
ar
X

iv
:1

70
9.

02
52

8v
1 

 [
cs

.I
T

] 
 8

 S
ep

 2
01

7
1

Spatial Modulation for More Spatial

Multiplexing: RF-Chain-Limited Generalized

Spatial Modulation Aided MmWave MIMO

with Hybrid Precoding

Longzhuang He, Student Member, IEEE, Jintao Wang, Senior Member, IEEE, and

Jian Song, Fellow, IEEE

Abstract

The application of hybrid precoding in millimeter wave (mmWave) multiple-input multiple-output

(MIMO) systems has been proved effective for reducing the number of radio frequency (RF) chains.

However, the maximum number of independent data streams is conventionally restricted by the number

of RF chains, which leads to limiting the spatial multiplexing gain. To further improve the achievable

spectral efficiency (SE), in this paper we propose a novel generalized spatial modulation (GenSM) aided

mmWave MIMO system to convey an extra data stream via the index of the active antennas group,

while no extra RF chain is required. Moreover, we also propose a hybrid analog and digital precoding

scheme for SE maximization. More specifically, a closed-form lower bound is firstly derived to quantify

the achievable SE of the proposed system. By utilizing this lower bound as the cost function, a two-step

algorithm is proposed to optimize the hybrid precoder. The proposed algorithm not only utilizes the

concavity of the cost function over the digital power allocation vector, but also invokes the convex

ℓ∞ relaxation to handle the non-convex constraint imposed by analog precoding. Finally, the proposed

scheme is shown via simulations to outperform state-of-the-art mmWave MIMO schemes in terms of

achievable SE.
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I. INTRODUCTION

The concept of millimeter wave (mmWave) communication has been widely acknowledged

to be an effective approach to substantially improve the system throughput for 5G telecom-

munication networks [1]-[3]. More specifically, the available bandwidth of mmWave frequency

ranging from 30 to 300 GHz is orders of magnitude wider than the available bandwidth in today’s

cellular networks operating in microwave bands, which is capable of enabling transmission rates

of multi-gigabits per second (Gbps) and meet the 1, 000-fold capacity gain required by future

5G telecommunications [4][5].

In order to compensate for the severe free-space pathloss of mmWave signals, mmWave

communication is usually combined with multiple-input multiple-output (MIMO) systems and

invokes precoding to overcome the pathloss and improve the signal-to-noise ratio (SNR) at the

receiver end [6]-[8]. Conventional precoding schemes are usually operated entirely in the digital

domain, i.e. a full-digital precoder, in which each antenna is equipped with a dedicated radio

frequency (RF) chain. Due to the high energy dissipation and cost of the RF chains [9], the

application of such full-digital precoding schemes can be quite disadvantageous.

In order to address this issue, it has been recently reported in [10]-[13] to employ the novel

hybrid precoding schemes for reducing the number of RF chains, in which a digital precoder

is used to simultaneously adjust the transmitted symbols’ phases and amplitudes, and an analog

precoder is invoked for phase-shifting the RF-domain signals. More specifically, in [10] and [11],

compressive sensing (CS) based approaches were exploited for the hybrid precoder designs,

of which the performance was shown to be close to the full-digital waterfilling benchmark.

Note that the schemes in [10] and [11] employed a full-connected architecture, i.e. each RF

chain is simultaneously connected to all the antennas, which incurred high insertion loss and

massive computational complexity in a massive MIMO context. To address this issue, in [12]

and [13], hybrid precoders with sub-connected architectures were proposed, which provided a

more favorable tradeoff between the hardware complexity and the achievable performance.

It is worth noting that, in the previous RF-chain-limited precoding schemes for mmWave

MIMOs (including full-digital and hybrid precoding schemes), the maximum number of in-

dependent data streams available at the transmitter is restricted by the number of RF chains,
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which therefore limits the attainable spatial multiplexing (SMX) gain. To further explore the

possibilities of increasing SMX gain in an RF-chain-limited mmWave system, mmWave MIMO

has been recently combined with the concept of spatial modulation (SM) and generalized SM

(GenSM) in [14]-[17]. SM/GenSM is a novel extension of the conventional MIMO techniques, in

which only a subset of antennas are randomly activated by the input information to transmit the

classic amplitude-phase modulation (APM) symbols [18]-[23]. The information in SM/GenSM

systems is not only transmitted by the APM symbols (APM-domain information), but is also

conveyed by the indices of the active antennas (space-domain information). As the space-domain

information does not require an extra RF chain, it is thus possible to employ SM/GenSM for

improving the achievable spectral efficiency (SE) of RF-chain-limited mmWave MIMOs.

More specifically, in [14] and [15], the applications of space shift keying (SSK) [24] and

GenSM for indoor line-of-sight (LoS) channels were investigated, where the authors proposed

to elaborately design the spacing of the antennas for performance optimization. In [16], the

application of analog beamforming (ABF) in GenSM-aided mmWave MIMO systems was ex-

plored. It was shown by [16] that, aided with ABF, the constrained capacity of the proposed

system had the potential to approach the unprecoded MIMO capacity in low SNR regions, while

maintaining a reduced-RF-chain structure. However, the preceding research on GenSM-aided

mmWave MIMOs [14]-[16] all failed to fully exploit the transmitter’s knowledge of the channel

state information (CSI), hence their achievable rates were far worse than the optimal MIMO

capacity achieved by waterfilling precoding [25]. Although [17] considered the issue of analog

precoding for GenSM-aided mmWave MIMO, the performance was still far from optimal due

to the lack of digital precoding.

In fact, to the best of the authors’ knowledge, the design of hybrid precoding in a GenSM-aided

mmWave MIMO scenario has not been explored yet. Therefore it is of paramount importance

to develop an efficient hybrid precoding scheme for GenSM-aided mmWave MIMOs in terms

of SE maximization.

In this context, the major contributions of our paper can be summarized as follows.

1) We extend the sub-connected hybrid precoding structures originally proposed in [12][13],

and propose our novel GenSM-aided mmWave MIMO scheme. Different from the con-

ventional mmWave schemes, an extra data stream can be modulated in our system without

requiring any extra RF chains, which leads to increasing the degrees of spatial freedom.

More importantly, our proposed system is a more generalized sub-connected mmWave
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MIMO structure, and the conventional sub-connected structures in [12] and [13] are

conceived as special cases when the space-domain information transmission is removed

from our structure.

2) Due to the prohibitive complexity required for evaluating the achievable SE of the proposed

system, in this paper we propose a closed-form SE lower bound, which significantly reduces

the computational complexity for SE analysis. The proposed SE bound is also shown to

provide an accurate approximation to the true SE, when a constant shift is applied.

3) By utilizing the proposed bound as a low-complexity cost function, we propose a two-step

algorithm to design the digital and analog precoders. More importantly, as the proposed

bound is proved to be a concave function of the digital precoder’s power allocation vector,

the digital precoder is therefore designed within the framework of convex optimization.

The optimization of the analog precoder’s coefficients is originally a problem with a non-

convex constraint, which is relaxed to a convex ℓ∞ constraint and solved via a gradient

ascent method.

4) As the conventional hybrid precoding schemes with sub-connected structures can be treated

as special cases of the proposed framework (when the space-domain information transmis-

sion is removed), potential SE gain is thus achievable by the proposed, more generalized

structure. In fact, by optimizing the system configuration parameters, substantial SE gain

are observed via numerical simulations.

Note that part of the material of this paper has been submitted for peer review in [26]. The

major difference between this manuscript and [26] are:

1) The theoretical derivations and mathematical proofs of the theorems and propositions are

all presented in this paper, which were omitted for brevity in [26].

2) The proposed algorithm for the hybrid precoder design is introduced with more technical

details in this paper, as opposed to [26].

3) In this paper, we also discuss the convergence of the proposed algorithm as well as its

dependence on the initial points, which were again absent in [26]. We found that the

proposed two-step algorithm is very robust to the variation of initial points.

4) The complexity analysis is conducted in this paper, while the parameter optimization is

also presented with more simulation results in Section IV-F of this paper.

Therefore this paper should be treated as a substantial extension of the content in [26].
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The organization of this paper is introduced as follows. Section II introduces the system model

of our proposed GenSM-aided mmWave MIMO. Theoretical SE analysis is provided in Section

III. Section IV introduces our proposed two-step optimization algorithm. The simulation and

comparison results are provided in Section V, while Section VI concludes this paper.

Notations: The lowercase and uppercase boldface letters denote column vectors and matrices

respectively. The operators (·)T and (·)H denote the transposition and conjugate transposition,

respectively. CN (µ,Σ) denotes a circularly symmetric complex-valued multi-variate Gaussian

distribution with µ and Σ being its mean and covariance, respectively, while CN (x;µ,Σ)

denotes the probability density function (PDF) of a random vector x ∼ CN (µ,Σ). M(i,j) is used

to denote the (i; j) component of a matrix M. ‖M‖F represents the Frobenius norm of M and

|M| is the determinant. IN denotes an N-dimensional identity matrix, and en ∈ RN×1 represents

the n-th column of IN . The ℓ∞ norm of a vector a ∈ CN×1 is defined as ‖a‖∞ = maxn=1,...,N |an|.

II. SYSTEM MODEL

The proposed GenSM-aided mmWave MIMO can be considered as a combination of the sub-

connected mmWave structure [12][13] and the information-guided antenna-switching principle of

GenSM. In order to provide an intuitive demonstration, in Fig.1 we provide the block diagrams

of the conventional sub-connected mmWave MIMO scheme and our proposed scheme. For

the conventional sub-connected mmWave MIMO scheme in Fig.1 (a), it can be seen that NS

independent data streams are firstly processed by a diagonal digital precoder, which essentially

plays the role of power allocation. After the digital precoder, NRF RF symbols are generated

with NRF denoting the number of RF chains. The output of each RF chain is then assigned to

NK,sub phase shifters (PSs) for analog precoding. In this paper we denote the number of transmit

antennas (TAs) and receive antennas (RAs) as NT and NR, respectively. Therefore we have

NT = NRFNK,sub for the conventional sub-connected scheme in Fig.1 (a). According to Fig.1 (a),

it is required by the conventional sub-connected structure that NS = NRF, hence the potentially

attainable SMX gain is restricted by the number of RF chains.

In order to address this problem, in our proposed GenSM-aided mmWave MIMO system

depicted in Fig.1 (b), an extra data stream, i.e. the space-domain data stream, is also modulated

in the transmitted signal. More specifically, the NS data streams are also processed with a diagonal

digital precoder. Different from Fig.1 (a), the power allocation vector of the digital precoder is

simultaneously determined by the space-domain information input and the instantaneous CSI.
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Fig. 1. Block diagrams of (a) conventional sub-connected mmWave MIMO scheme and (b) proposed GenSM-aided mmWave

MIMO scheme.

Thanks to the high-speed and low-latency advantages of the baseband digital processing, this

space-information-guided digital precoding can be performed for each symbol’s transmission.

Moreover, the NT TAs are divided into NM antenna groups (AGs), each of which consists of NK

TAs, hence we have NT = NMNK. In our proposed system, it is required that NM ≥ NRF, and

the space-domain information can therefore randomly assign the outputs of the NRF RF chains

to NRF out of the NM AGs, while the remaining (NM − NRF) AGs are kept silent during this

symbol’s transmission. Similar to Fig.1 (a), NK PSs are also invoked in each AG to perform

analog precoding. Finally, it is worth noting that the conventional sub-connected mmWave MIMO

is actually a special case of our proposed scheme when NM = NRF, hence the proposed system

is a more generalized version of the sub-connected mmWave MIMO.

We let x ∈ CNS×1 represent the transmitted symbol vector, which is assumed to distribute as

x ∼ CN (0, 1
NS
INS

), according to [10][13]. As the space-domain information plays the role of

selecting an active AGs’ combination (AGC), therefore the total number of legitimate AGCs,
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i.e. M , can be given as [20]:

M = 2

⌊

log2 (NM
NRF

)
⌋

, (1)

where ⌊·⌋ represents the floor operation, and
(

·
·

)

represents the binomial coefficient. Moreover,

we use um , [um1, um2, . . . , umNRF
]T to denote the indices of the AGs activated by the m-th

AGC (m = 1, 2, . . . ,M), which are subject to the following ordering constraint:

1 ≤ um1 < um2 < . . . < umNRF
≤ NM. (2)

Hence the m-th AG-selection matrix Cm ∈ RNT×NRF
can be defined as follows (1 ≤ m ≤M):

Cm ,

[

eum1
, eum2

, . . . , eumNRF

]

⊗ 1NK
, (3)

where 1NK
∈ RNK×1 denotes an NK-dimensional all-one vector, em represents the m-th column

of INM
with 1 ≤ m ≤ NM, and ⊗ represents the Kronecker product. Note that, for each symbol’s

transmission, the space-domain information randomly selects one of the M AGCs according to

a uniform probability distribution.

Moreover, the digital precoder is specified to be a collection of M diagonal real-valued

matrices, i.e. D , {D1, . . . ,DM}, where Dm = diag (dm1, dm2, . . . , dmNS
) ∈ RNS×NS

is the

applied precoder when the m-th AGC is selected by the space-domain information.

As the analog precoder plays the role of phase-shifting, the corresponding precoder matrix

can thus be denoted as A ∈ CNT×NT
and given by:

A , diag

(

1√
NK

ejθ1,
1√
NK

ejθ2 , . . . ,
1√
NK

ejθNT

)

, (4)

where θn ∈ [0, 2π) denotes the rotation phase of the n-th TA.

Finally, the received signal vector y ∈ CNR×1 at the receiver end, when the m-th AGC is

selected, can thus be formulated as:

y =
√
ρHACmDmx+ n, (5)

where a narrowband MIMO channel matrix H ∈ CNR×NT
is considered as in [13][16]. Similar

to [10], the power of H has been normalized so that E {‖H‖2F} = NRNT. The average transmit

power is given by ρ > 0, while n ∼ CN (0, σ2
NINR

) represents the additive white Gaussian noise

(AWGN) at the receiver side. In order to maintain an SNR value ρ/σ2
N at the receiver, the digital
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precoder D must satisfy the following power constraint:

M
∑

m=1

Tr
(

DmD
H
m

)

≤MNS. (6)

Similar to [10] and [13], in this paper we adopt the classic clustered Saleh-Valenzuela mmWave

channel model, which is formulated as:

H = γ

Ncl
∑

p=1

Nray
∑

q=1

αpqΛt(φ
t
pq, θ

t
pq)Λr(φ

r
pq, θ

r
pq)bt(φ

t
pq, θ

t
pq)br(φ

r
pq, θ

r
pq), (7)

where γ > 0 is the normalizing factor ensuring E{‖H‖2F} = NRNT, Ncl is the number of

scattering clusters, and Nray denotes the number of effective propagation paths within each

cluster. The complex-valued channel gain is given by αpq ∼ CN (0, σ2
α,p). Moreover, the azimuth

(elevation) angles of departure and arrival (AoDs and AoAs) at the transmitter and the receiver

are given by φt
pq(θ

t
pq) and φr

pq(θ
r
pq), respectively. The transmit and receive antenna gains are

denoted by Λt(φ
t
pq, θ

t
pq) and Λr(φ

r
pq, θ

r
pq), respectively, while bt(φ

t
pq, θ

t
pq) and br(φ

r
pq, θ

r
pq) denote

the normalized transmit and receive antenna array responses given by [10]:

bτ (φ
τ
pq, θ

τ
pq) =

1√
U

[

1, ej
2π
λ
d sin(φτ

pq), . . . , ej(U−1) 2π
λ
d sin(φτ

pq)
]T

, (8)

with τ ∈ {t, r}. The number and spacing of the antenna elements are given by U and d, while

λ represents the signal’s wavelength. As we assume that the transmit and receive antennas form

two horizontal uniform linear arrays (ULAs), (8) is therefore irrelevant to the elevation angles

θτpq. Similar to [10], the angles φτ
pq (θτpq) are assumed to be Laplacian random variables with a

uniformly-random mean cluster angle φ̄τ
p (θ̄τp ) and angle spread στ

φ (στ
θ ). Lastly, we assume that

the antenna element gains are given as [10]:

Λτ (φ
τ
pq, θ

τ
pq) =











1, φτ
pq ∈ [φτ

min, φ
τ
max],

0, otherwise,
(9)

where [φτ
min, φ

τ
max] are the azimuth sector angles at the transmitter (τ = t) and receiver (τ = r).

It is worth noting that, the model in (7) is certainly not the only channel model suitable for

the analysis and algorithms of this paper. As this paper is more concerned about the specific

channel realization H, hence the LoS channel model [15] or the 3-D mmWave channel model

[28] would also be applicable.
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Finally, in order that the NS independent data streams can be successfully transmitted, in this

paper we require that

NS ≤ rank(H). (10)

III. THEORETICAL SPECTRAL EFFICIENCY ANALYSIS

A. Mutual Information Analysis

According to (5), the achievable SE of the proposed system can be characterized via the

mutual information (MI) between y, x and m, i.e.

R(H,D,A) = I(y;x, m), (11)

of which the left-hand side indicates that the MI term is a function of the instantaneous channel

realization H, the digital precoder D and the analog precoder A.

Due to the discrete-random channel input m ∈ {1, 2, . . . ,M}, the MI term in (11) cannot

be expressed in a closed form, and it can only be obtained via numerical integrations, which

requires prohibitive complexity [22][27]. Therefore we propose Theorem 1 to provide a closed-

form expression RLB(H,D,A) for lower-bounding R(H,D,A):

Theorem 1: A closed-form lower bound for the achievable SE of the proposed system is given

as follows:

RLB(H,D,A) = log2
M

(eσ2
N)

NR
− 1

M

M
∑

n=1

log2

M
∑

t=1

|Σn +Σt|−1 , (12)

where Σn is given as follows:

Σn , σ2
NINR

+
ρ

NS

HACnDnD
H
n C

H
n A

HHH. (13)

Proof: The proof is provided in the Appendix A.

The closed-form lower bound RLB proposed by Theorem 1 has facilitated a computationally

efficient approach to quantify the achievable SE performance. We now move on to demonstrate

the tightness of the proposed bound RLB.

B. Bound Tightness

We now use several examples to demonstrate the tightness of the proposed closed-form

bound RLB(H,D,A). Before presenting the numerical results, we firstly propose the following
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TABLE I

SIMULATION PARAMETERS

Symbols Specifications Typical Values

NT Number of TAs 8

NR Number of RAs 8

NK Number of TAs in each antenna group 2

NM Number of antenna groups 4

NRF Number of RF chains 2

NS Number of APM-domain data streams NRF

λ Carrier’s wavelength 5 mm

Ncl Number of scattering clusters 8

Nray Number of propagation paths 10

σ2

α,p Average power of the p-th cluster 1

στ
φ(σ

τ
θ ) Azimuth (elevation) angular spreads, τ ∈ {t, r} 7.5◦

[φt
min, φ

t
max] Azimuth sector angles at the transmitter [−30◦, 30◦]

[φr
min, φ

r
max] Azimuth sector angles at the receiver [−180◦, 180◦]

proposition to discuss the issue of bound tightness.

Proposition 1: A constant gap of NR(1 − log2 e) exists between RLB(H,D,A) and the true

SE expression R(H,D,A), when an asymptotically high or low SNR is imposed.

Proof: The proof is provided in the Appendix B.

Therefore we can apply this constant shift in RLB(H,D,A) to obtain a more accurate,

asymptotically unbiased approximation to R(H,D,A). Before presenting our results on the

bound tightness, we summarize the typical values of simulation parameters in Table I and stress

that all the simulations in this paper are configured according to Table I, unless mentioned

otherwise. As the specific design of D and A has not yet been discussed, we therefore apply

the trivial precoding scheme, i.e.

D = {INS
, . . . , INS

} , A =
1√
NK

INT
. (14)

In Fig.2, the true SE expression R(H,D,A) as well as the SE lower bound RLB(H,D,A)

(with and without constant shift) averaged over 2, 000 random channel realizations are depicted

as a function of SNR ρ/σ2
N. As it can be seen from the figure, although the proposed lower

bound RLB exhibits an SE gap with respect to the true SE R, it actually provides a favorable

approximation accuracy when the constant shift NR(1 − log2 e) is compensated. Since adding

the constant shift imposes no impact on the precoder design in terms of SE maximization, we
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would therefore utilize RLB as a low-complexity cost function to design the hybrid precoders in

the following sections.

IV. PROPOSED TWO-STEP ALGORITHM FOR PRECODER DESIGN

In this section, we propose to solve the following optimization problem (P1) to design the

hybrid precoders:

(P1): max
D,A

RLB(H,D,A)

s.t. D = {D1,D2, . . . ,DM} ,
M
∑

m=1

Tr(DmD
H
m) ≤MNS and A ∈ A ,

(15)

where A represents the feasible set of A satisfying the definition in (4).

In order to solve (P1) with a reduced level of complexity, similar to [29], we propose to
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∇λm
RLB(λ) =

ρ log
2
e

MNS

M
∑

n=1

|Σn +Σm|−1
diag

[

C
H
mA

H
H

H (Σn +Σm)
−1

HACm

]

∑M

t=1
|Σn +Σt|−1

+ ...

ρ log
2
e

MNS

∑M

t=1
|Σm +Σt|−1

diag
[

C
H
mA

H
H

H (Σm +Σt)
−1

HACm

]

∑M

t=1
|Σm +Σt|−1

.

(17)

decompose (P1) and iteratively solve the following two sub-problems, i.e. (P2) and (P3):

(P2): max
D

RLB(H,D,A)

s.t. D = {D1,D2, . . . ,DM} ,
M
∑

m=1

Tr(DmD
H
m) ≤MNS,

(P3): max
A

RLB(H,D,A) s.t. A ∈ A ,

(16)

in which (P2) optimizes the digital precoder D based on a given A, while (P3) optimizes the

analog precoder A upon assuming an invariableD. In the following subsections we will introduce

our solutions to (P2) and (P3), as well as the final proposed two-step algorithm.

A. Digital Precoder Design for SE Maximization

The solution to (P2) essentially relies on the concavity of RLB over Dm. Unfortunately such

concavity does not hold, which can be readily verified by a counterexample (e.g. NR = NT =

NK = NM = NRF = M = 1).

Since Dm = diag(dm1, . . . , dmNS
) is a diagonal matrix, another option is to verify the concavity

of RLB with respect to λm , [d2m1, d
2
m2, . . . , d

2
mNS

]T , i.e. the m-th power allocation vector.

Fortunately, the following proposition shows that RLB is actually a concave function of the joint

power allocation vector λ , [λT
1 , . . . ,λ

T
M ]T ∈ RMNS×1.

Proposition 2: The closed-form expression RLB is a concave function of the power allocation

vector λ.

Proof: The proof is provided in the Appendix C.

Aided with Proposition 2, we therefore seek to solve the following convex optimization

problem (P2-1) to obtain the global-optimal power allocation vector λ:

(P2-1): max
λ∈RMNS×1

RLB(λ) s.t. 1Tλ = MNS, λ � 0, (18)
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where λ � 0 represents a non-negative vector λ.

To solve (P2-1), we utilize the barrier method to incorporate the non-negative constraint λ � 0

[30], i.e.

max
λ∈RMNS×1

fB(λ) = RLB(λ) +

MNS
∑

i=1

φ(λi) s.t. 1Tλ = MNS , (19)

where λi denotes the i-th element of λ, and φ(u) is the logarithmic barrier function utilized to

approximate the penalty of violating the non-negative constraint, i.e.

φ(u) =











1

tB

ln(u), u > 0,

−∞, u ≤ 0,

(20)

where tB is used to scale the barrier function’s penalty. In order to solve (19), we formulate the

gradient of the cost function in (19) with respect to λm as follows:

∇λm
fB(λ) = ∇λm

RLB(λ) +
1

tB

qm, (21)

where qm ,
[

λ−1
m1, . . . , λ

−1
mNS

]T
. The expression of the gradient vector ∇λm

RLB(λ) has been

derived in (17). Based on (21), the gradient of fB(λ) at λ is thus given by:

∇λfB(λ) = [∇λ1
fB(λ)

T , . . . ,∇λM
fB(λ)

T ]T . (22)

To preserve the linear constraint 1Tλ = MNS, we therefore formulate the ascent direction as

follows [29]:

∆λ =

(

IMNS
− 1 · 1T

MNS

)

∇λfB(λ), (23)

by which the gradient ∇λfB(λ) is projected onto the linear space satisfying:

1T∆λ = 0. (24)

Finally, we summarize our digital precoder optimization algorithm in Algorithm 1.

As the concavity of RLB(λ) over λ has been verified, Algorithm 1 thus ensures convergence to

a global optimal power allocation vector λ∗. The optimal digital precoder D∗ = {D∗
1, . . . ,D

∗
M}

is thus given as:

D∗
m = diag

(

√

λ∗
m1,

√

λ∗
m2, . . . ,

√

λ∗
mNS

)

, 1 ≤ m ≤M, (25)
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Algorithm 1 Maximizing the SE Lower Bound Over the Baseband Power Allocation Vector

1: Initialization: Given a feasible initial solution λ(0), i = 0, halting criterion ǫhalt > 0 and the

barrier coefficient tB.

2: Search direction: Compute the gradient ∇λfB(λ
(i)) as (22) and the search direction ∆λ(i)

as (23).

3: Gradient ascent: Solve the following one-dimensional search problem via backtracking line

search [30]:

η∗ = argmax
η

fB

(

λ(i) + η ·∆λ(i)
)

.

4: Update: Stop if η∗‖∆λ(i)‖2 ≤ ǫhalt‖λ(i)‖2, else let λ(i+1) ← λ(i) + η∗ ·∆λ(i), i← i+1 and

then go to Step 2.

where we have λ∗ = [(λ∗
1)

T , . . . , (λ∗
M)T ]T .

B. Analog Precoder Design for SE Maximization

Different from (P2-1), the optimization of (P3) is non-concave due to i) the non-convex

constraint of A ∈ A , and ii) the non-concavity of RLB over A, of which the latter can be again

verified via a simple counterexample (e.g. NR = NT = NK = NM = NRF = M = 1). In order

to handle the non-convex constraint of A ∈ A , we propose to relax the problem (P3) into the

following optimization (P3-1) with a convex ℓ∞ constraint:

(P3-1): max
a∈CNT×1

RLB(a) s.t. ‖a‖∞ ≤ 1/
√

NK, (26)

where a ∈ CNT×1 denotes the diagonal elements of A, i.e. a = diag(A). Note that the original

feasible set A is a subset of the new feasible set in (P3-1), i.e.

{

a ∈ CNT×1 : ai =
exp (jθ)√

NK

, 1 ≤ i ≤ NT

}

⊂
{

a ∈ CNT×1 : ‖a‖∞ ≤
1√
NK

}

, (27)

while the feasible set of (P3-1) is also convex due to the convexity of ℓ∞ norm.

In order to deal with the non-differentiable ℓ∞ constraint in (P3-1), similar to [31], we exploit

the ℓp approximation with a large p. Since

lim
p→∞
‖a‖p = ‖a‖∞ , (28)

the value of p should thus be gradually increased during the optimization process. Moreover,

again we exploit the logarithmic barrier function to approximate the penalty of violating the ℓp
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∇aRLB(a) =
ρ log

2
e

MNS

M
∑

n=1

∑M

t=1
|Σn +Σt|−1

diag
[

H
H (Σn +Σt)

−1
HA

(

CnΛnC
H
n +CtΛtC

H
t

)

]

∑M

t′=1
|Σn +Σt′ |−1

. (32)

constraint, which leads to the following optimization problem:

max
a∈CNT×1

gB(a, p) = RLB(a) + φ

(

1√
NK

− ‖a‖p
)

, (29)

where the barrier function φ(u) has been defined in (20). To solve (29) via a gradient method,

we formulate the gradient of the cost function gB(a, p) over a as follows:

∇agB(a, p) = ∇aRLB(a)−
‖a‖1−p

p pa

2tB

(

N
−1/2
K − ‖a‖p

) , (30)

where pa ∈ CNT×1 is given as:

pa =
[

a1 · |a1|p−2 , a2 · |a2|p−2 , . . . , aNT
· |aNT

|p−2]T . (31)

Moreover, the gradient ∇aRLB(a) is given in (32), where Λn = diag(λn) for n = 1, 2, . . . ,M .

By using ∇agB(a, p) as the search direction, i.e. ∆a = ∇agB(a, p), we thus present our proposed

algorithm for the analog precoder design in Algorithm 2.

Algorithm 2 Maximizing the SE Lower Bound Over the Analog Precoder

1: Initialization: Given a feasible initial solution a(0), p > 0, ∆p > 0, pmax > 0, i = 0, halting

criterion ǫhalt > 0 and the barrier coefficient tB.

2: Search direction: Compute the search direction ∆a(i) = ∇agB(a
(i), p) with ∇agB(a

(i), p)
given in (30).

3: Gradient ascent: Solve the following one-dimensional search problem via backtracking line

search:

η∗ = argmax
η

gB(a
(i) + η ·∆a(i), p).

4: Update: Go to Step 5 if η∗‖∆a(i)‖2 ≤ ǫhalt‖a(i)‖2, else let a(i+1) ← a(i)+η∗ ·∆a(i), i← i+1
and then go to Step 2.

5: Iteration: Go Step 6 if p ≥ pmax, else let p← p +∆p and then go to Step 2.

6: Output: The optimized analog precoder’s diagonal elements are thus given by:

a∗ =
1√
NK

exp
[

jangle
(

a(i)
)]

, (33)

where angle(·) represents the element-wise phase function.
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Due to the non-concavity of RLB over a and the convex ℓ∞-norm relaxation, Algorithm 2 thus

ensures convergence to a local maximum of a.

C. Proposed Two-Step Algorithm for Hybrid Precoder Design

By combining Algorithm 1 and 2, we therefore develop our proposed two-step algorithm for

the hybrid precoder design in Algorithm 3, where the digital precoder D and the analog precoder

A are optimized iteratively.

Algorithm 3 Two-Step Algorithm for Hybrid Precoder Design

1: Initialization: Given initial solutions a(0) and λ(0). Set iteration index to i = 0.

2: Optimize the digital precoder: Based on a(i), optimize the digital precoder via Algorithm 1

and (25), which yields λ(i+1).

3: Optimize the analog precoder: Based on λ(i+1), optimize the analog precoder via Algorithm

2, which yields a(i+1).

4: Let i← i+ 1. Go to Step 2 until convergence.

As Algorithm 3 only ensures convergence to a local maximum (since Algorithm 2 only ensures

local convergence), the optimization results of Algorithm 3 are thus affected by the initialization

of a(0) and λ(0). However, as we will show in the next subsection, the optimized cost function

is relatively insensitive to the specific selection of initial points.

D. Convergence of the Proposed Two-Step Algorithm

In this subsection, several examples will be provided to confirm the convergence of the pro-

posed Algorithm 3 in conjunction with various initial points. Note that the simulation parameters

are configured according to Table I with an SNR value of 5 dB. The initial solutions of Algorithm

3 are designed as follows:

λ(0)=
MNS

∑MNS

n=1 λ
(0)
n

·
[

λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
MNS

]T

,

a(0) =

[

exp(jθ1)√
NK

,
exp(jθ2)√

NK

, . . . ,
exp(jθNT

)√
NK

]T

,

(34)

where λ
(0)
n and θm (1 ≤ n ≤ MNS, 1 ≤ m ≤ NT) are i.i.d. random variables subject to a

uniform distribution over [0, 1] and [−π, π], respectively.
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Fig. 3. Typical evolution yielded by Algorithm 3 with 4 independently generated initial solutions. The simulation parameters

are specified according to Table I with p = 32, ∆p = 10, pmax = 64, ǫhalt = 10−3 and tB = 64.

The evolution of the proposed Algorithm 3 in conjunction with 4 independently generated

initial points is therefore presented in Fig.3. Note that here we use the closed-form SE approxi-

mation, i.e. [RLB−NR(1− log2 e)] as the performance metric. The performance yielded without

precoding is also depicted in Fig.3. It can thus be that Algorithm 3 converges to almost the same

cost function value for the various initial points, which outperforms the SE without precoding

by approximately 20.55%. Note that the evolution of the cost function exhibits a staircase shape

with each stair associated with either Step 2 or Step 3 of Algorithm 3. Besides, it is also observed

that it only takes less than 20 iterations for Algorithm 3 to converge, which substantiates the

low complexity advantage of the proposed algorithm.

In order to provide a more intuitive demonstration, in Fig.4 we depict the cumulative distribu-

tion of the achievable SE yielded by 10, 000 randomly generated initial points. The simulation

parameters are configured in accordance to Fig.3 in conjunction with SNR ∈ {0, 5, 10} dB.

Based on the steeply ascending shape of the curves depicted in Fig.4, it can thus be concluded

that the proposed Algorithm 3 ensures convergence to almost the same cost function for all
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Fig. 4. Cumulative distribution of the achievable SE yielded by various initial points. The simulation parameters are configured

in accordance to Fig.3.

the initial points, which therefore confirms the near global optimality achieved by the proposed

algorithm.

E. Complexity Analysis

We now provide analysis on the computational complexity of the proposed Algorithm 3. We

commence by quantifying the complexity order of Algorithm 1 and Algorithm 2 as follows.

(1) Complexity of Algorithm 1: As can be seen from Algorithm 1, the computational complexity

is primarily consumed by the gradient calculation, which involves i) calculating the M2 matrices’

inversions (Σn +Σm)
−1 for 1 ≤ n,m ≤ M , and ii) calculating the M2 matrix multiplications

CH
mA

HHH(Σn+Σm)
−1HACm. Therefore the complexity order of Algorithm 1 for each iteration

is:

O
[

M2
(

N3
R + 2NRFN

2
R

)]

. (35)

(2) Complexity of Algorithm 2: Similar to Algorithm 1, the complexity of Algorithm 2 is also

mainly consumed by the gradient calculation, which involves calculating the ℓp norm ‖a‖p as
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well as the following matrices (1 ≤ n, t ≤M):

HH (Σn +Σt)
−1

HA
(

CnΛnC
H
n +CtΛtC

H
t

)

. (36)

Therefore the complexity order of Algorithm 2 for each iteration is:

O
[

M2
(

N3
R +NTN

2
R +NRN

2
T

)

+ pNT

]

. (37)

Finally, by preserving the dominant terms, the overall complexity order of Algorithm 3 can

be expressed as follows:

O
[

M2
(

N3
R + 2NRFN

2
R

)

+Np ·M2
(

N3
R +NTN

2
R +NRN

2
T

)

+NT

Np
∑

n=1

p(n)

]

, (38)

where Np = ⌈(pmax − p) /∆p⌉ and p(n) = p+ (n− 1)∆p, with p, ∆p and pmax specified in Step

1 of Algorithm 2.

It is worth noting that, the polynomial complexity order in (38) is mainly achieved thanks

to the application of the closed-form cost function RLB. Otherwise the complexity order would

be orders of magnitude higher due to the prohibitive complexity for calculating the true SE

expression R(H,D,A).

F. Optimization of System Parameters

In this subsection we discuss the optimized selection of the system parameters, i.e NT, NR,

NK, NM and NRF. As the antennas and RF chains are usually hardware resources that are invariant

from a practical point of view, we therefore focus on the selection of (NK, NM).

Note that in the proposed scheme NT = NKNM always holds. On the one hand, increasing NK

leads to reducing NM, which consequently reduces the potential multiplexing gain provided by

GenSM, since M = 2
⌊log2 (NM

NRF
)⌋

. On the other hand, increasing NK also leads to a larger antenna

group and therefore enhances the possible array gain provided by incorporating the ananlog

precoder A. Therefore the pair (NK, NM) is essential for achieving a scalable tradeoff between

multiplexing gain and array gain. As (NK, NM) cannot be altered for every channel realization

H, we thus seek to optimize the parameters for maximizing the average SE, i.e.

(N∗
K, N

∗
M) = arg max

(NK,NM)
EH {RLB [H,D∗(H, NK, NM),A

∗(H, NK, NM)]} ,

s.t. NKNM = NT,

(39)



20

TABLE II

OPTIMAL (NK, NM) PAIRS AS A FUNCTION OF VARIOUS SYSTEM PARAMETERS

SNR (dB)

NRF NT ×NR -5 0 5 10

1
8× 4 (8, 1) (8, 1) (4, 2) (1, 8)

8× 8 (8, 1) (2, 4) (1, 8) (1, 8)

2
8× 6 (4, 2) (4, 2) (2, 4) (1, 8)

8× 8 (4, 2) (4, 2) (2, 4) (1, 8)

where D∗(H, NK, NM) and A∗(H, NK, NM) denote the hybrid precoder designed by Algorithm

3, when H, NK and NM are given. Note that we use RLB instead of R as the cost function in

(39) so that a lower complexity can be obtained.

Using (39) as the design guideline, we present the optimal (NK, NM) pairs as a function of

various configuration parameters in Table II. As it can be seen from Table II, the optimal value

of NM is shown to increase with the increase of NR or SNR, i.e. a larger NM should be invoked,

when the receiver is in a sufficiently good condition (either a larger NR or a higher SNR value) to

harness the SMX gain provided by GenSM. Otherwise, when a lower SNR or a smaller NR value

is invoked, NM should be reduced to enhance the array gain provided by analog beamforming.

Remark: It is worth noting that our proposed scheme degenerates to the conventional sub-

connected hybrid precoding schemes, when (NK, NM) = (NT/NRF, NRF). Hence the proposed

scheme has the potential to even outperform the conventional schemes in terms of achievable SE.

As a matter of fact, the solution to (39) is the essential reason for the performance improvements

achieved by the proposed scheme, as the conventional schemes can be conceived as special cases

of the proposed GenSM-aided mmWave MIMO scheme. The performance improvements will

be substantiated in the following sections.

V. SIMULATION RESULTS

In this section we present the simulated SE performance yielded by various schemes. Note

that the achievable SE performance of the proposed scheme is given by the true SE expression

R(H,D,A) averaged over 1, 000 random channel realizations. The simulation parameters (e.g.

p, ∆p, pmax, etc.) are specified as in Fig.3 and Table I, unless mentioned otherwise.



21

More specifically, the achievable SE performance yielded by the following 5 schemes are

presented for performance comparison:

• O-GenSM-MIMO: The proposed GenSM-aided mmWave MIMO scheme with hybrid pre-

coder optimized according to Algorithm 3. The performance of O-GenSM-MIMO is asso-

ciated with (NT, NR, NRF), while (NK, NM) are selected according to (39).

• NO-GenSM-MIMO: The proposed scheme without optimization. The system parameters of

NO-GenSM-MIMO are configured in accordance to the corresponding O-GenSM-MIMO

counterpart.

• WP-MIMO: Waterfilling-precoded MIMO scheme [25]. Note that, in conventional WP-

MIMOs, NS is usually set as NS = NT to fully exploit the spatial multiplexing gain.

In order to maintain fairness from an RF-chain-limited point of view, we thus assume that

NS = NRF also holds for WP-MIMOs.

• SIC-SC-MIMO: Hybrid precoding scheme for the sub-connected (SC) mmWave MIMO

using successive interference cancellation (SIC) method, which is proposed by [13].

• S-Sparse-MIMO: The classic spatially sparse hybrid precoded mmWave MIMO proposed

by [10]. Note that S-Sparse-MIMO exploits a full-connected hybrid precoder structure,

which requires more hardware complexity than the sub-connected structure exploited by

our scheme.

We commence by showing the cumulative distribution of the achievable SE yielded by O-

GenSM-MIMO and NO-GenSM-MIMO with various channel realizations in Fig.5. As it can

be seen from the figure, aided with the proposed optimization algorithm, the SE achieved by

O-GenSM-MIMO is capable of significantly outperforming the SE achieved by NO-GenSM-

MIMO, which substantiates the efficacy of the proposed Algorithm 3. Moreover, it can be also

observed that the cumulative distribution of O-GenSM-MIMO is even steeper than that of NO-

GenSM-MIMO, which indicates that the channel variation has less impacts on the performance

of O-GenSM-MIMO than NO-GenSM-MIMO, i.e. O-GenSM-MIMO is more robust under the

channel fading.

In Fig.6, the average SE performance yielded by various schemes with (NT, NR, NRF) =

(8, 4, 2) are presented. For the proposed schemes, i.e. O-GenSM-MIMO and NO-GenSM-MIMO,

it can be seen that (NK, NM) = (4, 2) and (NK, NM) = (2, 4) are respectively selected, when

SNR < 7.5 dB and SNR > 7.5 dB. It is also observed that a significant SE improvement is
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Fig. 5. Cumulative distribution of the achievable SE yielded by O-GenSM-MIMO and NO-GenSM-MIMO with various channel

realizations. The parameters are NT = 8, NR = 8 and NRF = 2, while (NK, NM) are determined by solving (39).

achieved by O-GenSM-MIMO compared to NO-GenSM-MIMO, which substantiates the efficacy

of the proposed hybrid precoder design in Algorithm 3. Furthermore, by comparing O-GenSM-

MIMO to other state-of-the-art mmWave schemes, it is seen that our proposed scheme maintains

a superior SE performance over the SIC-SC-MIMO scheme of [13] for the entire SNR range

considered, and our scheme also outperforms the S-Sparse-MIMO scheme of [10] when the

SNR is higher than 0 dB. As predicted by the remarks in the last section, such performance

improvement is guaranteed because our proposed scheme maintains a more generalized hybrid

precoding paradigm, and the configuration parameters (NK, NM) are also optimized in terms of

SE maximization, as in (39). Finally, with a target throughput of 12 bits/s/Hz, our scheme

outperforms the S-Sparse-MIMO scheme by about 0.55 dB, while the WP-MIMO scheme

outperforms the proposed scheme by approximately 2.0 dB.

To explore the impact of NR, we increase the NR = 4 scenario in Fig.6 to NR = 6 and present

Fig.7. It is seen that, with a higher number of RAs, (NK, NM) = (4, 2) and (NK, NM) = (2, 4)

are respectively selected, when SNR < 2.5 dB and SNR > 2.5 dB, i.e. the “SNR switching

threshold” is lower than the case with NR = 4. By comparing against other mmWave MIMO
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Fig. 6. Achievable SE performance yielded by various schemes with NT = 8, NR = 4 and NRF = 2. The parameters (NK, NM)
of the proposed scheme are designed by solving (39).

schemes, it is observed that the proposed scheme maintains a superior SE performance over

S-Sparse-MIMO when SNR > 2.5 dB, and outperforms SIC-SC-MIMO over the entire SNR

range under consideration. Finally, with a target throughput of 13 bits/s/Hz, the proposed scheme

outperforms S-Sparse-MIMO by approximately 0.9 dB, and is outperformed by WP-MIMO with

a 1.25 dB performance gap.

Finally, we increase the NRF = 2 cases to the case with NRF = 3 and present Fig.8, where

a 15 × 10 mmWave MIMO is considered in conjunction with 3 RF chains. It is seen that

(NK, NM) = (5, 3) and (NK, NM) = (3, 5) are utilized, when SNR < −7.5 dB and SNR > −7.5
dB, respectively. Moreover, it is also observed that the proposed scheme maintains a higher SE

performance than SIC-SC-MIMO for the entire SNR range considered. With a target throughput

of 21 bits/s/Hz, it is readily seen that the proposed scheme outperforms S-Sparse-MIMO by

approximately 1.6 dB, and is outperformed by WP-MIMO with a 1.3 dB performance gap.

To sum up, it can be observed from the simulation results that our proposed scheme is capable

of outperforming the classic sub-connected mmWave scheme, i.e. SIC-SC-MIMO, for a wide
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Fig. 7. Achievable SE performance yielded by various schemes with NT = 8, NR = 6 and NRF = 2. The parameters (NK, NM)
of the proposed scheme are designed by solving (39).

range of SNR. The proposed scheme also outperforms the S-Sparse-MIMO scheme when a not-

so-low SNR value is imposed. Note that such performance improvement is achieved with an

even lower complexity level, consider that our scheme is sub-connected while S-Sparse-MIMO

is full-connected. Finally, the proposed scheme remains sub-optimal with a very smaller SE gap,

when compared against the optimal WP-MIMO scheme.

VI. CONCLUSION

In this paper, we proposed a novel GenSM-aided mmWave MIMO scheme with a hybrid

analog and digital precoding structure. A closed-form expression was proposed to quantify the

achievable SE of the proposed scheme. Using the proposed expression as a low-complexity cost

function, we proposed a new two-step algorithm to design the hybrid precoder with respect to

SE maximization. More specifically, the proposed algorithm utilized the concavity of the cost

function over the digital power allocation vector, and used a convex ℓ∞ relaxation to handle the

non-convex constraint imposed by the analog precoder. Finally, numerical simulation results not
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only demonstrated the convergence and efficacy of the proposed algorithm, but also substantiated

the superior SE performance achieved by the proposed scheme against state-of-the-art mmWave

precoding schemes.

APPENDIX A

PROOF OF THEOREM 1

Proof: The MI term in (11) can be decomposed as follows [32]:

I(y;x, m) = I(y;x|m) + I(y;m), (40)

where I(y;x|m) represents the average mutual information conditioned on a given m, which can

be readily formulated using Shannon’s continuous-input continuous-output memoryless channel’s

(CCMC) capacity [27], i.e.

I(y;x|m) =
1

M

M
∑

m=1

log2

(
∣

∣

∣

∣

1

σ2
N

Σm

∣

∣

∣

∣

)

, (41)
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where Σm is defined by (13). Moreover, the MI term I(y;m) represents the mutual information

conveyed via the antenna domain, of which the expression is given by:

I(y;m) =
1

M

M
∑

n=1

∫

P(y|n) log2

[

P(y|n)
1
M

∑M
t=1P(y|t)

]

dy, (42)

where the likelihood function is given by:

P(y|n) = CN (y; 0,Σn). (43)

Since I(y;m) cannot be expressed in a closed form due to the discrete input m, we therefore

derive a lower bound for I(y;m) as follows:

I(y;m) =
1

M

M
∑

n=1

{

∫

P(y|n) log2P(y|n)dy −
∫

P(y|n) log2

[

1

M

M
∑

t=1

P(y|t)
]

dy

}

. (44)

By incorporating the expression of P(y|n), we have:

∫

P(y|n) log2P(y|n)dy = −NR log2(πe)− log2(|Σn|). (45)

Moreover, since log2(·) is a concave function, the following inequality can be yielded via a

direction application of Jensen’s inequality:

∫

P(y|n) log2

[

1

M

M
∑

t=1

P(y|t)
]

dy

≤ log2

[

1

M

M
∑

t=1

∫

P(y|n)P(y|t)dy
]

= −NR log2 π + log2

[

M
∑

t=1

|Σt +Σn|−1

M

]

.

(46)

By substituting (45) and (46) into (44), a lower bound of I(y;m) is thus given as follows:

ILB(y;m) = log2M −NR log2 e−
1

M

M
∑

n=1

log2

M
∑

t=1

|Σn|
|Σn +Σt|

. (47)

Finally, by substituting (47) and (41) into (40), the closed-form lower bound RLB(H,D,A)

in Theorem 1 is thus yielded, which completes the proof.
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APPENDIX B

PROOF OF PROPOSITION 1

Proof: According to the derivations in Appendix A, the closed-form lower bound can be

decomposed as:

RLB(H,D,A) = I(y;x|m) + ILB(y;m), (48)

where I(y;x|m) and ILB(y;m) are given by (41) and (47), respectively. Since the derivation of

I(y;x|m) is accurate, according to (41), we thus seek to derive the value of ILB(y;m), when

an asymptotically high or low SNR value ρ/σ2
N is invoked.

Case I (asymptotically high SNR): We seek to prove that the following limits hold:

|Σn|
|Σn +Σt|

ρ/σ2

N→∞−−−−−→











0, n 6= t,

2−NR, n = t.
(49)

The case of n = t can be readily proved. We now focus on the case of n 6= t. On the one

hand, when n 6= t, the following derivations hold with an asymptotically high SNR:

|Σn +Σt|=
(

2σ2
N

)NR ·
∣

∣

∣
INR

+
ρS

2
HA

(

CnDnD
H
n C

H
n +CtDtD

H
t C

H
t

)

AHHH
∣

∣

∣

= (2σ2
N)

NR ·
∣

∣

∣
I2NS

+
ρS

2
QH

ntQnt

∣

∣

∣

(a)≈ (ρ/σ2
N)

2NS · σ2NR

N · 2NR−2NS ·N−2NS

S ·
∣

∣QH
ntQnt

∣

∣ ,

(50)

where ρS , ρ/(σ2
NNS), Qnt , [HACnDn,HACtDt], and (a) is obtained by assuming ρS ≫ 1.

Note that, since NS ≤ rank(H) holds according to (10), we thus have
∣

∣QH
ntQnt

∣

∣ > 0, when

n 6= t. On the other hand, we have:

|Σn|= σ2NR

N

∣

∣INR
+ ρSHACnDnD

H
n C

H
n A

HHH
∣

∣

(a)≈ (ρ/σ2
N)

NS · σ2NR

N ·N−NS

S ·
∣

∣DH
n C

H
n A

HHHHACnDn

∣

∣ ,

(51)

where (a) is again obtained by assuming ρS ≫ 1. Comparing (50) to (51), it can be observed

that, with an asymptotically high SNR, |Σn +Σt| scales linearly with (ρ/σ2
N)

2NS · σ2NR

N , while

|Σn| only scales linearly with (ρ/σ2
N)

NS ·σ2NR

N . Therefore the limits in (49) can be proved. Based



28

on (49), we thus have:

ILB(y;m)
ρ/σ2

N→∞−−−−−→ log2M +NR (1− log2 e) . (52)

Case II (asymptotically low SNR): In this case, we have Σn ≈ σ2
NINR

for n ∈ {1, 2, . . . ,M}.
Hence we have:

ILB(y;m)
ρ/σ2

N→0−−−−→ NR(1− log2 e). (53)

However, since the random input m is drawn from m ∈ {1, 2, . . . ,M} with equal probability,

thus the following limits should hold:

I(y;m)→











log2M, if ρ/σ2
N →∞,

0, if ρ/σ2
N → 0.

(54)

Comparing (54) against (52) and (53), it can thus be seen that a constant shift NR(1− log2 e)

exits between the asymptotic values of I(y;m) and ILB(y;m), which completes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

Proof: According to [30], to prove that RLB is concave with respect to λ, it suffices to

check that the following function of one variable s, i.e.

RLB(s) , RLB(λ+ sω), (55)

is concave with respect to s for any given λ,ω ∈ RMNS×1.

Let λ = [λT
1 , . . . ,λ

T
M ]T , ω = [ωT

1 , . . . ,ω
T
M ]T with λm,ωm ∈ RNS×1 denoting the m-th sub-

vectors of λ and ω, we can thus define the function fn : R→ R as follows:

fn(s) , log2

M
∑

t=1

|Σn +Σt|−1, (56)

with Σn given by (n = 1, 2, . . . ,M):

Σn = σ2
NINR

+
ρ

NS

HACn (Λn + sΩn)C
H
n A

HHH , (57)
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where Λn = diag(λn) and Ωn = diag(ωn). Therefore |Σn +Σt|−1 can be re-formulated as:

|Σn +Σt|−1=

∣

∣

∣

∣

2σ2
NINR

+
ρ

NS

HA
(

CnΛnC
H
n +CtΛtC

H
t

)

AHHH+

s · ρ

NS

HA
(

CnΩnC
H
n +CtΩtC

H
t

)

AHHH

∣

∣

∣

∣

−1

.

(58)

According to (58), |Σn + Σt|−1 is therefore log-convex with respect to s. As summation

preserves the log-convexity [30],
∑M

t=1 |Σn+Σt|−1 is thus also log-convex over s, which proves

the convexity of fn(s) with respect to s. Finally, since

RLB(s) = log2
M

(eσ2
N)

NR
− 1

M

M
∑

n=1

fn(s), (59)

RLB(s) is thus verified to be concave with respect to s, which completes the proof.
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