and a 2.53-GHz Intel Xeon E5630 processor.

of the efficiency of implementations) and are using the same
amount of time to make decisions, then their relative strengths
should not changemuch asmore time is used. In this section, it is
demonstrated that with enough time per decision, the results ob-
tained lead to the same conclusions as in previous experiments.
First, an experiment was conducted where determinized

UCT, SO-ISMCTS, and MO-ISMCTS made the first decision
for games of Dou Di Zhu, LOTR:C, and the Phantom (4, 4,
4) game. Each algorithm used 10 000 simulations (with 40
trees and 250 iterations per tree for determinized UCT) and the
average time to make a decision was recorded from 25 trials
for each game. This was performed on a desktop PC running
Windows 7 with 6 GB of RAM and a 2.53-GHz Intel Xeon
E5630 processor. These results were used to calculate the
number of iterations each algorithm could perform in 1 s for
each game. The results are presented in Fig. 13.
It is clear from Fig. 13 that SO-ISMCTS and MO-ISMCTS

are two to four times slower than determinized UCT and also
that the game being played has an impact on the amount of time
it takes to perform an MCTS iteration. In order to compare al-
gorithms based on the amount of decision time, it was important
to remove factors which affect the execution time of the exper-
iments: our experiments run on a cluster of heterogeneous ma-
chines, all of which have other processes running at the same
time. The algorithms were tested with a fixed number of iter-
ations corresponding to a certain amount of decision time, as-
suming the rate of iterations per second for each algorithm/game
in Fig. 13. Approaches that build larger trees have increasing
overheads per iteration, for example, due to MCTS selection
being applied to more nodes in the tree. Assuming the rate of it-
erations per second from Fig. 13 is reasonable, since after a few
hundred iterations the overheads increase slowly.
For the Phantom (4, 4, 4) game, the three algorithms already

take less than a second to execute 10 000MCTS iterations due to
the simplicity of the game logic. However, for Dou Di Zhu and
LOTR:C, it is clear that in 1 s of decision time SO-ISMCTS and
MO-ISMCTS execute around a third the number of iterations
that determinized UCT does. From Fig. 13, it is clear that the
MO-ISMCTS implementation has some additional overheads,

Fig. 14. Playing strength of determinized UCT and MO-ISMCTS for different
amounts of decision time playing LOTR:C.

since it performed fewer iterations per second for Dou Di Zhu
than SO-ISMCTS, although the two algorithms are equivalent
for Dou Di Zhu, since it has no partially observable moves. The
performance of these algorithms when decision time is a factor
was investigated for all three games.
For Dou Di Zhu, determinized UCT was compared to

SO-ISMCTS with 0.25–8 s of decision time. In each case,
the algorithms played as the Landlord, with the non-Landlord
players using determinized UCT with 40 determinizations and
250 iterations per determinization (as in Section VII). Playing
strength was measured across the 1000 deals chosen previously
[9]. Thenumber of trees and iterations for determinizedUCTwas
chosen for each total number of iterations to preserve the ratio of
trees to iterations as 40/250. The relative playing strength of each
algorithm was not significantly different to the results obtained
in Section VII-B for any amount of decision time (although
SO-ISMCTS appeared slightly weaker with less than 1 s of
decision time). This supports the conclusion from Section VII-C
that after reaching a certain depth, SO-ISMCTS spends many
simulations expanding opponent decision nodes near the root of
the tree and does not improve in playing strength.
For LOTR:C, MO-ISMCTS was compared to determinized

UCT for 1–30 s of decision time where determinized UCT used
one tree when playing as the Light player and a ratio of trees
to iterations of 10/1000 when playing as the Dark player (these
values were optimized in Section V). The two algorithms played
each other as both the Dark player and the Light player 500
times. The results are presented in Fig. 14. It is clear that for
1 s of decision time, MO-ISMCTS is slightly inferior to deter-
minized UCT, but when at least 3 s of decision time is used
MO-ISMCTS is significantly stronger than determinized UCT.
The results in Fig. 14 indicate that with a sufficient amount of
decision time MO-ISMCTS offers a clear advantage over deter-
minized UCT, which increases with increasing CPU time.
For the Phantom (4, 4, 4) game, determinized UCT,

SO-ISMCTS, and MO-ISMCTS were compared for 0.25–5 s
of decision time per move. For each pair of algorithms, 500
games were played with each algorithm playing as player 1

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 139

Fig. 15. Playing strength of determinized UCT and SO/MO-ISMCTS for dif-
ferent amounts of decision time playing the Phantom (4, 4, 4) game. For each
pair of algorithms versus , win rates are presented for algorithm where
algorithm makes the first move. Error bars show 95% confidence intervals
for MO-ISMCTS versus determinized UCT for 2 s per decision, and are rep-
resentative of the size of error bars for the other series.

and as player 2. The results are presented in Fig. 15. When the
CPU time used is less than 1.5 s per move the results are not
significantly different to those for 10 000 iterations presented
in Section VI, with MO-ISMCTS slightly stronger than de-
terminized UCT and clearly stronger than SO-ISMCTS. We
also see the clear advantage of going first over going second.
Above 1.5 s per move, the MO-ISMCTS algorithm continues to
outperform SO-ISMCTS, in terms of results of games between
these algorithms and performance against determinized UCT.
However, both of these algorithms become relatively weaker
than determinized UCT with increasing CPU time.
When using determinized UCT, implicitly we assume

perfect information for both players. The SO-ISMCTS and
MO-ISMCTS players do not assume knowledge of hidden
information. However, SO-ISMCTS does make the pes-
simistic assumption that the opponent has perfect information.
MO-ISMCTS improves on this, supposing that the oppo-
nent knows the root state but not the moves made by the
MO-ISMCTS player. Two properties of the Phantom (4, 4, 4)
game are important here: the game is a loss if the opponent
observes the game state at a crucial moment, even if he does
not cheat subsequently; and the game is simple enough that
MO-ISMCTS with more than 1.5 s can search a significant
proportion of the entire game tree. The pessimism of the as-
sumption that the opponent knows some or all of the hidden
information often leads SO-ISMCTS and MO-ISMCTS to
conclude, incorrectly, that the game is a loss, and thus play
randomly since all lines of play have the same reward value.
Determinized UCT has the more balanced, although highly in-
accurate, view that both players can see all hidden information.
Dou Di Zhu and LOTR:C are more complex than Phantom (4,

4, 4) so that it is not practical to search a substantial fraction of
the whole tree within a reasonable time. Furthermore, both Dou
Di Zhu and LOTR:C remain difficult to win even when hidden

information is known. Hence, we do not see the reduction in
playing strength for SO-ISMCTS and MO-ISMCTS with in-
creasing CPU time. We conjecture that if the determinization
approach of MO-ISMCTS was modified to also take the op-
ponent’s uncertainty into account, this effect would no longer
occur in the Phantom (4, 4, 4) game. This is an interesting pos-
sible direction for future research.

IX. CONCLUSION

In this paper, we studied several variants of MCTS for games
of imperfect information. Determinization is a popular approach
to such games, but one with several shortcomings. Frank and
Basin [5] identified two such shortcomings: strategy fusion (as-
suming the ability to make different decisions from different
future states in the same information set) and nonlocality (ig-
noring the ability of other players to direct play towards some
states in an information set and away from others). For MCTS,
a third shortcoming is that the computational budget must be
shared between searching several independent trees rather than
devoting all iterations to exploring deeply a single tree.
To solve the problem of nonlocality requires techniques such

as opponent modeling and calculation of belief distributions,
which are beyond the scope of this paper. The solution we
propose to the other two problems is the information set MCTS
family of algorithms. These do not abandon determinization
entirely, but use multiple determinizations to construct a single
search tree (MO-ISMCTS searches multiple trees, but each
tree is associated with a player rather than a determinization).
Searching a single tree allows the entire computational budget
to be devoted to searching it deeply. The sharing of infor-
mation between determinizations also addresses the problem
of strategy fusion: the algorithm cannot wrongly assume the
ability to distinguish two future states if those states share a
node in the tree. The SO-ISMCTS algorithm addresses the
issue of wrongly assuming the player can distinguish between
two states in an information set. The MO-ISMCTS algorithm
additionally addresses the issue of wrongly assuming the player
can distinguish between different partially observable moves
made by an opponent.
We have considered three experimental domains: a complex

board game (Lord of the Rings: The Confrontation), a simple
phantom game [the Phantom (4, 4, 4) game], and a card game
(Dou Di Zhu). In Lord of the Rings: The Confrontation, we
have shown that ISMCTS significantly outperforms deter-
minized UCT. We conjecture that one of the key benefits of
ISMCTS over determinized UCT in LOTR:C is that the former
is able to search more deeply in the game tree given the same
computational budget. It seems to be a feature of LOTR:C for
the Light player, and also for the Dark player to a lesser extent,
that the ability to search the game tree more deeply and thus
plan further ahead is more important than careful consideration
of the hidden information. It is important to note that this
increased search depth is not due to a lower branching factor,
indeed the ISMCTS tree has a higher branching factor than
the determinized UCT trees. Instead it is because the entire
computational budget is devoted to a single tree in ISMCTS, as
opposed to being shared between trees in determinized UCT.

140 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

There is no significant difference in playing strength between
the three variants of ISMCTS for LOTR:C. This seems to
suggest that strategy fusion is not a major factor in this game:
the assumption that the identities of opponent characters are
revealed when they move (i.e., that actions are fully observable)
appears not to be exploited, or if it is exploited then this is not
ultimately detrimental. However, in the Phantom (4, 4, 4) game
MO-ISMCTS significantly outperforms the other ISMCTS
variants. This is unsurprising: in a phantom game, SO-ISMCTS
suffers from strategy fusion, and SO-ISMCTS + POM assumes
random opponent play. The gap between determinized UCT
and MO-ISMCTS is smaller than for LOTR:C, and indeed the
SO-ISMCTS variants fail to outperform determinized UCT.
Compared to LOTR:C and Dou Di Zhu, the Phantom (4, 4, 4)
game tree is relatively small, and the game is more tactical than
strategic, so issues such as search depth do not have such a
dramatic effect on playing strength.
In Dou Di Zhu, the performance of ISMCTS is on a par with

that of determinized UCT. The benefit to ISMCTS of devoting
the entire computational budget to a single tree is negated by the
fact that this tree’s branching factor is often an order of magni-
tude larger than that of a determinized UCT tree. The union of
legal action sets for all states in an information set is much larger
than the action set for a single state in that information set

(8)

which is not the case for LOTR:C or the Phantom (4, 4, 4) game.
Indeed, it is sometimes the case that ISMCTS is encountering
unseen actions from new determinizations on almost every it-
eration of the search, meaning that UCB never has the chance
to exploit any action. With some mechanism for handling the
large branching factor and controlling the expansion of the tree,
we conjecture the playing strength of ISMCTS for Dou Di Zhu
would be greatly increased.
ISMCTS allows a single tree to be searched for games of im-

perfect information. As a result, branching factor permitting,
ISMCTS searches more deeply than determinized UCTwith the
same computational budget. This is true whether the computa-
tional budget is expressed in number of iterations or in CPU
seconds, even taking into account that determinized UCT can
execute more iterations per second. Furthermore, SO-ISMCTS
addresses one source of strategy fusion issues andMO-ISMCTS
additionally addresses another, providing an improved model of
the decision making process compared to existing determiniza-
tionmethods. In domains where deep search is possible and ben-
eficial or strategy fusion is detrimental, ISMCTS shows great
promise. However, in domains such as Dou Di Zhu, where in-
formation sets have large numbers of legal moves and the effect
of strategy fusion is not so clear, ISMCTS offers no immediate
benefit over existing approaches.
Our ultimate goal is to develop ISMCTS into a general pur-

pose algorithm for arbitrary games (and other decision prob-
lems) with stochasticity, imperfect information, and/or incom-
plete information and large state spaces. The next step toward

this goal is to apply ISMCTS to wider classes of games and as-
sess its strengths and weaknesses on those domains. Section X
identifies some other directions for future work.

X. FUTURE WORK

We have empirically demonstrated the strength of the
ISMCTS family of algorithms for several domains. It is clear
that an enhanced version of ISMCTS should yield better
playing strength, especially for domains such as Dou Di Zhu
where there is a need for some mechanism to handle the large
branching factor at opponent nodes. It remains to establish the
theoretical properties of these algorithms and their potential
for converging to game-theoretic solutions. MO-ISMCTS is
arguably the most theoretically defensible of the three ISMCTS
algorithms as it most accurately models the differences in
information available to each player. A subject for future work
is to conduct a full theoretical analysis of MO-ISMCTS, and
investigate the situations under which it converges to an optimal
(Nash equilibrium) policy. The SO-ISMCTS + POM algorithm
currently assumes the opponent chooses indistinguishable
moves at random, which is clearly incorrect as a decision
model for the opponent. There is room for improvement in this
aspect of the algorithm.
We observed in Section IX that ISMCTS suffers less from

the effects of strategy fusion than determinization-based ap-
proaches. The first example in Section IV-E backs this up by
showing that ISMCTS behaves correctly in a simple situation
where strategy fusion occurs. It is possible to measure the pres-
ence of strategy fusion, albeit indirectly, for example, using
the approach of Long et al. [18]. However, identifying situa-
tions in which strategy fusion occurs is difficult when games are
large and nontrivial. Furthermore, strategy fusion is not the only
factor in the performance of ISMCTS; for example, we have ar-
gued that it benefits from deeper search in LOTR:C but suffers
from increased branching factor in Dou Di Zhu. Understanding
situations in which strategy fusion is an important predictor of
the success of ISMCTS, and developing methods to take advan-
tage of this, is a subject for future work.
One limitation of the algorithms presented here is that they

assume the opponents have access to the player’s hidden in-
formation: when the player chooses a determinization to use
during the search, it does not determinize its own cards or the
locations of its own pieces. Essentially the searching player
assumes a cheating opponent, which is a worst case assump-
tion but does mean that the opponent’s lack of information can
never be exploited. Furthermore, the assumption will be partic-
ularly harmful in games where there are no strategies that offer
a chance of winning against a cheating opponent. This problem
was observed in Section VIII when larger amounts of CPU time
were used forMO-ISMCTS playing thePhantom (4, 4, 4) game.
However, the solution is not as simple as merely randomizing
one’s own information during determinization, as this destroys
the player’s ability to plan ahead beyond its current move (the
searching player then assumes that it will forget its own infor-
mation after the current turn). Addressing this issue, and par-
ticularly striking a balance between considering the actual sit-
uation and considering the other situations that the opponent

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 141

thinks are possible, is important in games where information
hiding is a significant part of successful play. It is worth noting
that there are games where one player has imperfect informa-
tion but the other has perfect information; Scotland Yard is one
example [40]. ISMCTS is well suited in such domains when
playing as the player with imperfect information, since its as-
sumption about the opponents’ knowledge of the state of the
game is correct.
None of our algorithms model belief distributions, instead

sampling determinizations uniformly at random. It is well
known in game theory that maintaining an accurate belief
distribution is essential for optimal play in games of imperfect
information, and this is also essential to solving the problem
of nonlocality. In a phantom game, for instance, ISMCTS
algorithms assume that the opponent has played randomly up
to the current point, regardless of how correct or incorrect their
assumptions about subsequent play may be. Integrating belief
distributions into ISMCTS is an important direction for future
work and should address the issue of nonlocality which arises
through determinization.

APPENDIX
PSEUDOCODE FOR THE ISMCTS ALGORITHMS

This Appendix gives complete pseudocode for the ISMCTS
algorithms, to complement the higher level pseudocode given
in Section IV. In order to give a concrete implementation, the
pseudocode given here illustrates UCB for selection, but other
bandit algorithms may be used instead.

A. The SO-ISMCTS Algorithm

The following notation is used in this pseudocode:
• children of node ;
• incoming action at node ;
• visit count for node ;
• availability count for node ;
• total reward for node ;
• , the children of
compatible with determinization ;

• , the
actions from for which does not have children in the
current tree. Note that and are defined only
for and such that is a determinization of (i.e., a state
contained in) the information set to which corresponds.

1: function SO-ISMCTS
2: create a single-node tree with root corresponding to

3: for iterations do
4: choose uniformly at random
5:
6: if then
7:
8:
9:
10: return where
11:
12: function

13: while is nonterminal and do

14: select3

15: ;
16: return
17:
18: function
19: choose from uniformly at random
20: add a child to with
21: ;
22: return
23:
24: function
25: while is nonterminal do
26: choose from uniformly at random
27:
28: return
29:
30: function
31: for each node from to do
32: increment by 1
33:
34: let be the determinization when was visited
35: for each sibling of compatible with , including

itself do
36: increment by 1

B. The SO-ISMCTS + POM Algorithm

This pseudocode uses the notation from part A of the Ap-
pendix, with the following modifications:
• incoming move from player 1’s point of view at
node ;

• , the children of
compatible with determinization ;

• with ,
the moves from for which does not have children.

The following functions differ from the pseudocode given in
part A of the Appendix.

1: function
2: while is nonterminal and do

3: select3

4: choose uniformly at random
5: ;
6: return
7:
8: function
9: choose from uniformly at random
10: add a child to with
11: choose uniformly at random
12: ;
13: return

3While the selection shown here is based on UCB, other bandit algorithms
could be used instead.

142 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

C. The MO-ISMCTS Algorithm

This pseudocode uses the notation from part A of the Ap-
pendix, with the following modifications:
• a node in player ’s tree;
• incoming move from player ’s point of view at
node .

The following functions differ from the pseudocode given in
part A of the Appendix.

1: function MO-ISMCTS
2: for each player do
3: create a single-node tree with root
4: for iterations do
5: choose uniformly at random
6:
7: if then
8:
9:
10: for each player do
11:
12: return where
13:
14: function
15: while is nonterminal and do

16: select3

17: for each player do
18:
19:
20: return
21:
22: function
23: choose from uniformly at random
24: for each player do
25:
26:
27: return
28:
29: function
30: if with then
31: return such a
32: else
33: create and return such a

ACKNOWLEDGMENT

The authors would like to thank J. Rollason of AI Fac-
tory (www.aifactory.co.uk) for introducing them to Dou Di
Zhu, for several useful and interesting conversations, and for
providing the commercial AI opponent and test framework
used in Section VII-D. They would also like to thank the
volunteers who assisted with the playing strength experiment in
Section V-D. Finally, the authors would like to thank the anony-
mous reviewers for their helpful and insightful comments.

REFERENCES

[1] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action
value estimation in computer Go,” Artif. Intell., vol. 175, no. 11, pp.
1856–1875, Jul. 2011.

[2] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Proc. Eur. Conf. Mach. Learn., J. Fürnkranz, T. Scheffer, and M.
Spiliopoulou, Eds., Berlin, Germany, 2006, pp. 282–293.

[3] M. L. Ginsberg, “GIB: Imperfect information in a computationally
challenging game,” J. Artif. Intell. Res., vol. 14, pp. 303–358, 2001.

[4] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike
Solitaire with Monte-Carlo planning,” in Proc. 19th Int. Conf. Autom.
Plan. Sched., Thessaloniki, Greece, 2009, pp. 26–33.

[5] I. Frank and D. Basin, “Search in games with incomplete information:
A case study using Bridge card play,” Artif. Intell., vol. 100, no. 1–2,
pp. 87–123, 1998.

[6] BoardGameGeek, Lord of the Rings: The Confrontation, 2011 [On-
line]. Available: http://boardgamegeek.com/boardgame/3201/lord-of-
the-rings-the-confrontation

[7] BoardGameGeek, Stratego, 2011 [Online]. Available: http://
boardgamegeek.com/boardgame/1917/stratego

[8] J. W. H. M. Uiterwijk and H. J. van den Herik, “The advantage of the
initiative,” Inf. Sci., vol. 122, no. 1, pp. 43–58, Jan. 2000.

[9] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Determinization in
Monte-Carlo tree search for the card game Dou Di Zhu,” in Proc. Artif.
Intell. Simul. Behav., York, U.K., 2011, pp. 17–24.

[10] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization and
information set Monte Carlo tree search for the card game Dou Di
Zhu,” in Proc. IEEE Conf. Comput. Intell. Games, Seoul, Korea, 2011,
pp. 87–94.

[11] J. McLeod, Dou Dizhu, 2010 [Online]. Available: http://www.pagat.
com/climbing/doudizhu.html

[12] J. Rubin and I. Watson, “Computer poker: A review,” Artif. Intell., vol.
175, no. 5–6, pp. 958–987, Apr. 2011.

[13] M. Shafiei, N. R. Sturtevant, and J. Schaeffer, “Comparing UCT versus
CFR in simultaneous games,” in Proc. Int. Joint Conf. Artif. Intell.
Workshop Gen. Game Playing, Pasadena, CA, 2009 [Online]. Avail-
able: http://webdocs.cs.ualberta.ca/~nathanst/papers/uctcfr.pdf

[14] H. Kuhn, “A simplified two-person poker,” in Contributions to the
Theory of Games, H. Kuhn and A. Tucker, Eds. Princeton, NJ:
Princeton Univ. Press, 1950, pp. 97–103.

[15] M. Ponsen, S. de Jong, andM. Lanctot, “Computing approximate Nash
equilibria and robust best-responses using sampling,” J. Artif. Intell.
Res., vol. 42, pp. 575–605, 2011.

[16] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte
Carlo sampling for regret minimization in extensive games,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2009, pp.
1078–1086.

[17] R. B. Myerson, Game Theory: Analysis of Conflict. Cambridge, MA:
Harvard Univ. Press, 1997.

[18] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the success of perfect information Monte Carlo sampling in game tree
search,” in Proc. Assoc. Adv. Artif. Intell., Atlanta, GA, 2010, pp.
134–140.

[19] E. K. P. Chong, R. L. Givan, and H. S. Chang, “A framework for
simulation-based network control via hindsight optimization,” in Proc.
IEEEConf. Decision Control, Sydney, Australia, 2000, pp. 1433–1438.

[20] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving state
evaluation, inference, and search in trick-based card games,” in Proc.
21st Int. Joint Conf. Artif. Intell., Pasadena, CA, 2009, pp. 1407–1413.

[21] J. Schäfer, “The UCT algorithm applied to games with imperfect infor-
mation,” Diploma, Otto-Von-Guericke Univ. Magdeburg, Magdeburg,
Germany, 2008.

[22] J. Borsboom, J.-T. Saito, G. M. J.-B. Chaslot, and J. W. H. M. Uiter-
wijk, “A comparison of Monte-Carlo methods for phantom Go,” in
Proc. BeNeLux Conf. Artif. Intell., Utrecht, The Netherlands, 2007, pp.
57–64.

[23] P. Ciancarini and G. P. Favini, “Monte Carlo tree search in Kriegspiel,”
Artif. Intell., vol. 174, no. 11, pp. 670–684, Jul. 2010.

[24] S. J. Russell and P. Norvig, Artificial Intelligence: AModern Approach,
3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2009.

[25] D. Koller and A. Pfeffer, “Representations and solutions for game-the-
oretic problems,” Artif. Intell., vol. 94, no. 1–2, pp. 167–215, 1997.

[26] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Re-
gret minimization in games with incomplete information,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2008, pp.
1729–1736.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 143

[27] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating oppo-
nent models with Monte-Carlo tree search in poker,” in Proc. Conf.
Assoc. Adv. Artif. Intell.: Inter. Decision Theory Game Theory Work-
shop, Atlanta, GA, 2010, pp. 37–42.

[28] M. Richards and E. Amir, “Opponent modeling in Scrabble,” in
Proc. 20th Int. Joint Conf. Artif. Intell., Hyderabad, India, 2007, pp.
1482–1487.

[29] O. Teytaud and S. Flory, “Upper confidence trees with short term par-
tial information,” inProc. Appl. Evol. Comput., C. Di Chio, S. Cagnoni,
C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-Alcázar, J. J. M. Guervós, F.
Neri, M. Preuss, H. Richter, J. Togelius, and G. N. Yannakakis, Eds.,
Torino, Italy, 2011, pp. 153–162.

[30] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in
a rigged casino: The adversarial multi-armed bandit problem,” in Proc.
Annu. Symp. Found. Comput. Sci., Milwaukee,WI, 1995, pp. 322–331.

[31] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,”Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[32] A. Fern and P. Lewis, “Ensemble Monte-Carlo planning: An empir-
ical study,” in Proc. 21st Int. Conf. Autom. Plan. Scheduling, Freiburg,
Germany, 2011, pp. 58–65.

[33] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Proc. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2010, pp.
1–9.

[34] D. Auger, “Multiple tree for partially observable Monte-Carlo tree
search,” in Proc. Evol. Games., Torino, Italy, 2011, pp. 53–62.

[35] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial
limits illustrated in the case of the binomial,” Biometrika, vol. 26, no.
4, pp. 404–413, 1934.

[36] H. J. van den Herik, J. W. H. M. Uiterwijk, and J. van Rijswijck,
“Games solved: Now and in the future,” Artif. Intell., vol. 134, no. 1–2,
pp. 277–311, Jan. 2002.

[37] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
solved by new search techniques,” IEEE Comput. Intell. Mag., vol. 12,
no. 1, pp. 7–23, Feb. 1996.

[38] F. Teytaud and O. Teytaud, “Lemmas on partial observation, with
application to phantom games,” in Proc. IEEE Conf. Comput. Intell.
Games, Seoul, Korea, 2011, pp. 243–249.

[39] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move
groups in Monte Carlo tree search,” in Proc. IEEE Symp. Comput. In-
tell. Games, Perth, Australia, 2008, pp. 389–395.

[40] J. A. M. Nijssen and M. H. M. Winands, “Monte-Carlo tree search
for the game of Scotland Yard,” in Proc. IEEE Conf. Comput. Intell.
Games, Seoul, Korea, 2011, pp. 158–165.

Peter I. Cowling (M’05) received the M.A. and
D.Phil. degrees from Corpus Christi College, Uni-
versity of Oxford, Oxford, U.K., in 1989 and 1997,
respectively.
He is a Professor of Computer Science and

Associate Dean (Research and Knowledge Transfer)
at the University of Bradford, Bradford, U.K., where
he leads the Artificial Intelligence Research Centre.
In September 2012, he will take up an Anniversary
Chair at the University of York, York, U.K., joined
between the Department of Computer Science and

the York Management School. His work centers on computerized decision
making in games, scheduling and resource-constrained optimization, where
real-world situations can be modeled as constrained search problems in large
directed graphs. He has a particular interest in general-purpose approaches
such as hyperheuristics (where he is a pioneer) and Monte Carlo tree search
(especially the application to games with stochastic outcomes and incom-
plete information). He has worked with a wide range of industrial partners,
developing commercially successful systems for steel scheduling, mobile
workforce planning, and staff timetabling. He is a director of two research
spinout companies. He has published over 80 scientific papers in high-quality
journals and conferences.
Prof. Cowling is a founding Associate Editor of the IEEE TRANSACTIONS

ON COMPUTATIONAL INTELLIGENCE AND AI FOR GAMES. He has won a range
of academic prizes and “best paper” awards, and given invited talks at a wide
range of universities and conference meetings.

Edward J. Powley (M’10) received the M.Math. de-
gree in mathematics and computer science and the
Ph.D. degree in computer science from the Univer-
sity of York, York, U.K., in 2006 and 2010, respec-
tively.
He is currently a Research Fellow at the University

of Bradford, Bradford, U.K., where he is a member
of the Artificial Intelligence Research Centre in the
School of Computing, Informatics and Media. His
current work involves investigating Monte Carlo tree
search (MCTS) for games with hidden information

and stochastic outcomes. His other research interests include cellular automata,
and game theory for security.
Dr. Powley was awarded the P B Kennedy Prize and the BAE Systems ATC

Prize.

Daniel Whitehouse (S’11) received the M.Math.
degree in mathematics from the University of Man-
chester, Manchester, U.K., in 2010. He is currently
working toward the Ph.D. degree in artificial intelli-
gence in the School of Computing, Informatics and
Media, University of Bradford, Bradford, U.K.
He is a member of the Artificial Intelligence

Research Centre, University of Bradford. His Ph.D.
work is funded as part of the EPSRC project “UCT
for games and Beyond” and is investigating the
application of Monte Carlo Tree Search methods to

games with chance and hidden information.

