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Abstract— We propose algorithms to automatically deploy a  Lloyd [8] on algorithms for optimal quantizer design thréug
group of mobile robots to provide coverage of a non-convex “centering and partitioning.” The Lloyd-type approach was
environment with communication limitations. In settings such first adapted for distributed coverage control in [3] and has

as hilly terrain or for underwater ocean gliders, peer-to-peer since seen manv variations. including Non-convex environ-
communication can be impossible and frequent communication ' y variatl » Including VEX envi

to a central base station may be impractical. This paper instead Ments [9] and “gossip” peer-to-peer communication [10].
explores how to perform coverage control when each robot has The discretized non-convex domain considered here also ap-

only asynchronous and sporadic communication with a base peared in [4] which looked at iterative optimal 2-partitiog.
station or, alternatively, with the rest of the team. Our approac Coverage control and territory partitioning have applica-

evolves overlapping territories and provably converges to a fi . fields. | b hvsical t licati
centroidal Voronoi partition at equilibrium. We also descripe ~ 1ONS IN many Tieids. in cyber-physical systéms, applicaiio

how the use of overlapping territories allows our algorithm to  include automated environmental monitoring [1], fetching
smoothly handle dynamic changes to the robot team. and delivery [2], and other vehicle routing scenarios [11].

Coverage of discrete sets is closely related to the litezatu

I. INTRODUCTION ; .
o ) o on data clustering ané-means [12], as well as the facility
In applications such as environmental monitoring [1] Ofpcation ork-center problem [13].

warehouse logistics [2] a team of robots is asked to per- There are three main contributions of this paper. First,
form tasks over a large space. The distribuetironment \ve present the first coverage control algorithm for an asyn-
partitioning problemconsists of designing control and com-cpronous one-to-base-station communication model. This
munication laws for individual robots such that the teamyoqel s realistic and relevant for a variety of application
divides a space into regions in order to optimize the qualitjomains. and the time delay between when robots com-
of service providedCoverage controadditionally optimizes  mynicate with the base station requires overlapping region
the positioning of robots inside of a region. instead of a partition. Second, we prove that the algorithm
Many existing coverage control algorithms assume thalynyerges to a centroidal Voronoi partition in finite time.
robots can communicate peer-to-peer [3], [4], but in SOM@r | yapunov argument is based on an adaptation of the
environments th|s. is '|mpract|cal. For example, ‘_mderwat%rtandard partition-based coverage cost function. Ovgiriap
acoustic communication between ocean gliders is very IOY\égions also dictate changes to when to perform the classic

bandwidth and hilly or urban terrain can block radio comy |qyq steps of centering versus territory exchange. Third,
munication. Instead, we present a coverage control algorit \ye” gescribe how the algorithm can seamlessly handle the
for a team of robots who each have occasional contact with g scheduled arrival or departure of robots from the team.

central base station. Thme—to—'base-statlopommunlcatlon' This feature leverages overlapping regions, and also eases
model can represent ocean gliders surfacing to commumceﬁﬁegraﬂon of coverage control with task servicing.

with a tower [5], UAV data mules that periodically visit " our notation R, denotes the set of non-negative real
ground robots [6], or cost-mindful use of satellite or clliu  ,,mpers and-, the set of non-negative integers. Given a
communication. In addition, our algorithm optimizes thesetA, IA] denotes the number of elementsAn Given sets
response time of the team to service requests inanon-convggB' their difference isA\ B = {a € A| a ¢ B}. A
environment represented by a graph, with optimality definegy;_ya1ued map, denoted 1§y : A = B, associates to an

by a relevant “multi-center” cost function for overlappinggjement of4 a subset off.

territories. While the algorithm is given for one-to-base-

station communication, it also works if each robot can Il. PRELIMINARIES

occasionally broadcast a message directly to the whole.team |, this Section we translate concepts used in partitioning

~ A broad discussion of partitioning and coverage controlt continuous environments to coverings on graphs. The one-
is presented in [7] which builds on the classic work of, hase-station communication model in this paper reguire
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w, > 0 be the weight of edge. We assume that/(Q) is  Definition 11.3 (Centroid) Let @) be a totally ordered set,
connected and think of the edge weights as travel distancaesd let A C ). We define the set of generalized centroids of
between nearby points. A as the set of vertices id which minimizeHy, i.e.,

In any weighted grapli7(Q) there is a standard notion of . . )
distance between vertice(s gefined as followspa&h in G C(4) = arf:géimHl(h’A)'
is an ordered sequence of vertices such that any consecu
pair of vertices is an edge @f. Theweight of a pathis the
sum of the weights of the edges in the path. Given vertices
andk in G, thedistancebetweeni andk, denotedig (h, k),
is the weight of the lowest weight path between them, din subsequent use we drop the word “generalized” for
~+oo if there is no path. IiG is connected, then the distancebrevity. Note that with this definition the centroid is well-
between any two vertices is finite. By conventidp,(h, k) = defined, and also that the centroid of a set always belongs
0if h = k. Note thatdg(h, k) = dg(k,h), foranyh. k € Q. to the set. With a slight notational abuse, we define :Cd
Cov,(Q) — Q™ as the map which associates to a covering
the vector of the centroids of its elements.
We will be covering@ with n subsets or regions which  With these notions we can define the multi-center function

tI'ﬁll(lzlrthermore, we define the mapd : 2¢ — @ such that
Cd(A) := min{c € C(A)}. We callCd(A) the generalized
centroidof A.

B. Coverings of Graphs

will each be owned by an individual agent. Hmax : Q™ x Cov,(Q) — Rso to measure the cost for
robots to cover aw-covering P from the vertex set € Q™:
Definition 1.1 (n-Covering) Given the graphG(Q) = 1

(Q, E,w), we define an—covering of Q as a collection Hmax(c, P) = il Zmiax {da(ci k) | k € P} o(k)
P = {P;}_, of subsets of) such that: ke@

) UL, P=0Q; We aim to minimize the performance functidtimax with
(i) P #0forallie{l,...,n}; respect to both the covering and the vertices:. In the
Let Cov,,(Q) to be the set of.—coverings ofQ. motivational scenario we are considering, each robot will

periodically be asked to perform a task somewhere in its
Note that a vertex i) may belong to multiple subsets i?,  region with tasks located according to distributionWhen
i.e., a vertex may be covered by multiple agents. This faddle, the robots would position themselves at the vertices
is an important change from prior work [4]. ¢. By minimizing Hmax, the robot team would minimize the
We also have use for the concept of a partitioncof expected distance between a task and the furthest robohwhic
can service the task.
Definition 11.2 (n-Partition) A n-partition is a n-covering . _
with the additional property that: Prloposmon 1.4 (Propertlesn of Hmax) Let P e/ Cov,L(Q),
(i) if i # j, then P, P, = 0. P’ € Part,(Q), and ¢ € Q™ such thate; € P/ C P, V i.

» Let ¢ € Q™ such thatc, € C(P/) V i. Then the following
Let Part,, (@) to be the set ofi—partitions of Q. statements hold:

Among the ways of covering), there is one which is Hmax(¢; P') < Hmax(c, P), and
worth special attention. Given a vector of distinct poiats H ' P < H P
Q", the partition P € Part,(Q) is said to be avoronoi _ max(C.; _) - mél‘x(c’ ) /
partition of Q generated by i, for each P, and allk € P;,  The second inequality is strict if any ¢ C(F}).
we havec; € P; anddg(k,c;) < dg(k,c;), Vj # i. The Proof: The first statement is a straightforward con-
elements ofc are said to be the generators of the Vorono

" . o . Sequence of the restriction thd?) C P, and thatHmax
partition. Note that the Voronoi partition generated ®¥s | cas the maximum cost ovér The second statement is a

not unique since how to assign tied vertices is unspecifiedre,smt of the fact that, sinc&” is a partition, Hmax(c, P’) =
C. Cost Functions 17 22 Hales PY). u
Let weight functiong : Q — R~ be a bounded positive Proposition 11.4 motivates the following definition.
function which assigns a relative weight to each element
Q. The one-center functiori; gives the cost for a robot to

cover a subsetd C @ from a vertexh € A with relative
prioritization set byg:

(Befinition 1.5 (Centroidal Voronoi Partition)

P € Part,(Q) is a centroidal Voronoi partitionof Q
if there exists ac € Q™ such thatP is a Voronoi partition
generated by and¢; € C(P;) V i.

Ha(h; A) = Z dg (h, k)(k). For a given environmenf), a pair made of a centroidal
keA Voronoi partition and the corresponding vector of centsoid
A technical assumption is needed to definedbaeralized is locally optimal in the following sense*max cannot be
centroid of a subset. We assume from now on thatotal reduced by changing eithét or ¢ independently. Therefore,
orderrelation,<, is defined orQ): hence, we can denotg = if the team of robots position themselves at the centroids of
{1,...,]|Q|}. With this assumption we can deterministicallya centroidal Voronoi partition, then they (locally) optaai
pick a centroid inP; which minimizesH; as follows. their coverage of) as measured b¥max.



Ill. M ODEL, PROBLEM, AND PROPOSEDSOLUTION Observe that’;_. ; contains the cells of’; which are closer
A. One-to-Base-Station Robotic Network Model to ¢;, whereasP’;_; contains only the cells in boti¥; and
P; which are either closer te;” or tied. Also, only the
centroid of robot is updated. Finally, note that the algorithm
is independent of robot positions, so the robots are free to
move or perform tasks in their regions.

We are given a team ofi robotic agents and a central
base station. Each ageht {1,...,n} is required to have
the following basic computation capabilities:

(C1) agenti can identify itself to the base station; and

(C2) agenti has a processor with the ability to stafe C
G(Q) and a centes; € S;.

Each agent € {1,...,n} is assumed to communicate with

the base station according to taeynchronous one-to-base-

station communication modelescribed as follows:

Remark 11l.1 The One-to-Base algorithm can be adapted
to the scenario where each robot can occasionally broadcast
a message to the team. Rohotvould update its centroid
and broadcasts;” and S;, then every other roboj would

. . ; updateS; following lines 7 and 8 above. Those robots for
(C3) there exists a finite upper bourdon the time between ,hich S;US; is connected must receive the broadcast for the

communications between and the base station. For oonergence property to hold, the others are not required.
simplicity, we assume no two agents communicate with

the base station at the same time. D. Convergence Property

The base station must have the following capabilities: In this subsection we characterize the convergence of the
(C4) it can store an arbitrany-covering ofQ, P = {Pi}{_;  One-to-Base Coverage Algorithm.
and a list of centroids € Q™; and

(C5) it can perform computations on subgraphs:t)). Theorem 111.2 (Convergence Property) Consider a net-
work consisting ofn robots endowed with computation
capacities (C1), (C2) and communication capacity (C3), and

Assume that, for alt € R, each agent € {1,...,n}  a base station with capacities (C4) and (C5). Assume the
maintains in memory a subsg(t) of environment@ and network implements th®ne-to-Base Coverage Algorithm
a vertexs;(t) € S;(t). Our goal is to iteratively update Then the resulting evolutiofs, S) : R>g — Q™ x Cov,,(Q)

B. Problem Statement

the coveringS(t) = {Si(t)}i, and the centersi(t) = converges in finite time to a paifs*, S*) composed of a
{si(t)}7=, while solving the optimization problem: centroidal Voronoi partitionS* generated bys*.
i i ,9), 1 . .
srgg}% 565{}5}(@) Hnax(s, 5) @ Remark 111.3 The fact that at least one centroidal Voronoi

&artition exists for any graph is an additional consequence

subject to the constraints imposed by the robot netwo St Theorem I11.2.

model with asynchronous one-to-base-station communic
tion from Section IlI-A. IV. CONVERGENCEPROOFS

C. The One-to-Base Coverage Algorithm This section is devoted to proving Theorem IIl.2. The
S . convergence proof is based on applying Lemma A.1 to the
To solve the minimization problem (1), we introduce the . . ;
; : evolution given by the One-to-Base Coverage Algorithm. To
following One-to-Base Coverage Algorithm . . .
do so, we must describe the algorithm using a set valued-map
One-to-Base Coverage Algorithm and find a Lyapunov function.

The base station maintains in memory @tovering P = A getvalued Map
{P;}7, and a vector: = (¢;)?_,, while each robot maintains
in memory a setS; and a vertexs;. At ¢t = 0, let P(0) €
Cov,(Q), S(0) = P(0), and let all ¢;(0)'s be distinct.
Assume that at timeé € R+, roboti communicates with the
base station. LeP*, ¢*, S;, ands;" be the values after the
communication. Then the base station executes the foltpwi
actions while communicating with

if H1(Cd(P;); P;) < Ha(ce;; Pi) and CAP;) # c¢; for
everyj # i then

With the definitions of a set of centroids and of the One-
to-Base Coverage Algorithm, we have that the algorithm is
well-posed in the following sense.

[f’roposition IV.1 (Well-posedness)Let P € Cov,,(Q) and

¢ € Q" such thatc; € P; andc; # ¢; for all ¢ and all j # <.
Then, Pt and ¢™ produced by theOne-to-Base Coverage
Algorithm meet the same criteria.

=

2. updatec; := Cd(P;) With this result, we can state the One-to-Base Coverage

3: else Algorithm as a set valued map. For ah¢ {1,...,n}, we

4 o =¢ ) L define the mag; : Q™ x Cov,(Q) — Q™ x Cov,,(Q) by

5: tell agenti to setS;” := P; ands;” := ¢; i i n

6: for eachagenj#ido E(C,P):{{Cl,...,ci7...,Cn},{P1,...,H,...,Pn}},

7. compute the sets N wherec;” and P* are defined per the algorithm whéris
Pioj:={z € P;:dg(v,¢j) < dg(a,cf)} N the communicating robot. Then, we can define the set-valued
P =1{x € P;NPi:de(z,¢j) > da(z,cf)} mapT : Q" x Cov,(Q) = Q" x Cov,(Q) by

8: Pj+ = (Pj \P;;i) UP;_;

T(c,P)={Ti(¢,P),...,Tp(c,P)}.




Thus, the dynamical system defined by the application of theill show that any such increase is necessarily smaller in

algorithm is described byc™, P™} € T(c, P).

B. Lyapunov Function

magnitude than the decrease in the cost to covey.for
Two observations: FirstP; NP, = ( by how we

j,max

chooser*, meaning that{(c;, P;- . NP;)is zero. Second,

J,max

For our Lyapunov argument we need the following definithe set of vertices owned bjybut not byi has not changed,

tions. LetM(P) be the set of vertices which are owned bymeaning thats(c;, Py,

\P;) = Ha(c;, Pjmax \ P). This

j,max

multiple agents. Lettmin be a cost function defined similarly |eaves us wanting to show that:

to Hmax but sum minimum coverage costs over all agents:

(e P) = 7 3 min {dg (e k) | £ € R o(F).

@l &2

Proposition IV.2 (Decreasing Functions)Let P be a n-
covering of @ and ¢ be a set of centroids forP. Let

Hl(C?—, P+

7, max

) < Hl(ci; Pi,max) + Hl(cjapj,max N -Pz)
We can write sefP; as:
Pi - Pi,max U (Pj,max N Pz)
=P U(Pr _NP)=P"

i,max j,max i,max"’

(ct,PT) € T(c,P). If ¢t # ¢ or P # P, then one of Using these equivalences, we can rewrite (2) as:

these conditions holds:
(i) Hmax(ct, P*) < Hmax(c, P);
(i) Hmax(c, PT) = Hmax(c, P) and Hmin(c™, PT) <
Hmin(c, P); or
(i) Hmax(c™, PT) = Hmax(c, P), Hmin(ct, PT)
Hmin(c, P), and |[M (PT)| < |[M(P)].

Hl(C?—, P<+

i,max

) < Hl(Cia H,max) + Hl(ci7 Pj,max N Pz)
Then, using the definition oP; ..« We conclude that:

Hl(C;’_, F)i—j_max) < H]_(Ci, ]Di,,max) + Hl(civ Pj,max n Pv)
< Hl(ci; Pi,max) + H]_(Cj, Pj,max N H)

Proof: Consider the situation where there are just two Nothing in this analysis is exclusive to the two agent
agentsi andj. Without loss of generality, assume that agenfcenario. Following the same logic, it can be shown that:

1 contacts the base station at time

We start with the case where™ = ¢;. First, consider

when the change t& includes the addition of cells i®;_. ;
to P;. Such a change necessarily decredggs while Hmax

is unchanged. Next, if the change I® occurs because of

the removal of cells inP*

Jj—=i

from P;, then Hmax does not

increase Hmin is unchanged, anfV/| necessarily decreases.

Next, we show that ifc] # c¢;, then Hmax(ct, PT) <
Hmax(c, P). First, given aP € Cov,(Q), let Ph.x =
{P; max }1—, be a partition of@ such that for all:

Pi,max =

{vePi

Note thatP; . iS a function ofP;, P;, ¢;, andc;.
With the P,,., definition, we can rewrité{may as:

1
Hmax(cv P) :@ Z Hl(civ Pi,max)

v¢ PV j#i, or
i = min {argmax;{da(c;,v) | v € P;}}

Using this new form, the initial cost to cové} by i and j
is given by (ignoringﬁ for simplicity):
Hmax(@ P) :Hl(cia Pi,max) + Hl(cj; Pj,max \ Pz)
+ 'H]_(Cj7 Pj,max N Pi).

During the update; and P; change, meaning that:
Hmax(C+, P+) :H1<Cj7 P+ ) + Hl(Cj, PjJ,rmax \ PZ)

i,max

+ H]_(Cj, P_]Tmax N Pi)
The algorithmT" ensures that it # ¢;, then:

Ha(cf, P;) < Ha(ei, ). 2)

However, it is possible that the relevant cost forhas
increased, i.e., thatts(c;, P ..) > Ha(ci, Pimax). We

7, max

Hl(Cj, PiJ,rmax) - Hl(cia Piq,max) < ZHl(C]‘, Pj,max n Pz>7
i

meaning that any increase in the cost to cover for agent
from a centroid update is more than offset by decreases to
the cost to cover from the territory updates of those agents
who owned cells inP;. [ |

We can form a Lyapunov function using Proposition V.2
as follows. SinceR is a finite set, there exist only a finite
number of possible values fGmax, Hmin, and|M|. Let &
and e, be the magnitude of the smallest possible difference
between two values df{max and Hmin, respectively. Lety,
anda;, be larger than twice the maximum possible values of
Hmin @and | M|, respectively. Consider the following function
U : Qn X COVn(Q) — RZO:

€ €x €
U(Q P) = Hmax(cv P) + lein(c’ P) + =
an Oén CV]\{

[M(P)].

With this scaling of Hyin and |M|, when Hmax decreases
then U necessarily also decreases, and similarl§jfax is
constant butH, decreases. We further have the following
bound on changes tG.

Proposition V.3 (Lyapunov Function) Let (¢, P') €
T(c,P). Then, either(¢,P') = (¢, P) or U(d,P’) <
Ulc, P) — -

anoens |
C. Characterization of Fixed Points

One consequence of Proposition 1V.3 is that the niBps
have at least one common fixed point. The following Propo-
sition characterizes the fixed points f6¥c, P), defined as
the pairs(c, P) where{(c, P)} = T(c, P) or, equivalently,
as the pairs which are a fixed point of every nigp

1The standard definition of fixed point for a set-valued map ¢Whive
do not use in this paper) consists in the weaker conditioi®) € T'(c, P).



Proposition V.4 (Fixed Points) Let (¢,P) € Q" X V. DYNAMIC CHANGES TOTEAM
Cov,(Q) be a fixed point ofl’. Then, P is a centroidal

Voronoi partition ofQ generated by. Moreover, every such EVolving overlapping coverings enables simple handling
centroidal Voronoi partition is a fixed point fdF. of dynamic arrivals, departures, and even the disappearanc

of robots. While departure or disappearance can increase
Proof: If P is not a partition, therP;_; # () for some  Hpay, such an increase is only a transient and, with the
i # j. If P is a partition but not a Voronol partition generatedfollowing additions, the system will converge to a centadid
by ¢, thenP;_,; # () for somei # j. Finally, if P is a Voronoi  Voronoi partition in finite steps after such an event.
partition generated by but ¢; ¢ C(P;) for any i, thenc; Arrival: When a new robot communicates with the base
will change wheni communicates with the base station.  station, it can be assigned any initig] desired. Possibilities
Next, we show that every centroidal Voronoi partition is dnclude adding all vertices within a set distance of itsiatit

fixed point. If ¢; € C(P;) for all i, thenc = ¢; for all T;.  position or assigning it just the single vertex which has the
If P is a Voronoi partition generated hy then P,_.; = ), highest coverage cost if).

P;_; =0, and thusP* = P for all T;. = Departure: A robot i might announce to the base station
D. Convergence of(t) that it is departing, perhaps to recharge its batteries or to

1perform some other task. In this situation, the base station
can simply addP; to the territory of the next robot it talks
to before executing the normal steps of the algorithm.
Disappearance:The disappearance or failure of a robot
gl can be detected if it does not communicate with the base

Invoking Proposition V.3, we conclude that(c, P) fulfills station for longer than\. If this occurs, then the departure

assumption (ii). Finally, the communication model (CS)prOCEdur:e a:jt:o:j/e can be trlgg.er(Td. Sha’uﬂdapptla;r Iat_er, it
assures that assumption (iii) is met. can be handled as a new arrival or given its old territory.

Hence, we are in the position to apply Lemma A.1 and
conclude the following result. VI. NUMERICAL RESULTS

The proof continues with the application of Lemma A.
in Appendix A to (c¢(t), P(t)). Since the algorithml" :
Q" x Cov,(Q) = Q™ x Cov,(Q) is well-posed, we have
that Q™ x Cov,(Q) is strongly positively invariant. This
fact implies that assumption (i) of Lemma A.1 is satisfie

To demonstrate the utility of the One-to-Base Cover-
age Algorithm, we implemented it using the open-source
tF’Iayer/Stage robot control system and the Boost Graph
Library (BGL). All results presented here were generated
using Player 2.1.1, Stage 2.1.1, and BGL 1.34.1.

One illustrative example is shown in Figure 1. The envi-
onment contains three obstacles drawn in black and four
robots tasked with providing coverage of the free space
E. Convergence of Robot Covering around the obstacles. This free space is modeled using an

So far we have discussed the properties of the covefing ©ccupancy grid with &.6m resolution which was chosen

held by the base station. Here we extend these argumentsSb that the robots could fit inside of a grid cell. The grid
the coveringS held by the robots. First, we show thsitis S converted into a graph by making each free cell a vertex
indeed a covering of). and connecting edges between cells which border each other.

To compute distances in this uniform edge weight graph we
Proposition IV.6 (Well-posedness ofS) Let S be a n- extended the BG'L'breadth—first search routine with a digtanc
covering of Q. Then, S* produced by theOne-to-Base recorder event visitor.
Coverage Algorithrris also an-covering. For this example we chose a random robot to communicate

with the base station at each iteration, while ensuring that

Proof: Let s € Q. If there exist timest; < ¢> such no robot went unselected for more than 8 rounds. In the
that ¢ € S;(t1) and ¢ ¢ Si(t2), then there exists & €  covering shown in the second panel of Figure 1, the light blue
[t1,t2) such thatg ¢ P;(t*). By how the update of’(t) robot on the top left and the dark blue robot on the middle
is defined, this implies that some agent# i with ¢ € |eft both own some vertices also claimed by the circled
Pj(t) communicates to the base station at titn@&ut since orange robot. The third panel shows the result after the
S;(t*) = P;(t), we have thay € S;(¢"). Thereforeg must  orange robot communicates with the base station: the orange
belong to some region of(¢) for all ¢. B robot's centroid has been updated and both blue robots have
We are now ready to conclude our convergence proofelinquished their claim to vertices closer to orange.

Proof: [of Theorem III.2]. The definition of the One-to- The final centroidal Voronoi partition in the fourth panel
Base Coverage Algorithm implies that if there exists N is reached after 25 iterations. The final coverage cost was
such thatP(t) = P € Cov,(Q) for t > , thenS(¢t) = P 1.82m, an improvement 069%. Since each robot initially
fort > 7+ A. As an immediate consequence of this fact, theovers the entire environment, this also represents the im-
convergence properties df(¢), stated in Proposition IV.5, provement from using four robots instead of one to provide
are inherited byS(t). B coverage in this environment.

Proposition V.5 (Convergence of P(t)) The evolution of
the One-to-Base Coverage Algorith@(t), P(t)), generated
by the mapI’, converges in finite time to the intersection o
the equilibria of the map§¥’;, which is the set of pairgc, P)
where P is a centroidal Voronoi partition generated hy
In particular, P(t) converges in finite time to one centroidal
Voronoi partition. r
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Fig. 1. Simulation of four robots partitioning an environmauith three black obstacles. The free space of the environieenbdeled using the indicated
occupancy grid where each cell is a vertex in the resultimplgr On the left, each robot starts owning the entire enwiient and positioned at its initial
unique centroid. The middle frames show an intermediate sfateeocoveringP and the result of an update when the circled robot contaethése
station. The centroids are marked with an X and the boundamsaoh robot’s territory drawn in its color. Some cells are oa boundary of multiple

territories and for these we draw superimposed robot coldis. final partition is shown at right.

VIl. DISCUSSION& CONCLUSION

We have described the One-to-Base Coverage Algorith
which can drive territory ownership among a team of robot
in a non-convex environment to a centroidal Voronoi pantiti
in finite time given only occasional contact between eac
robot and a central base station. Here we have focused
dividing territory, but the algorithm can easily be comhine
with methods to provide a service ovéx, as in [11].

In practical use, between the times that a robot commu-
nicates with the base station it could take sample measure-
ments, pick up packages, or perform other tasks. When g,
robot communicates to the base station, it could transryit an
information it has gathered about the environment and then
receive its updated territory and a list of tasks to perform,
When idle, a robot would position itself at the centroid of
its territory. If tasks appear according to the distribatio
(which could evolve over time), then by minimizing cost
function Hmax the algorithm also minimizes the the expected
distance between a task and the furthest idle robot whiclf
might be assigned the task.

K]

APPENDIXA [5]

For completeness we present a convergence result for
set-valued algorithms on finite state spaces, which can be
recovered as a direct consequence of [10, Theorem 4.3]. [6]

Given a setX, a set-valued mafi' : X = X is a map
which associates to an elemente X a subsetZ cC X.

(7]
A set-valued map is non-empty f(z) # @ for all z €
X. AsetWW C X is strongly positively invarianfor 7' if 8
T(w) C W for all w € W. Given a non-empty set-valued 8]

map 7', an evolution of the dynamical system associated to

T is a sequencz,}nez., C X with the property that [°]
Tny1 € T(zy,) for all n € Zsg.
Lemma A.1 (Convergence under persistent switches) [10]
Let (X,d) be a finite metric space. Given a collection of
maps1i,...,T,, : X — X, define the set-valued mapml
T: X = X by T(z) = {Th(2),...,Tn(x)} and let
{zn}nez., De an evolution ofl". Assume that:
. - . " . . 12
(i) there existd¥ C X that is strongly positively invariant 2]
for T [13]

(i) there exists a functiod/ : W — R such thatU(w’) <

U(w), for all w e W andw’ € T'(w) \ {w}; and

i) for all ¢ € {1,...,m}, there exists an increasing

sequence of timegny | k € Z>o} such thatz,, 1 =
T;(xy, ) and (nx+1 — nyi) is bounded.

W\ito € W, there exists: € R and N € N such that for all
nnz N, the evolutionz,, = & wherez belongs to the set
(FiN---NF,), whereF; = {w € W| T;(w) = w} is the
set of fixed points of; in W, i € {1,...,m}.
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