
1

Decentralized Asynchronous Non-convex Stochastic
Optimization on Directed Graphs

Vyacheslav Kungurtsev, Mahdi Morafah, Tara Javidi Member, IEEE, Gesualdo Scutari Member, IEEE,

Abstract—Distributed Optimization is an increasingly impor-
tant subject area with the rise of multi-agent control and
optimization. We consider a decentralized stochastic optimization
problem where the agents on a graph aim to asynchronously
optimize a collective (additive) objective function consisting of
agents’ individual (possibly non-convex) local objective functions.
Each agent only has access to a noisy estimate of the gradient
of its own function (one component of the sum of objective
functions). We proposed an asynchronous distributed algorithm
for such a class of problems. The algorithm combines stochastic
gradients with tracking in an asynchronous push-sum framework
and obtain the standard sublinear convergence rate for general
non-convex functions, matching the rate of centralized stochastic
gradient descent SGD. Our experiments on a non-convex image
classification task using convolutional neural network validate the
convergence of our proposed algorithm across different number
of nodes and graph connectivity percentages.

I. INTRODUCTION

In this paper we consider the global optimization problem,

min
x∈Rn

Eξ [F (x, ξ)] ,
m∑
i=1

Eξ [fi(x, ξ)] (1)

where the agents’ local objective functions E[fi(·, ξ)], i =
1, . . . ,m are smooth and generally nonconvex and known only
locally to the m networked agents. In addition, each agent
is assumed to only have access to noisy estimates of fi and
its gradients. Communication across the network is performed
asynchronously in a gossip fashion, i.e., there is a (possibly)
directed graph G = {V, E}, and for each edge e ∈ E ⊆ V × V
the vertices elements {i, j} ∈ e implies that node i can send
information to node j. Define N in

i := {j ∈ V : (j, i) ∈ E}
and N out

i := {j ∈ V : (i, j) ∈ E}.
We make the following assumption on the problem,

Assumption I.1. 1) For a.e. ξ, fi(·, ξ) is proper, closed,
and Li-Lipschitz continuously differentiable. Furthermore
(for a.e. ξ) F (·, ξ) is bounded from below.

2) The (di)graph G is strongly connected.

In this paper we uniquely address several concomitant
challenges 1) the objective function is stochastic nonconvex 2)
the sum-components of the objective function are known only
locally to each agent 3) communication is fully asynchronous,
modeled as each iteration consisting of a random activation

V. Kungurtsev are with Department of Computer Science, Czech Technical
University in Prague

M. Morafah and T. Javidi are with the Department of Electrical Engineering,
University of California-San Diego

G. Scutari is with the School of Industrial Engineering and the School of
Electrical and Computer Engineering (ECE) at Purdue University

among the agents as well as delays in the communicated
information and 4) the topology of the network is arbitrary
(i.e., no hierarchical structure) and communication is directed,
i.e., that agent i being able to send data to j does not necessarily
imply that j can also send information to i.

Previous Works There are a number of works in the
literature that consider distributed or decentralized stochastic
optimization addressing a partial subset of these challenges.

A bulk of works consider distributing computation in
a shared memory setting while allowing for asynchronous
updating (and thus read and/or write lock-free) including the
classic [1] and the seminal work [2], the general framework
for block/coordinate parallel updates given in [3], and many
thereafter. These, however, assume that every computing
node has access to the entire function, or a noisy estimate
thereof, rather than a component of it, and does not consider
communication across an arbitrary network.

A standard structure for distributed optimization is the “hub-
spoke”, “parameter-server” or “master-slave” architecture. This
is considered, for instance, in [4] and [5]. In this case, it
is assumed that the nodes have a hierarchical structure of
communication, with one node aggregating information and
coordinating the computation to be performed across the other
nodes, which communicate solely with the central node and
not at all with each other. In this paper we consider a more
general arbitrary graph topology modeling the communication
links across agents.

Schemes that consider an arbitrary graph topology include [6]
which considers convex problems and uses variance reduction
(i.e., accessing the entire local gradient vector periodically),
and [7] which only considers undirected graphs and with
synchronization barriers.

Moving closer to our setting, contemporary works con-
sidering a decentralized graph communication structure and
asynchronous communication include [8], which analyzes
nonconvex problems and [9] considers convex ones. However,
they consider only undirected graphs, and furthermore the
ultimate function being minimized is not the desired objective,
but a scaled one, based on the frequency of updates of each
agent. This can frequently not be known a priori, and thus is a
poor target for the objective function. Without this knowledge,
any solution to the problem would be biased.

The push-sum framework was introduced in [10] to avoid
systematic bias in the solution of multi-agent optimizations
problems on directed graphs. The analysis of distributed
consensus with delays was first given in [11], who introduced
virtual nodes which model information as passing from one to
the next as one less delay until it arrives at the real-time node.

ar
X

iv
:2

11
0.

10
40

6v
1

 [
m

at
h.

O
C

]
 2

0
O

ct
 2

02
1

2

Note that these are purely theoretical instruments, and need
not be stored.

In [12] a stochastic gradient algorithm is presented based
on the push sum approach to handling optimization over a
network with asynchronous directed communication. However,
convergence is only proven for strongly convex problems.

The paper [13] describes an algorithm for using the push-
sum framework in a nonconvex setting with asynchronous
parallel communication, for deterministic objectives.

The paper [14] considers asynchronous communication and
directed graphs, and presents an algorithm with provably
linear convergence towards the optimum under the Polyak-
Łojasiewicz condition. Finally [15] considers nonconvex feder-
ated learning using gradient tracking, and prove convergence,
consensus, and asymptotic agreement of each agent’s average
gradient estimate. They consider the synchronous setting and
undirected graphs.

Contributions In this paper we study the theoretical and
numerical convergence properties of decentralized stochastic
nonconvex optimization on directed graphs with asynchronous
communication. Thus, this paper extends the work of [13] to
consider noisy function data and [12] to the case of nonconvex
objectives, closing an important gap in the literature for
decentralized stochastic optimization.

II. ALGORITHM

The algorithm is presented as Algorithm 1, and described
below.

All agents update asynchronously and continuously without
coordination, using noisy gradient estimates and possibly de-
layed information from their neighbors. Each agent i maintains
and updates the following local variables: i) a local estimate xi
of the common optimization vector x; ii) the auxiliary variable
zi, aiming at tracking the sample gradient ∇̃F of the sum-
loss (we use ∇̃F a sample instance of ∇F), not available
locally; and iii) some mass counters ρij and buffer variables
ρ̃ij , j ∈ N in

i , which are instrumental to track properly the
sum-gradient ∇F (·, ξ) in the presence of asynchrony (their
update is commented below). The k-th iterate of the above
variables is denoted by xki , zki , ρkij , and ρ̃kij , respectively. In
Algorithm 1, the iteration index k is understood as a global
iteration counter k, unknown to the agents, which increases
by 1 whenever a variable of the agents changes. Let ik be the
agent triggering iteration k → k+1; it executes Steps (S1)-(S3)
(no necessarily within the same activation), as described below.
(S1) Stochastic gradient step: The active

agent ik updates its local variable xkik by moving along the
direction of the sample gradient estimate zkik , with a step-size
γ ∈ (0, 1], generating vk+1

ik
.

(S2) Consensus step with delays: Agent ik

may receive delayed variables from its in-neighbors j ∈ N in
ik ,

whose iteration index is k− dkj , where dkj ≥ 0 is the delay. To
perform its update, it first sorts the “age” of all the received
variables from agent j since k = 0, and then picks the most
recently generated one. This is implemented maintaining a local
counter τikj , updated recursively as τkikj = max(τk−1

ikj
, k−dkj).

Thus, the variable agent ik uses from j has iteration index

τkikj . Given this (outdated) information, agent ik performs a
consensus update with mixing matrix W = (wij)

I
i,j=1 (to be

properly chosen, see Assumption II.1 below), generating xk+1
ik

.
(S3) Robust gradient tracking: This step aims

at tracking the sample sum-gradient ∇̃F in the presence of
asynchrony; it builds on the the asynchronous sum-push scheme
introduced in [13] (note that [13] does not deal with stochastic
gradients), and works as follows. Each agent i maintains mass
counters ρji associated to zi that record the cumulative mass
generated by i for j ∈ N out

i since k = 0; and transmits ρji. In
addition, agent i also maintains buffer variables ρ̃ij to track the
latest mass counter ρij from j ∈ N in

i that has been used in its
update. The update of the z- and ρ-variables employed by agent
ik is as follows. Agent ik first performs the sum step (S3.1)

using a possibly delayed mass counter ρ
τkij
ij received from j.

By computing the difference ρ
τk
ikj

ikj
− ρ̃kikj , it collects the sum

of the aikjzj’s generated by j that it has not yet added. Then,
agent ik sums them together with the gradient correction term
∇̃fik(xk+1

ik
, ζk)−∇̃fi(xkik , ζ

j(ik,k)) to its current state variable

zkik to form the intermediate mass z
k+ 1

2

ik
, where j(ik, k) is the

last iteration j before k for which ik is the chosen agent. Next,
in the push step (S3.2), agent ik splits z

k+ 1
2

ik
, maintaining

aikikz
k+ 1

2

ik
for itself and accumulating ajikz

k+ 1
2

ik
to its local

mass counter ρkjik , to be transmit to j ∈ N out
ik . Since the last

mass counter agent ik processed is ρ
τk
ikj

ikj
, it sets ρ̃ikj = ρ

τk
ikj

ikj
.

We make the following Assumption regarding the commu-
nication network, activation, delays, and stochastic gradient
estimates.

Assumption II.1. 1) It holds that there exists an m̄ such
that for all i ∈ V , wij ≥ m̄ and aij ≥ m̄ for all
(i, j) ∈ E . Furthermore the matrix W composed of wij
is row-stochastic (W1 = 1) and A composed of aij is
column-stochastic (AT1 = 1).

2) There is a T ∈ R+ such that the activations satisfy
∪k+T−1t=k it = V .

3) There is a D ∈ R+ such that the delays satisfy 0 ≤
dkj ≤ D for all j ∈ N in

ik for all k ∈ N
4) The assumptions on the stochastic estimate are the stan-

dard unbiased estimate with bounded variance conditions,

E
[
∇̃fik(xk+1

(ik)
, ζk)

]
= ∇fik(xk+1

(ik)
),

E
[∥∥∥∇̃fik(xk+1

(ik)
, ζk)−∇fik(xk+1

(ik)
)
∥∥∥2] = σ2

(2)

III. CONVERGENCE

In this section we prove the convergence properties of
Algorithm 1 for stochastic nonconvex objectives. We begin
introducing some intermediate results, instrumental for our
proofs.

A. Preliminaries

Following [13], we define augmented variables hk ,[
(xk)T (vk)T (vk−1)T ...(vk−D)T

]
, where D is the maximum

3

Algorithm 1 - Asynchronous Stochastic Gradient Descent
with Tracking

Initialization: Set k = 0, Set x0
i = 0 and z0i = f̃i(0, ξ

0)
for all i.
while Not converged do

Choose (ik, dk);
Set τkikj = max{τk−1

ikj
, k − dkj }, ∀j ∈ N in

ik ;
(S1) (Stochastic gradient update): Set
vk+1
ik

= xkik − γ
kzkik

(S2) Consensus (with delayed info):

xk+1
ik

= wikikv
k+1
ik

+
∑
j∈N in

ik
wikjv

τk
ikj

j

(S3) Robust gradient tracking:

(S3.1) Sum step:

z
k+ 1

2

ik
= zkik +

∑
j∈N in

ik
(ρ
τk
ikj

ikj
− ρ̃kikj)

+∇̃fik(xk+1
ik

, ζk)− ∇̃fi(xkik , ζ
j(ik,k));

(S3.2) Push step:

zk+1
(ik)

= aikikz
k+ 1

2

(ik)
;

ρk+1
jik

= ρkjik + ajikz
k+ 1

2

ik
, ∀j ∈ N out

ik ;

(S3.3) Mass-Buffer update:

ρ̃k+1
ikj

= ρ
τk
ikj

ikj
, ∀j ∈ N in

ik ;

(S4): Untouched state variables shift to state k+1 while
keeping the same value; k ← k + 1.

end while

possible delay time. We denote the augmented gradient
estimate stacked vector as ẑk. Ultimately, there is a matrix Âk

representing the mixing of ẑ, i.e., ẑk+1 = Âkẑk + pk [13],
where pk is simply the stacked change in the vector from
the new stochastic gradient updates. For the consensus of the
expanded model vector hk we denote by Ŵk the corresponding
mixing matrix, i.e., hk+1 = Ŵk(hk+δk), with δk defining the
stacked update vector. The explicit expressions of the matrices
Âk and Ŵk are immaterial for our subsequent convergence
analysis; all it is needed are their mixing rate properties, as
recalled next.

Lemma III.1. [13, Lemma 14] In the setting of Algorithm 1,
there exists a sequence of stochastic vectors {ξk} such that,
for any k ≥ t ∈ N and i, j ∈ V , there holds

|Âk:t
ij − ξki | ≤ Cρk−t,

for some C > 0 and ρ < 1.

Lemma III.2. [13, Lemma 16] In the setting of Algorithm 1,
there exists a sequence of stochastic vectors {ψk} such that,
for any k ≥ t ∈ N and i, j ∈ V , there holds

|Ŵk:t − 1(ψt)T | ≤ Cρk−t,

for some C > 0 and ρ < 1.

Finally, we define a new vector z̄kik . This represents the up-
date that would be made if actual rather that stochastic gradients
were computed, i.e, z̄k(i) = ∇fi(x0

i)+
∑
t=k: ik=i(∇fi(x

t+1
i)−

fi(x
t
i)).

It can be seen that,

E
[
z̄kik − zkik

]
= 0 and E

[∥∥z̄kik − zkik
∥∥2] ≤ mσ2. (3)

To study convergence of Algorithm 1, we introduce the
following error terms, defining the gradient tracking, consensus,
and gradient norm errors for the evolving iterations:

Ekt =
∥∥∥z̄k(ik) − ξk−1ik

(
11T ⊗ In

)
z̄k
∥∥∥2 ,

Ekc =
∥∥∥hk − 1m ⊗ xkψ

∥∥∥2 , Ekz =
∥∥∥z̄k(ik)∥∥∥2 . (4)

Note that,

E|zkik | ≤
√
Ekz + E|zkik − z̄kik | ≤

√
Ekz +

√
mσ.

B. Convergence Theory

The proof of the main convergence theory begins similarly
as in [13], however, subsequently changes significantly in order
to account for the noise and then also set up the possibility
of deriving specific convergence rates for the optimization,
consensus, and tracking errors.

Theorem III.1. Let Assumptions I.1 and II.1 hold.

Assume that the stepsize sequence {γk} satisfies,

∞∑
k=1

γk =∞,
∞∑
k=1

(γk)2 <∞,

γ0 ≤ min
{

1
1+η ,

1
4(L+Cc2+C

t
2)

}

where Cc2 and Ct2 are constants to be defined in the proof.

The merit function M(z̄k,hk,xkψ) = E
[
Ekt + Ekc + Ekz

]
is

sublinearly convergent with the standard ergodic rate,

k∑
l=0

γlM(z̄l,hl,xlψ) ≤ C
k∑
l=0

γl

for some constant C > 0.

4

Proof. Consider the application of the Descent Lemma to F
applied at xkψ and xk+1

ψ .

E
[
F (xk+1

(ψ))
]
≤ E

[
F (xkψ)

]
+ γkψkikE

[〈
∇F (xkψ),−zk(ik)

〉]
+
L(γkψk

ik
)2

2 E
[∥∥∥zk(ik)∥∥∥2]

≤ E
[
F (xkψ)

]
+ γkψkikE

[〈
∇F (xkψ),−z̄k(ik)

〉]
+γkψkikE

[〈
∇F (xkψ), z̄k(ik) − zk(ik)

〉]
+L(γkψkik)2E

[∥∥∥z̄k(ik)∥∥∥2 +
∥∥∥zk(ik) − z̄k(ik)

∥∥∥2]
≤ E

[
F (xkψ)

]
+ L(γk)2E

[∥∥∥z̄k(ik)∥∥∥2]
+γkψkikE

[〈
(ξk−1
ik

)−1z̄k(ik),−z̄
k
(ik)

〉]
+γkψkikE

[〈(
11T ⊗ In

)
z̄k − (ξk−1

ik
)−1z̄k(ik),−z̄

k
(ik)

〉]
+γkψkikE

[〈
∇F (xkψ)−

(
11T ⊗ Inz̄

k
)
,−z̄k(ik)

〉]
+γkψkikE

[〈
∇F (xkψ), z̄k(ik) − zk(ik)

〉]
+L(γkψkik)2E

[∥∥∥zk(ik) − z̄k(ik)

∥∥∥2]
≤ E

[
F (xkψ)

]
+ L(γk)2E

[∥∥∥z̄k(ik)∥∥∥2]
+γkψkikE

[〈
(ξk−1
ik

)−1z̄k(ik),−z̄
k
(ik)

〉]
+γkψkik

(
β1

2 E
k
t + 1

2β1
Ekz

)
+γkψkik

(
β1Lm

2 Ekc + 1
2β1

Ekz

)
+γkψkikE

[〈
∇F (xkψ), z̄k(ik) − zk(ik)

〉]
+L(γkψkik)2E

[∥∥∥zk(ik) − z̄k(ik)

∥∥∥2]
where in the last inequality we used the Cauchy-Schwartz and
Young’s inequality, ab ≤ β

2 a
2 + 1

2β b
2, twice.

Set β1 = β2 = 2/η, then,

E
[
F (xk+1

(ψ))
]
≤ E

[
F (xkψ)

]
−
(
ηγk

2 + L(γk)2
)
E
[∥∥∥z̄k(ik)∥∥∥2]

+γk

η E
k
t + γk

η E
k
c

+γkψkikE
[〈
∇F (xkψ), z̄k(ik) − zk(ik)

〉]
+L(γk)2mσ2

(5)
Now it holds that by [13, Proposition 17],

E
[√

Ekc

]
≤ C2ρ

kE
[√

E0
c

]
+ C2

∑k−1
l=0 ρ

k−lγlE|zlil |

≤ C2ρ
kE
[√

E0
c

]
+ C2

∑k−1
l=0 ρ

k−lγl
(
E
√
Elz +

√
mσ
)

(6)
which implies, by [13, Lemma 26] that, after taking full
expectations, that there exist Cc1 and Cc2 such that,

k∑
l=0

E
[
Elc
]
≤ Cc1 + Cc2

k∑
l=0

(γl)2
(
E
[
Elz
]

+mσ2
)

(7)

Similarly, from the proof of [13, Proposition 18], it can be
seen that,

E
[√

Ekt

]
≤ 3C0CL

∑k−1
l=0 ρ

k−lE
[√

Elc + γl(
√
Elz +

√
mσ)

]
+C0ρ

k‖z0‖
(8)

and so, again as in [13, Lemma 26]

k∑
l=0

E
[
Elt
]
≤ Ct1 + Ct2

k∑
l=0

(γl)2
(
E
[
Elz
]

+mσ2
)

(9)

Now, summing up (5), taking full expectations we get,
using (3)

k∑
l=0

(
γlη
2 + L(γl)2

)
E
∥∥∥z̄l(il)∥∥∥2 ≤ F (x0)− Fm

+
k∑
l=0

[
γl

η E[Elt] + γl

η E[Elc]
]

+
k∑
l=0

(γl)2Lmσ2

(10)

Now add
k∑
l=0

[
γlE[Elt] + γlE[Elc]

]
to both sides, use γl

η +γl ≤
1 and plug in (7) and (9) to get,

k∑
l=0

(
γlη
2 − (L+ Cc2 + Ct2)(γl)2

)
E
∥∥∥z̄l(il)∥∥∥2

+
k∑
l=0

[
γlElt + γlElc

]
≤ F (x0)− Fm + Cc1 + Ct1 + Cσ

k∑
l=0

(γl)2

and so for sufficiently small γ0, we have,

k∑
l=0

γl
[
Elz + Elt + Elc

]
≤ F (x0)−Fm+Cσmσ

2
k∑
l=0

(γl)2

and the proof claim follows from the general stepsize conditions.

Corollary III.1. With the specific step-size choice of,

γk =
1

kα
, α ∈ (1/2, 1]

we have the following convergence rates,

M(z̄k,hk,xkψ) = o
(

1
k1−α

)
, E
[
Ekt
]

= o
(
1
k

)
,

E
[
Ekc
]

= o
(
1
k

)
, E
[
Ekz
]

= o
(

1
k1−α

)
Proof. The first follows directly from Theorem III.1, i.e., the
right hand side is bounded and thus the sum on the left must be
bounded, and so γkMk = o

(
1
k

)
, thus the form of γk implies

the rate for Mk.
The rates for E

[
Ekc
]

and E
[
Ekt
]

follow from (7) and (9),
respectively, as the right hand side is bounded and thus the
sum on the left must be.

Finally the bound for E
[
Ekt
]

follows from the finiteness of
the right hand side of (10) and the form of γk.

We note how, similarly as in [16], the consensus errors
converge quicker than the optimization and asymptotically the
optimization dominates the overall convergence rate, in this
case arbitrarily close to the standard SGD nonconvex rate of
O
(

1√
k

)
[17].

5

IV. EXPERIMENTS

In this section we aim to numerically study different aspects
of our proposed Algorithm 1 on a non-convex optimization
task.

The non-convex optimization task is image classification
using neural network on MNIST [18] dataset where we aim to
solving it using Algorithm 1 on a randomly generated digraph.
We randomly shuffle the dataset and uniformly partition it
across the nodes where the data partitions are disjoint. In our
randomly generated digraph structure each agent i sends its
updates to 3 out-neighbors; one of them is the next agent i+ 1
in the cycle order and the other two are selected randomly from
a uniform distribution, following [13]. We use the convolutional
neural network (CNN) architecture used in Tensorflow tutorial
[19]. For each experiment we used a step-wise learning rate
reduction schedule to achieve the best results. We selected
the initial learning rate (step-size), step reduction interval, and
size of reduction from the grid [1, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1],
[5000, 7500, 10000], and [1.5, 1.6, 1.8, 2] respectively. Unless
stated, otherwise we fixed the number of iterations that
each node performs to 45000 and stored results at every 30
seconds. The experiments are done in Python environment
using Tensorflow V2 and MPI (mpi4py) on RCI1 clusters over
the cpu nodes.

Convergence and Scalability The experiments in this
section analyze the convergence property of our method for
the described task. We perform experiments for I = 2, 4, 8, 16
nodes with a fixed graph connectivity of 0.7. We report the
results on the node-wise average parameters, i.e. xavg =

∑
i xi.

Figure 1 shows the time-wise convergence results for
different number of nodes. We can see that the accuracy drops
monotonically as the number of nodes increased. This suggests
for this scale we do not witness speedup with decentralized
parallelism, although accurate training is still achievable.

Graph Connectivity This part experimentally studies the
behaviour of our algorithm for different percentages of graph
connectivity. We fixed the number of nodes to 16 and did
experiments with {0.5, 0.7, 0.9} graph connectivity percentages.
Figure 2 shows the time-wise convergence results for different
graph connectivity percentages. Our observation is that as the
graph topology gets more connected, the convergence results
get improve and our algorithm finds a better optimal parameters.

1The access to the computational infrastructure of the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”
is also gratefully acknowledged. Fig. 2: Time-wise convergence results for different connectivity

6

Parameter deviations and Norm of gradients
Figure 3 shows the average L∞ distance of each node’s

parameters and the node-wise average, i.e. 1
K

∑K
i=1 ||xi −

xavg||∞ at the end of each snapshot, for two different graph
connectivity percentages, i.e. (0.5, 0.9). We observe that each
node’s parameters are approximately equidistant from the
average. Moreover, there is a gradual increase at the beginning
time around 500, 300 minutes for 0.5, 0.9 graph connectivity
percentages respectively which is due to the initial learning-rate
warm-up. After that point, we can see multiple reductions at
the learning-rate reduction intervals. In fact, it is noticeable that
the parameter deviations are smaller for higher connectivity
percentages.

Figure 4 presents the norm infinity of gradients on the whole
dataset using the node-wise averaged parameters. As the graph
connectivity percentage increases, norm infinity of the gradients
gets smaller and reduces faster. We can see a gradual increase
at the beginning time around 500, 300 minutes for 0.5, 0.9
graph connectivity percentages respectively which is consistent
with our observation in parameter deviation plots in Figure 3.

(a) 0.5 graph connectivity

(b) 0.9 graph connectivity

Fig. 4: Norm of gradients for different graph connectivity
percentages

Maximum delay and Time per iteration
Figures 5a,5b show maximum delay, and average time per

iteration as a function of number of nodes for a fixed 0.7 graph
connectivity percentage respectively. Maximum delay is the
delay between the fastest and slowest nodes. We observe that
maximum delay increased as the number of nodes increased
and it was always bounded. Indeed, from figure 5b we can see
that average time per iteration also increased as the number of

nodes increased. Figure 6 represents the behaviour of maximum
delay w.r.t graph connectivity percentage. We can observe that
maximum delay has been increased by increasing connectivity
percentage and it was always bounded.

(a) Maximum Delay

(b) Average Time Per Iteration

Fig. 5: Maximum delay and average time per iteration across
different number of nodes for 0.7 graph connectivity percentage

Fig. 6: Maximum delay w.r.t graph connectivity percentage

V. CONCLUSION

In this paper we have studied stochastic nonconvex decen-
tralized optimization on directed graphs with asynchronous

7

communication, closing an important gap in the literature on
distributed optimization. The theoretical results confirm the
expected sublinear convergence rate, and corroborate a similar
pattern of faster consensus and tracking convergence, leaving
the optimization to dominate the error asymptotically. Our
numerical results confirm the convergence of the algorithm
and show the scalability with the number of nodes and
different graph connectivity percentages on a non-convex image
classification task.

ACKNOWLEDGMENT

VK acknowledges support to the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for In-
formatics”

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[2] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural Information
Processing Systems, 2015, pp. 2737–2745.

[3] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: an algorithmic framework
for asynchronous parallel coordinate updates,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. A2851–A2879, 2016.

[4] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,”
in Advances in Neural Information Processing Systems, 2011, pp. 873–
881.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[6] R. Xin, U. A. Khan, and S. Kar, “Variance-reduced decentralized stochas-
tic optimization with gradient tracking,” arXiv preprint arXiv:1909.11774,
2019.

[7] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” in International Conference on Machine
Learning, 2018, pp. 4848–4856.

[8] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” arXiv preprint arXiv:1710.06952,
2017.

[9] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized
consensus optimization with asynchrony and delays,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 4, no. 2, pp.
293–307, 2018.

[10] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual
averaging for convex optimization,” in 2012 ieee 51st ieee conference
on decision and control (cdc). IEEE, 2012, pp. 5453–5458.

[11] A. Nedić and A. Ozdaglar, “Convergence rate for consensus with delays,”
Journal of Global Optimization, vol. 47, no. 3, pp. 437–456, 2010.

[12] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, “Robust asyn-
chronous stochastic gradient-push: Asymptotically optimal and network-
independent performance for strongly convex functions,” arXiv preprint
arXiv:1811.03982, 2018.

[13] Y. Tian, Y. Sun, and G. Scutari, “Achieving linear convergence in
distributed asynchronous multi-agent optimization,” IEEE Trans. on
Automatic Control, 2020.

[14] J. Zhang and K. You, “Fully asynchronous distributed optimiza-
tion with linear convergence in directed networks,” arXiv preprint
arXiv:1901.08215, 2019.

[15] ——, “Decentralized stochastic gradient tracking for empirical risk
minimization,” arXiv preprint arXiv:1909.02712, 2019.

[16] S. Pu, A. Olshevsky, and I. Paschalidis, “A sharp estimate on the
transient time of distributed stochastic gradient descent,” arXiv preprint
arXiv:1906.02702, 2019.

[17] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming,” SIAM Journal on Optimization,
vol. 23, no. 4, pp. 2341–2368, 2013.

[18] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2,
2010.

[19] T. Tutorials. https://www.tensorflow.org/tutorials/quickstart/advanced.
[Online]. Available: ”https://www.tensorflow.org/tutorials/quickstart/
advanced”

"https://www.tensorflow.org/tutorials/quickstart/advanced"
"https://www.tensorflow.org/tutorials/quickstart/advanced"

8

Fig. 1: Convergence results for different number of nodes

(a) 0.5 graph connectivity

(b) 0.9 graph connectivity

Fig. 3: L∞ distance to average for different graph connectivity
percentages

	I Introduction
	II Algorithm
	III Convergence
	III-A Preliminaries
	III-B Convergence Theory

	IV Experiments
	V Conclusion
	References

