
ar
X

iv
:2

00
8.

05
34

3v
2 

 [
ee

ss
.S

P]
  3

1 
Ja

n 
20

22
1

Downlink Transmit Design for Massive MIMO

LEO Satellite Communications
Ke-Xin Li, Student Member, IEEE, Li You, Member, IEEE, Jiaheng Wang, Senior Member, IEEE,

Xiqi Gao, Fellow, IEEE, Christos G. Tsinos, Senior Member, IEEE,

Symeon Chatzinotas, Senior Member, IEEE, and Björn Ottersten, Fellow, IEEE

Abstract—This paper investigates the downlink (DL) transmit
design for massive multiple-input multiple-output (MIMO) low-
earth-orbit (LEO) satellite communication systems, where only
the slow-varying statistical channel state information is exploited
at the transmitter. The channel model for the DL massive
MIMO LEO satellite system is established, in which both the
satellite and the user terminals (UTs) are equipped with uniform
planar arrays. Observing the rank-one property of the channel
matrices, we show that the single-stream precoding for each UT
is the optimal choice that maximizes the ergodic sum rate. This
favorable result simplifies the complicated design of transmit
covariance matrices into that of precoding vectors without any
loss of optimality. Then, an efficient algorithm is devised to
compute the precoding vectors. Furthermore, we formulate an
approximate transmit design based on the upper bound on
the ergodic sum rate, for which the optimality of single-stream
precoding still holds. We show that, in this case, the design of
precoding vectors can be simplified into that of scalar variables,
for which an effective algorithm is developed. In addition, a
low-complexity learning framework is proposed for optimizing
the scalar variables. Simulation results demonstrate that the
proposed approaches can achieve significant performance gains
over the existing schemes.

Index Terms—LEO satellite communications, massive MIMO,
DL transmit design, DL precoding, machine learning.

I. INTRODUCTION

E
VER increasing data demands present highly challenging

requirements for future wireless networks, which are

expected to provide extremely high throughputs, global and

seamless coverage, ultra reliability, low latency and massive

connectivity [1]. As a critical enabler to achieve this am-

bitious target, satellite communication (SATCOM) can pro-

vide continuous and ubiquitous connectivity for areas without

adequate Internet access [2]. In recent years, low-earth-orbit

(LEO) satellites, typically deployed between 500 km and 2000
km from the earth, have attracted intensive research interest

due to shorter round-trip delay, reduced pathloss and lower

launch costs, compared to the geostationary-earth-orbit (GEO)

satellites [3]–[6]. Up to now, several projects have started

by governments and corporations to develop LEO SATCOM
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systems, e.g., Iridium, Globalstar, OneWeb, Starlink, Telesat

[7]–[9].

Multibeam satellites, which serve a number of user termi-

nals (UTs) on ground with spot beams, play an important role

in SATCOM [10]. Basically, the spot beams can be generated

by using multifeed reflector antennas or phased-array antennas

(PAAs) at the satellite side [11]. While the GEO satellites are

usually equipped with the multifeed reflector antennas [12],

the PAAs are more adapted for the LEO satellites because

of their wide-angle coverage capabilities [11], e.g., Globalstar

[8] and Starlink [9]. In current satellite systems, multiple

color reuse scheme is often adopted to suppress the inter-

beam interference by exploiting different frequency bands

and orthogonal polarizations [13]. In this case, the frequency

bands have to be reused among sufficiently isolated beams to

guarantee sufficient system capacity.

To exploit the limited spectrum more aggressively, full

frequency reuse (FFR) scheme has been proposed, in which

all beams share the same frequency band [14], [15], thus

improving the spectral efficiency. In this case, advanced signal

processing techniques are indispensable to mitigate inter-beam

interference. To this end, precoding techniques arising from

multiuser multiple-input multiple-output (MIMO) communi-

cations have been extensively studied in multibeam satellite

systems [16]–[20]. A generic precoding approach for a class

of objective functions and power constraints was presented in

[16] for multibeam satellite systems. Based on the superframe

structure in the DVB-S2X standard, the multi-group multi-

casting principle has been incorporated in the precoding for

frame-based multibeam satellites [17]–[19]. The distributed

precoding for multi-gateway multibeam satellites can be found

in [18]. In [20], the antenna geometry in the MIMO feeder

link and the zero-forcing (ZF) precoding in the multibeam

downlink (DL) were studied.

The previous works on the precoding for multibeam satel-

lites generally assume that the beamforming network (BFN)

at the satellite side is fixed [16]–[20]. Indeed, the conventional

BFN can only be modified in a very slow pace [15], and unable

to adapt to the link conditions of UTs timely. Nowadays,

massive MIMO transmission has been widely accepted as one

of the supporting techniques in terrestrial 5G communications

[21]. By using a large number of antennas at the base station

(BS), massive MIMO can provide substantial degrees of

freedom in the spatial domain, thus significantly improving the

spectrum and energy efficiency [22]. Essentially, the benefits

of massive MIMO come from the multiple reconfigurable fine-
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grained beams, each of which is aligned to a specific UT. As

the rapid development of 5G communications, a more flexible

and versatile BFN can be digitally implemented at the satellite

[23], which can cater to the dynamic link conditions of UTs.

In this paper, we focus on an LEO satellite system equipped

with a massive antenna array, namely a massive MIMO LEO

satellite, and we assume that the BFN at the LEO satellite can

be digitally reconfigurable in real time, which is expected to

enhance the throughput in wideband LEO SATCOM systems.

It is well known that the performance of multiuser

MIMO/massive MIMO precoding critically depends on the

quality of the channel state information at the transmitter

(CSIT). Most of the aforementioned works on the precoding in

multibeam SATCOM systems assume that the transmitter can

track the instantaneous CSI (iCSI) [16]–[18], [20]. However, in

practical SATCOM systems, the intrinsic channel impairments,

e.g., large propagation delays and Doppler effects, will render

it challenging to acquire the iCSIT. Particularly, for time-

division duplexing (TDD) systems, the estimated uplink (UL)

iCSI is used for the DL transmission, which may be outdated

after the DL signals arrive at ground UTs. Meanwhile, in

frequency-division duplexing (FDD) systems, the DL iCSI

is first estimated at each UT and then fed back to the

satellite, which could bring considerable channel estimation

and feedback overhead. Moreover, the feedback would also be

outdated due to the large delays in SATCOM. In contrast to the

iCSI, statistical CSI (sCSI) is valid for longer time intervals

[24], and thus can be more easily obtained at the transmitter

side. Hence, in this paper, we consider a practical scenario

where only sCSI is available at the satellite to perform the DL

transmit design in massive MIMO SATCOM. Here, we focus

on the LEO satellites, although the presented design can be

extended to the GEO ones.

The DL transmit design using sCSIT has received increasing

attention in massive MIMO terrestrial wireless communica-

tions. Up to now, many transmit strategies have been pre-

sented, e.g., the two-stage precoder design [25], the beam

domain transmission [26], and the robust precoder design

[27]. However, the aforementioned works do not take the

special massive MIMO LEO satellite channel characteristics

into account. Also, the limited satellite payloads impose severe

computational restrictions on the transmit design. Thus, it is

imperative to seek out more efficient solutions for the DL

transmit design with sCSIT in massive MIMO LEO SATCOM

systems.

Recently, a transmission approach for massive MIMO LEO

SATCOM systems was introduced in [28], where the channel

model, the DL precoders and UL receivers, and the user

grouping strategy were investigated. Note that, in [28], each

UT only has a single antenna, thus restricting the performance

of the massive MIMO LEO SATCOM system. Moreover, the

DL precoding vectors in [28] are based on an individual

performance metric called the average signal-to-leakage-plus-

noise ratio (ASLNR), and not on one that captures the overall

performance of the whole system. Therefore, the transmission

scheme proposed in [28] is insufficient to fully exploit the

potential of massive MIMO technique in LEO SATCOM sys-

tems. In [29], the switching-based beam selection scheme and

radio resource management strategy were jointly considered,

in which only the location information of UTs is exploited to

assign the beams from a set of fixed beams. Nevertheless, this

scheme does not make full use of the flexible beamforming

capabilities of massive MIMO, which leads to a certain degree

of degradation in system performance.

In this paper, we consider the massive MIMO LEO SAT-

COM system where the satellite and the UTs are both equipped

with uniform planar arrays (UPAs). We investigate how to

achieve high data rates of the whole system using only the

slow-varying sCSIT to properly design the DL transmit strat-

egy. For this purpose, we first derive the DL massive MIMO

LEO satellite channel model with the UPA configurations at

the satellite and each UT. The adverse Doppler and delay

effects are compensated by performing frequency and time

synchronization at each UT to facilitate the DL wideband

transmission. Then, based on the massive MIMO LEO satellite

channel characteristics, we propose the DL transmit design,

and aim to maximize the ergodic sum rate of all UTs by

exploiting sCSIT. Our major contributions are summarized as

follows

• We find that the single-stream transmit strategy for each

UT is optimal for the linear transmitters in the sense of

maximizing the system’s ergodic sum rate, even though

each UT has multiple antennas. This result is important

and favorable because the complicated design of trans-

mit covariance matrices can be simplified into that of

precoding vectors without any loss of optimality. Then,

we devise an algorithm to compute the precoding vectors.

• To reduce the computational complexity, we formulate

another transmit design by approximating the ergodic

sum rate with its upper bound. In this case, it is shown

that the optimality of the single-stream transmit strategy

still holds. More importantly, the design of precoding

vectors is further simplified to that of scalar variables,

for which an algorithm is developed.

• In addition, a learning-based solution is proposed for the

scalar-variable optimization problem with significantly

reduced onboard implementation complexity. Simulation

results demonstrate the effectiveness of the proposed

approaches, and show remarkable performance gains over

the existing schemes.

The remainder of this paper is organized as follows. Sec-

tion II introduces the system model, where the channel model

is presented for the satellite and the UTs equipped with

UPAs. In Section III, the rank-one property of the transmit

covariance matrices is proved and the precoding algorithm by

considering the ergodic sum rate maximization is presented.

In Section IV, we present another transmit design with the

upper bound on the ergodic sum rate, and a low-complexity

learning-based approach is proposed. Section V provides the

simulation results, and Section VI concludes this paper.

Notations: Throughout this paper, lower case letters denote

scalars, and boldface lower (upper) letters denote vectors

(matrices). The set of all n-by-m complex (real) matrices

is denoted as Cn×m (Rn×m). tr(·), det(·), rank(·), (·)∗,

(·)T , and (·)H denote the trace, determinant, rank, conjugate,
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Fig. 1: The DL in FFR massive MIMO LEO SATCOM.

transpose, and conjugate transpose operations for the matrix

argument, respectively. |·| denotes the absolute value. The

Euclidean norm of a vector x is denoted as ‖x‖ =
√
xHx. ⊗

denotes the Kronecker product. CN (0,C) denotes the circular

symmetric complex Gaussian random vector with zero mean

and covariance matrix C.

II. SYSTEM MODEL

A. System Setup

We consider the DL transmission in an FFR massive MIMO

LEO SATCOM system over lower frequency bands, e.g.,

L/S/C bands. The mobile UTs are served by a single LEO

satellite at an altitude of H as shown in Fig. 1. The satellite

is assumed to work with a regenerative payload, which allows

on-board processing (OBP) of baseband signals on the satellite

[15]. The satellite and the mobile UTs are equipped with the

UPAs of digital active antennas [23], which means that the

amplitude and phase on each antenna element of the UPAs

can be digitally controlled. The satellite has a large-scale

UPA with Mx and My elements in the x-axis and y-axis,

respectively. The total number of antennas at the satellite is

MxMy , M . We assume that each antenna element of the

UPA at the satellite is directional. On the other hand, each

UT’s UPA consists of Nx′ and Ny′ omnidirectional elements

in the x′-axis and y′-axis, respectively, and the total number

of antennas at each UT is Nx′Ny′ , N . The approach in this

paper can be directly extended to the case where the UPAs at

UTs have different numbers of antenna elements.

B. Signal and Channel Models in Analog Baseband

The DL received signal at UT k at the time instant t can

be written as

yk(t) =

∫ ∞

−∞
Ȟk(t, τ)x(t − τ) dτ + zk(t), (1)

where Ȟk(t, τ) ∈ CN×M , x(t) ∈ CM×1 and zk(t) ∈ CN×1

are the channel impulse response, transmit signal and ad-

ditive noise signal of UT k at time instant t, respectively.

More specifically, the LEO satellite channel impulse response

Ȟk(t, τ) can be expressed as

Ȟk(t, τ) =

Lk−1∑

ℓ=0

ak,ℓe
j2πνk,ℓtδ

(
τ − τk,ℓ

)
dk,ℓg

H
k,ℓ, (2)

where j ,
√
−1, δ(x) is the Dirac delta function, Lk is

the multipath number of UT k’s channel, ak,ℓ, νk,ℓ, τk,ℓ,
dk,ℓ ∈ CN×1 and gk,ℓ ∈ CM×1 are the complex channel

gain, Doppler shift, propagation delay, array response vector

at the UT side and array response vector at the satellite side,

respectively, associated with the ℓth path of UT k’s channel.

For simplicity, we assume that the channel matrices are fixed

within each coherence time interval, and change from block

to block according to some ergodic process. In the following,

we will describe the LEO satellite channel characteristics one

by one, which mainly include the Doppler shifts, propagation

delays, and array response vectors.

1) Doppler shifts: For LEO satellite channels, the Doppler

shifts will be much larger compared with those in terrestrial

wireless channels, due to the large relative velocity between

the satellite and the UTs. At the 4 GHz carrier frequency,

the Doppler shift can be 80 kHz for an LEO satellite at an

altitude of 1000 km [30]. The Doppler shift νk,ℓ for the ℓth
path of UT k’s channel mainly consists of two parts [31],

i.e., νk,ℓ = νsatk,ℓ + νutk,ℓ, where νsatk,ℓ and νutk,ℓ are the Doppler

shifts relevant to the movement of the satellite and UT k,

respectively. The first part νsatk,ℓ is nearly identical for different

paths of UT k’s channel, because of the high altitude of the

satellite [31]. Hence, νsatk,ℓ can be rewritten as νsatk,ℓ = νsatk

for 0 ≤ ℓ ≤ Lk − 1. The variation of νsatk with time

behaves rather deterministically, and it can be estimated and

compensated at each UT. Specifically, νsatk can be expressed as

νsatk = fc(vk/c) cosφk [30], where fc is the carrier frequency,

c is the speed of light, vk is the velocity of the satellite, and

φk is the angle between the satellite’s forward velocity and

boresight from the satellite to UT k. On the other hand, the

νutk,ℓ’s are usually distinct for different paths.

2) Propagation Delays: For LEO satellites, the propagation

delay is a more serious problem than that in terrestrial wireless

channels, due to the long distance between the satellite and the

UTs. For an LEO satellite at an altitude of 1000 km, the round-

trip delay is about 17.7 ms with 45° of elevation angles [4]. We

use τmin
k = minℓ τk,ℓ and τmax

k = maxℓ τk,ℓ to represent the

minimal and maximal propagation delays of UT k’s channel,

respectively.

3) Array response vectors: Define θk,ℓ = (θxk,ℓ, θ
y
k,ℓ) and

ϕk,ℓ = (ϕx′

k,ℓ, ϕ
y′

k,ℓ) as the paired angles-of-departure (AoDs)

and angles-of-arrival (AoAs) for the ℓth path of UT k’s

channel, respectively. The array response vectors gk,ℓ and dk,ℓ

in (2) are given by gk,ℓ = g(θk,ℓ) and dk,ℓ = d(ϕk,ℓ),
respectively, where g(θ) = aMx

(
sin θy cos θx

)
⊗aMy

(
cos θy

)

and d(ϕ) = aNx′

(
sinϕy′ cosϕx′

)
⊗ aNy′

(
cosϕy′

)

for arbitrary θ = (θx, θy) and ϕ = (ϕx′ , ϕy′).
Here, anv(x) ∈ Cnv×1 is expressed as anv (x) =
1√
nv

(1, e−j
2πdv

λ
x, . . . , e−j

2πdv
λ

(nv−1)x)T , where λ = c/fc is

the carrier wavelength, dv is the antenna spacing along v-axis

with v ∈ {x, y, x′, y′}. In satellite channels, the scattering
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on ground takes place only within a few kilometers around

each UT. Thus, the paired AoDs for different paths of UT k’s

channel are nearly identical due to the long distance between

the satellite and UT k [28], i.e., θk,ℓ = θk, 0 ≤ ℓ ≤ Lk − 1.

Therefore, we can rewrite gk,ℓ = gk = g(θk), where

θk = (θxk, θ
y
k) is referred to as the physical angle pair of UT

k. Due to the long distance between the satellite and UT k, gk

changes quite slowly, and we assume that it can be perfectly

known at the satellite. The space angle pair θ̃k = (θ̃xk, θ̃
y
k) of

UT k is defined as θ̃xk = sin θyk cos θ
x
k and θ̃yk = cos θyk , which

reflects the space domain property of UT k’s channel [28].

The physical angle pair θk and nadir angle ϑk of UT k as

depicted in Fig. 1 are related by cosϑk = sin θyk sin θ
x
k.

C. Signal and Channel Models for OFDM Based Transmis-

sion

We consider that the orthogonal frequency division multi-

plex (OFDM) is used to facilitate the wideband transmission in

the LEO SATCOM systems. The number of subcarriers is Nsc,

and the cyclic prefix (CP) length is Ncp. Let Ts be the system

sampling period. The time duration of CP is Tcp = NcpTs. The

OFDM symbol time duration without and with CP is given by

Tsc = NscTs and T = Tsc + Tcp, respectively.

Let {xs,r}Nsc−1
r=0 be the M × 1 frequency-domain transmit

signal within the sth OFDM symbol. Then, the time-domain

transmit signal in OFDM symbol s can be expressed as [32]

xs(t) =

Nsc−1∑

r=0

xs,re
j2πr∆ft, − Tcp ≤ t− sT < Tsc, (3)

where ∆f = 1/Tsc. The time-domain received signal of UT

k in the OFDM symbol s can be written as

yk,s(t) =

∫ ∞

−∞
Ȟk(t, τ)xs(t− τ) dτ + zk,s(t), (4)

where zk,s(t) is the additive noise signal of UT k at the OFDM

symbol s. Next, by exploiting the LEO satellite channel char-

acteristics, joint Doppler and delay compensation is applied

at each UT. Let νcpsk = νsatk and τcpsk = τmin
k . Based on the

results in [28], the compensated time-domain received signal

of UT k in the OFDM symbol s is given by

y
cps
k,s (t) = yk,s(t+ τcpsk )e−j2πνcps

k
(t+τ

cps
k

). (5)

After the Doppler and delay compensation, we choose the

well-designed OFDM parameters to combat the multipath

fading effect. Hence, the frequency-domain received signal of

UT k over the subcarrier r in the OFDM symbol s can be

written as [32]

yk,s,r =
1

Tsc

∫ sT+Tsc

sT

y
cps
k,s (t)e

−j2πr∆f ·t dt. (6)

Let us denote τutk,ℓ = τk,ℓ − τmin
k , and define the effective

channel frequency response of UT k after the Doppler and

delay compensation as

Hk(t, f) = dk(t, f)g
H
k , (7)

where dk(t, f) =
∑Lk−1

ℓ=0 ak,ℓe
j2π(νut

k,ℓt−fτut
k,ℓ)dk,ℓ ∈ CN×1.

Then, the received signal yk,s,r in (6) can be further expressed

as

yk,s,r = Hk,s,rxs,r + zk,s,r , (8)

where Hk,s,r and zk,s,r are the channel matrix and additive

Gaussian noise of UT k over the subcarrier r in the OFDM

symbol s. Note that Hk,s,r in (8) can be written as

Hk,s,r = Hk (sT, r∆f) = dk,s,rg
H
k , (9)

where dk,s,r = dk (sT, r∆f). Since the Doppler and the delay

effects are compensated at each UT, the time and frequency

at the satellite and the UTs are assumed to be perfectly

synchronized in the following.

D. Statistical Properties of Channel

To describe the statistical properties of the channel matrices

conveniently, we omit the subscripts of OFDM symbol s and

subcarrier r in Hk,s,r = dk,s,rg
H
k and denote Hk = dkg

H
k as

the DL channel matrix of UT k over a specific subcarrier. In

this paper, the channel Hk is supposed to be Rician distributed

as follows

Hk = dkg
H
k =

√

κkβk
κk + 1

HLoS
k +

√

βk
κk + 1

HNLoS
k , (10)

where βk = E
{
tr(HkH

H
k )
}

= E
{
‖dk‖2

}
is the average

channel power, κk is the Rician factor, HLoS
k = dk,0g

H
k is the

deterministic line-of-sight (LoS) part, and HNLoS
k = d̃kg

H
k is

the random scattering part. Besides, d̃k is distributed as d̃k ∼
CN (0,Σk) with tr(Σk) = 1. The channel parameters H ,

{βk, κk,gk,dk,0,Σk}∀k are related to the operating frequency

bands, the practical link conditions, and so on [11]. We also

assume that the satellite and the UTs move within a certain

range, such that the channel parameters H can be considered

as nearly unchanged. Whenever the satellite or some UT steps

out of this range, the channel parameters H should be updated

at accordingly.

The channel correlation matrices of UT k at the satellite

and the UT sides are given by

Rsat
k = E{HH

k Hk} = βkgkg
H
k , (11a)

Rut
k = E{HkH

H
k } =

κkβk
κk + 1

dk,0d
H
k,0 +

βk
κk + 1

Σk, (11b)

respectively. The matrix Rsat
k is rank-one, which implies that

the signals on different antennas at the satellite are highly

correlated. Meanwhile, the rank of matrix Rut
k depends on

the specific propagation environment around UT k.

III. TRANSMIT DESIGN

In this section, we investigate the DL transmit design for

the examined massive MIMO LEO SATCOM system based

on the established signal and channel models in Section II.

First, by exploiting the LEO satellite channel characteristics,

we prove that the rank of transmit covariance matrix of each

UT must be no greater than one to maximize the ergodic sum

rate. This indicates that the optimal DL transmission strategy

is to transmit a single data stream to each UT, even if each

UT has multiple antennas. This result is particularly important
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since the original design of transmit covariance matrices can be

simplified into that of the precoding vectors without any loss

of optimality. Based on this result, we develop an algorithm,

by invoking the minorization-maximization (MM) framework,

to efficiently compute the precoding vectors.

A. Rank-One Property of Transmit Covariance Matrices

By dropping the subscripts of OFDM symbol s and sub-

carrier r in xs,r for simplicity, we denote x ∈ C
M×1 as

the transmit signal at the satellite over a specific subcarrier.

We consider that K UTs are simultaneously served in the

DL transmission. The set of UT indices is denoted as K =
{1, . . . ,K}. The transmit signal x can be expressed as

x =

K∑

k=1

sk, (12)

where sk ∈ CM×1 is the transmit signal related to UT k.

In this paper, we consider the most general design of the

transmit signals {sk}Kk=1, where sk is a Gaussian random

vector with zero mean and covariance matrix Qk = E{sksHk }.

For simplicity, we assume that the DL transmission satisfies a

constraint on the total transmit power as in [16], [18], i.e.,
∑K

k=1 tr(Qk) ≤ P , although per-antenna power constraint

may be more relevant for practice [33]. The DL received signal

at UT k is given by

yk = Hk

K∑

i=1

si + zk, (13)

where zk ∈ C
N×1 is the additive complex Gaussian noise at

UT k distributed as zk ∼ CN
(
0, σ2

kIN
)
. The DL ergodic rate

of UT k is defined as

Ik = E






log det



σ2
kIN +Hk

K∑

i=1

QiH
H
k











− E






log det



σ2
kIN +Hk

∑

i6=k

QiH
H
k











(a)
= E






log



1 +
gH
k Qkgk‖dk‖2

∑

i6=k g
H
k Qigk‖dk‖2 + σ2

k










, (14)

where (a) follows from Hk = dkg
H
k and det(I + AB) =

det(I + BA) [34]. The DL sum rate maximization problem

can be formulated as1

P : max
{Qk}K

k=1

K∑

k=1

Ik (15a)

s.t.

K∑

k=1

tr(Qk) ≤ P, Qk � 0, ∀k ∈ K. (15b)

Theorem 1: The optimal {Qk}Kk=1 to problem P must

satisfy rank(Qk) ≤ 1, ∀k ∈ K.

Proof: Please refer to Appendix A.

1The weight factors can be introduced straightforwardly to consider the
priorities of UTs.

In Theorem 1, we show that the rank of the optimal transmit

covariance matrix of each UT should be no larger than one.

Since rank(Qk) represents the number of independent data

streams transmitted to UT k, Theorem 1 reveals that the

single-stream precoding strategy for each UT is optimal for

linear transmitters even though each UT has multiple antennas.

Following the rank-one property of the transmit covariance

matrices, we express Qk as Qk = wkw
H
k , where wk ∈ CM×1

is the precoding vector of UT k. Since {wk}Kk=1 denote the

linear precoding vectors, the transmit signal sk in (12) is

expressed as sk = wksk, where sk is the desired data symbol

for UT k with zero mean and unit variance. Henceforth,

the design of the transmit covariance matrices {Qk}Kk=1 is

now simplified into that of the precoding vectors {wk}Kk=1.

Substituting Qk = wkw
H
k into (14) yields

Ik = E






log



1 +

∣
∣wH

k gk

∣
∣
2‖dk‖2

∑

i6=k

∣
∣wH

i gk

∣
∣
2‖dk‖2 + σ2

k










, Rk.

(16)

Here, we replace Ik with Rk to represent the DL ergodic rate

of UT k, since Rk is now a function of the linear precoding

vectors {wk}Kk=1. Thus, the complicated transmit covariance

matrix optimization problem P in (15) can be reformulated as

follows

S : max
W

K∑

k=1

Rk, s.t.

K∑

k=1

‖wk‖2 ≤ P , (17)

where W = [w1 · · · wK ] ∈ CM×K denotes the collection

of the precoding vectors. The power inequality in (17) must

be met with equality at the optimum, i.e.,
∑K

k=1‖wk‖2 = P .

Otherwise, {wk}Kk=1 can be scaled up, which increases the

DL sum rate and contradicts the optimality.

Although we focus on the DL transmit design in this paper,

the optimal linear receivers at the UT sides are also obtained

as the by-product. In the following subsection, we derive the

optimal linear receivers that maximize their corresponding DL

ergodic rates.

B. Optimal Linear Receivers

According to Theorem 1, the satellite can send at most one

data stream to each UT. Hence, each UT just needs to decode

at most one data stream, and only diversity gain is obtained

with multiple antennas at the UT sides. Let ck ∈ CN×1 be

the linear receiver of UT k. Then, the recovered data symbol

at UT k can be written as

ŝk = cHk yk

= cHk dkg
H
k wksk +

K∑

i6=k

cHk dkg
H
k wisi + cHk zk. (18)

Thus, the signal-to-interference-plus-noise ratio (SINR) of UT

k can be expressed as

SINRk =

∣
∣wH

k gk

∣
∣
2 ∣
∣cHk dk

∣
∣
2

∑

i6=k

∣
∣wH

i gk

∣
∣
2 ∣
∣cHk dk

∣
∣
2
+ σ2

k ‖ck‖
2
. (19)



6

Because ax
bx+c

is a monotonically increasing function of x for

a, b, c > 0, we have

SINRk

(a)

≤
∣
∣wH

k gk

∣
∣
2‖dk‖2

∑

i6=k

∣
∣wH

i gk

∣
∣
2‖dk‖2 + σ2

k

, SINRk, (20)

where (a) follows from the Cauchy-Schwarz inequality

|cHk dk|2 ≤ ‖ck‖2‖dk‖2, and the equality holds if and only

if ck = αdk for any nonzero α ∈ C. The receivers satisfying

ck = αdk for different α will have the same value of SINRk.

Thus, the receivers with the form ck = αdk are optimal for

UT k. Now, we will return to the precoding vector design in

the following subsection.

C. Precoding Vector Design

In this subsection, we aim to compute the precoding vectors

by maximizing the ergodic sum rate under the discussed

sum power constraint. Considering that the precoding vector

optimization problem S in (17) is a non-convex program, we

develop an algorithm based on the MM framework [35] to

compute the precoding vectors.

In the following, we develop an MM-based algorithm to

obtain a locally optimal solution to S. In each iteration, the

DL ergodic rate Rk is replaced with its concave minorizing

function. Then, a locally optimal solution to S can be obtained

by iteratively solving a sequence of convex programs. By

making use of the relationship between the ergodic rate and

the minimum mean-square error (MMSE) [27], for given pre-

coders W(n) in the nth iteration, we can derive a minorizing

function of Rk as

g
(n)
k = −



a
(n)
k

K∑

i=1

∣
∣
∣w

H
i gk

∣
∣
∣

2

− 2ℜ
{

wH
k gk · b(n)k

}





− c
(n)
k + 1 +R(n)

k , (21)

where a
(n)
k , b

(n)
k and c

(n)
k are constants defined in Appendix B.

By using the minorizing function g
(n)
k in (21), the precoders

W(n+1) in the (n+1)th iteration can be obtained by solving

the following convex program

S(n) : max
W

K∑

k=1

g
(n)
k , s.t.

K∑

k=1

‖wk‖2 ≤ P , (22)

which is equivalent to

S(n) : min
W

K∑

k=1





K∑

i=1

a
(n)
i

∣
∣
∣w

H
k gi

∣
∣
∣

2

− 2ℜ
{

wH
k gk · b(n)k

}





(23a)

s.t.

K∑

k=1

‖wk‖2 ≤ P. (23b)

The optimal solution to S(n) can be easily derived by mini-

mizing its Lagrangian function. Thus, the precoders W(n+1)

Algorithm 1 Precoder design algorithm for solving S.

Input: Initialize precoding vector w
(0)
k = winit

k , k ∈ K,

iteration index n = 0, and maximum number of iterations

Niter.

Output: Precoding vectors {wk}Kk=1.

1: while 1 do

2: Calculate a
(n)
k and b

(n)
k for all k ∈ K.

3: Update {w(n+1)
k }Kk=1 with (24).

4: if n ≥ Niter − 1 or |∑K
k=1 R

(n+1)
k −∑K

k=1 R
(n)
k | < ǫ

then

5: Set wk := w
(n+1)
k , ∀k ∈ K, break.

6: else

7: Set n := n+ 1.

8: end if

9: end while

are given by

w
(n+1)
k =





K∑

i=1

a
(n)
i gig

H
i + µ(n)IM





−1

gk · b(n)k , k ∈ K,

(24)

where µ(n) ≥ 0 is chosen to make
∑K

k=1‖w
(n+1)
k ‖2 = P .

The precoder design algorithm for solving S is summarized in

Algorithm 1. By taking advantage of the LEO satellite channel

peculiarities, we only need to compute the scalar parameters

{a(n)k , b
(n)
k }Kk=1 in each iteration.

Due to the expectation in the ergodic rate Rk, the Monte-

Carlo method with exhaustive sample average is required

to compute the precoding vectors, which is a computational

demanding task when a large number of samples are consid-

ered on the averaging procedure. In the next section, we will

present low-complexity transmit designs that avoid the sample

average.

IV. TRANSMIT DESIGNS WITH ERGODIC SUM RATE

UPPER BOUND

In this section, to avoid the exhaustive sample average, we

propose transmit designs by approximating the ergodic sum

rate with its upper bound. We first prove that in this case,

the optimal transmit covariance matrices are still rank-one.

Therefore, the design of the transmit covariance matrices can

also be boiled down to that of the precoding vectors. Then, we

show that the design of the precoding vectors can be further

converted into that of the scalar variables, and we devise

an algorithm to compute these scalar variables. For the ease

of real-time processing, we further propose a low-complexity

solution to calculate the scalar variables based on a learning

framework. The proposed learning-based solution can achieve

near-optimal performance, which will be demonstrated in the

next section.

A. Rank-One Property of Transmit Covariance Matrices

Notice that f(x) = log
(

1 + ax
bx+c

)

is a concave function of

x ≥ 0 for a, b, c ≥ 0 [26]. By invoking the Jensen’s inequality
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[36], the DL ergodic rate Ik of UT k can be upper bounded

by

Ik = E






log



1 +
gH
k Qkgk‖dk‖2

∑

i6=k g
H
k Qigk‖dk‖2 + σ2

k











≤ log

(

1 +
gH
k Qkgkβk

∑

i6=k g
H
k Qigkβk + σ2

k

)

, Iub
k . (25)

The problem of maximizing the upper bound of the DL ergodic

sum rate can be formulated as

Pub : max
{Qk}K

k=1

K∑

k=1

Iub
k (26a)

s.t.

K∑

k=1

tr(Qk) ≤ P, Qk � 0, ∀k ∈ K. (26b)

Theorem 2: The optimal {Qk}Kk=1 to the problem Pub

must satisfy rank(Qk) ≤ 1, ∀k ∈ K.

Proof: The proof is similar with that in Theorem 1. Thus,

it is omitted here.

According to Theorem 2, the rank of the optimal transmit

covariance matrices to the problem Pub should be no greater

than one, which manifests that the single-stream precoding

strategy for each UT suffices to maximize the upper bound

on the ergodic sum rate. Thus, we can rewrite the transmit

covariance matrix Qk as Qk = wkw
H
k , and once more the

design of the transmit covariance matrices {Qk}Kk=1 can be

reduced to that of the precoding vectors {wk}Kk=1. Hence, the

Iub
k expression in (25) can be further written as

Iub
k = log



1 +

∣
∣wH

k gk

∣
∣
2
βk

∑

i6=k

∣
∣wH

i gk

∣
∣
2
βk + σ2

k



 , Rub
k . (27)

Here, Iub
k is replaced with Rub

k , because Rub
k has become

a closed-form expression of the precoding vectors {wk}Kk=1.

Then, the transmit covariance matrix optimization problem

Pub in (26) can be reformulated as

Sub : max
W

K∑

k=1

Rub
k , s.t.

K∑

k=1

‖wk‖2 ≤ P. (28)

Note that the problem Sub is analogous to the sum rate

maximization problem in DL multi-user multiple-input single-

output (MU-MISO) channels [37]. The optimal precoding

vectors to the problem Sub must satisfy
∑K

k=1‖wk‖2 = P ,

because any precoding vectors with
∑K

k=1‖wk‖2 < P can be

scaled up to increase the objective value.

It is worth noting that for the problem Sub, the channel

parameters {βk/σ2
k, θ̃k}Kk=1 are required at the satellite to

compute the precoding vectors, which depend on the location

information and average channel power of UTs. When the

UPA placement is fixed, the space angle pairs {θ̃k}Kk=1 can be

derived from the location information of the satellite and UTs,

which can be acquired through the global positioning system

(GPS). The satellite can obtain the estimation of {βk}Kk=1 by

exploiting the UL sounding signals and the reciprocity of sCSI

[26].

B. Precoding Vector Design

In this subsection, we show that the design of high-

dimensional precoding vectors in the problem Sub can be

transformed into that of K scalar variables. For the ease

of statement, we first formulate an optimization problem as

follows

Mub : max
λ

K∑

k=1

rk, s.t.

K∑

k=1

λk = P , λk ≥ 0, ∀k ∈ K,

(29)

where λ = [λ1 · · · λK ]T ∈ RK×1 and rk is a function of

{λk}Kk=1 given by

rk(λ1, . . . , λK) = log det





K∑

i=1

λiβi
σ2
i

gig
H
i + IM





− log det




∑

i6=k

λiβi
σ2
i

gig
H
i + IM



 . (30)

The relationship between the problems Sub and Mub will be

established in the following.

Denote {wopt
k }Kk=1 and {λoptk }Kk=1 as the optimal solutions

to problems Sub and Mub, respectively. As described in the

following theorem, as long as the scalar variables {λoptk }Kk=1

are known, the precoding vectors {wopt
k }Kk=1 can be derived

in closed form immediately.

Theorem 3: The precoding vectors {wopt
k }Kk=1 can be

written as

w
opt
k =

√

qoptk ·
(
Vopt

)−1
gk

‖(Vopt)−1
gk‖

, ∀k ∈ K. (31)

In (31), the matrix Vopt ∈ CM×M and qoptk are given by

Vopt =

K∑

k=1

λoptk βk
σ2
k

gkg
H
k + IM , (32a)

qoptk =
λoptk βk(γ

opt
k + 1)

µoptσ2
k

‖
(
Vopt

)−1
gk‖2, (32b)

where the parameters γoptk and µopt in (32b) are also deter-

mined by {λoptk }Kk=1 as follows

γoptk =
1

1− (λoptk βk/σ2
k)g

H
k (Vopt)

−1
gk

− 1, (33a)

µopt =
1

P

K∑

k=1

λoptk βk(γ
opt
k + 1)

σ2
k

‖
(
Vopt

)−1
gk‖2. (33b)

Proof: Please refer to Appendix C.

In massive MIMO LEO SATCOM systems, the dimension

of the precoding vectors {wk}Kk=1 might be extremely large.

Theorem 3 indicates that the design of the high-dimensional

precoding vectors {wk}Kk=1 in the problem Sub can be sim-

plified into that of K scalar variables {λk}Kk=1 in the problem

Mub, with which the precoding vectors {wk}Kk=1 can be

calculated in closed-form.

Next, by resorting to the MM framework, we present an

algorithm to compute the scalar variables {λk}Kk=1. First, we

replace the non-convex function rk with one of its concave
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minoring functions. Then, a locally optimal solution to the

problem Mub can be obtained by solving a series of convex

programs sequentially. For given scalar variables {λ(n)k }Kk=1

in the nth iteration, a minoring function of rk is constructed

as follows

h
(n)
k = −





K∑

i=1

ψ
(n)
k,i

λiβi
σ2
i

− 2χ
(n)
k

√

λkβk
σ2
k





− δ
(n)
k + 1 + r

(n)
k , (34)

where ψ
(n)
k,i , χ

(n)
k and δ

(n)
k are shown in Appendix D. Then, a

locally optimal solution to Mub can be obtained by iteratively

solving the following convex subproblem

Mub
n : max

{λk≥0}K
k=1

K∑

k=1

h
(n)
k , s.t.

K∑

k=1

λk = P , (35)

which is equivalent to

Mub
n : min

{λk≥0}K
k=1

K∑

k=1

K∑

i=1

ψ
(n)
i,k

λkβk
σ2
k

− 2

K∑

k=1

χ
(n)
k

√

λkβk
σ2
k

(36a)

s.t.

K∑

k=1

λk = P. (36b)

By applying the Lagrangian minimization method, the optimal

solution to Mub
n is given by

λ
(n+1)
k =

(

χ
(n)
k

)2
βk

σ2
k

(
∑K

i=1 ψ
(n)
i,k

βk

σ2
k

+ ν(n)
)2 , ∀k ∈ K, (37)

where ν(n) can be obtained by the bisection search method

such that
∑K

k=1 λ
(n+1)
k = P . The variable ν(n) must sat-

isfy ν(n) ≥ −min
k∈K

∑K
i=1 ψ

(n)
i,k

βk

σ2
k

. After the scalar variables

{λk}Kk=1 are known, the precoding vectors {wk}Kk=1 can be

derived with Theorem 3. The detailed procedures for solving

Sub are summarized in Algorithm 2.

Notice that the computational complexity in terms of the

number of multiplication operations in each iteration of Al-

gorithm 2 is given by K3 + 2K2M . After the parameters

{λk}Kk=1 are determined, we need to compute the precoding

vectors {wk}Kk=1 by using (31)–(33), whose complexity is

given by K3+K2M . Thus, the total computational complexity

of Algorithm 2 can be expressed as Niter(K
3+2K2M)+K3+

K2M .

Although Algorithm 2 can be used to compute the pre-

coding vectors to the problem Sub, it involves a number

of complicated iterations, which renders it challenging to be

implemented for real-time signal processing at the limited

satellite payloads. In the next subsection, we propose a so-

lution based on the learning framework to compute the scalar

variables {λk}Kk=1. The input and output in the constructed

neural network (NN) both have low-dimensional structures,

so that the onboard implementation complexity is reduced

significantly.

Algorithm 2 Precoder design algorithm for solving Sub.

Input: Initialize scalar variables λ
(0)
k = λinitk (∀k ∈ K),

iteration index n = 0, and maximum number of iterations

Niter.

Output: Precoding vectors {wk}Kk=1.

1: while 1 do

2: Calculate
∑K

i=1 ψ
(n)
i,k and χ

(n)
k for all k ∈ K.

3: Update {λ(n+1)
k }Kk=1 with (37).

4: if n ≥ Niter − 1 or |∑K

k=1 r
(n+1)
k −∑K

k=1 r
(n)
k | < ǫ

then

5: Set λk := λ
(n+1)
k , ∀k ∈ K, break.

6: else

7: Set n := n+ 1.

8: end if

9: end while

10: Compute the precoding vectors {wk}Kk=1 with (31)–(33).

C. Learning to Compute Scalar Variables {λk}Kk=1

In the past years, machine learning [38] has been inten-

sively studied to address the intractable problems in wireless

communications, such as the channel estimation [39], resource

allocation [40], DL precoder design [41], etc. By using sim-

ple linear operations, e.g., matrix-vector multiplications, and

nonlinear activation functions as building blocks, machine

learning provides a low-complexity way to fit the output of

conventional iterative algorithms.

In this subsection, we elaborate the computation of the

scalar variables {λk}Kk=1 in the problem Mub with the

learning-based approach. From Section IV-B, we can see that

the optimal scalar variables {λoptk }Kk=1 can be fully deter-

mined by the transmit power P and the channel parameters

{β̃k, θ̃xk, θ̃yk}Kk=1 with β̃k = βk/σ
2
k. Moreover, we normalize

the optimal scalar variables {λoptk }Kk=1 as {λ̃optk }Kk=1 with

λ̃optk = λoptk K/P , such that λ̃optk ’s can be in the same order of

magnitude for different transmit power. It can be assumed that

there exists a nonlinear mapping F(·) : R(3K+1)×1 → R
K×1,

which maps m , [β̃1 θ̃
x
1 θ̃

y
1 · · · β̃K θ̃xK θ̃yK P ]T ∈ R(3K+1)×1

to v , [λ̃opt1 · · · λ̃optK ]T ∈ RK×1, i.e.,

v = F(m). (38)

NN can approximate the nonlinear mapping F(·) with

another one F̂(·,ω) : R(3K+1)×1 → RK×1 parameterized

by ω, which maps m to a prediction of v, i.e.,

v̂ = F̂(m,ω). (39)

It is expected that the prediction v̂ can be as close to the

accurate v as possible. In this paper, we use the multilayer

perceptron (MLP), which is a special class of NN, to learn

the nonlinear mapping F(·). As shown in Fig. 2, the MLP

is composed of a number of layers, while each layer in the

MLP has plenty of neurons. We use the rectified linear units

(ReLU), i.e., G(x) = max{x, 0}, as the activation function to

make the output of each layer non-negative.

Let {(mi,vi)}ND

i=1 denote the dataset, where mi and vi

represent the ith samples of m and v, respectively, and ND
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L-1 L-2 L-3 L-4 L-5 L-6Input

Fig. 2: Example of a six-layer perceptron.

is the number of samples in the dataset. We choose the MSE

as the loss function for training the NN, i.e.,

Loss =
1

ND

ND∑

i=1

‖vi − v̂i‖2, (40)

where v̂i is the prediction of vi. The training stage can be per-

formed offline at the ground station. When the training stage

is complete, the ground station needs to feed the parameters

of the NN back to the satellite. In the testing stage, to make

the output of the NN a feasible solution to the problem Mub,

we normalize the prediction v̂ as follows

λ̂ =
P

1T v̂
v̂, (41)

such that λ̂ ∈ RK×1 satisfies 1T λ̂ = P . Then, λ̂ is treated

as the prediction of the optimal solution to the problem Mub

through the NN. With the obtained scalar variables in λ̂, the

precoding vectors can be calculated by using (31)–(33). To

make the NN adapt to the cases that the number of antennas M
or the number of UTs K is changed, the dataset augmentation

and transfer learning techniques can be used [42].

The NN involves only rather simple operations, e.g., matrix-

vector multiplication followed by an activation function, which

have much lower implementation complexity compared with

Algorithm 2. The complexity of the NN regarding to the

number of multiplications is (3K + 1)D1 +
∑NL−1

i=1 DiDi+1

operations, where NL is the number of layers and Di is

the number of neurons in the ith layer. Since we need to

compute the precoding vectors after the scalar variables in λ̂

are obtained, the total complexity of the NN-based approach

is evaluated by (3K+1)D1+
∑NL−1

i=1 DiDi+1+K
3+K2M .

It is worth noting that the dimensions of the input and output

of the NN are only 3K + 1 and K , respectively, which are

independent of the number of antennas at the satellite and

UTs. Thus, the NN presents higher gains in computational

complexity for relatively large M and K , which makes it an

attractive solution for massive MIMO LEO SATCOM systems.

V. SIMULATION RESULTS

In this section, we present the simulation results to verify the

performance of the proposed DL transmit designs in a massive

MIMO LEO SATCOM system. The simulation parameters are

summarized in TABLE I. The maximum nadir angle of the

UTs is denoted as ϑmax. The space angle pair θ̃k = (θ̃xk, θ̃
y
k)

should satisfy (θ̃xk)
2 + (θ̃yk)

2 ≤ sin2 ϑmax due to the relation

TABLE I: Simulation Parameters

Parameters Values

Earth radius Re 6378 km
Orbit altitude H 1000 km
Central frequency fc 4 GHz
Bandwidth B 50 MHz
Noise temperature Tn 290 K
Number of antennas Mx, My, Nx′ , Ny′ 12, 12, 6, 6

Antenna spacing dx, dy , dx′ , dy′ λ, λ, λ

2
, λ

2
Per-antenna gain Gsat , Gut 6 dBi, 0 dBi
Maximum nadir angle ϑmax 30°
Number of UTs K 100

Transmit power P 10 dBW – 25 dBW
Number of layers in NN 9
Number of neurons D1–D9 512 (D1–D8), 100 (D9)

Dataset size ND 2× 105 (10% for testing)
Batch size 128
Optimizer Adam
Learning rate 0.001

cosϑk = sin θyk sin θ
x
k =

√

1− (θ̃yk)
2 − (θ̃xk)

2 ≥ cosϑmax.

In the simulations, the Poisson disk sampling [43] is used

to generate the space angle pairs of UTs within the circle

region {(x, y) : x2 + y2 ≤ sin2 ϑmax} as shown in Fig. 3

with a minimum distance between any two pairs of space

angles given by ρmin = 0.037, which guarantees at least 3
dB interference power decay among UTs. The per-antenna

gains at the satellite and UTs are denoted as Gsat and Gut,

respectively. For simplicity, we assume that each antenna

element at the satellite has the ideal directional power pattern

R(θx, θy) = Gsat, if (sin θy cos θx)
2 + (cos θy)

2 ≤ sin2 ϑmax,

and otherwise, R(θx, θy) = 0, which is in accord with the

coverage area seen at the satellite. The elevation angle of UT

k in Fig. 1 can be computed by αk = cos−1
(

Rs

Re
sinϑk

)

[11], where Re is the earth radius, Rs = Re +H is the orbit

radius. The distance between the satellite and UT k in Fig. 1

is given by Dk =
√

R2
e sin

2 αk +H2 + 2HRe − Re sinαk

[2]. The random vector dk =
√

κkβk

κk+1dk,0 +
√

βk

κk+1 d̃k in

(10) is simulated in terms of dk(t, f) in (7), where the first

path is used to produce the LoS direction dk,0 = d(ϕk,0) and

the remaining Lk − 1 paths are used for d̃k. For simplicity,

each UT’s UPA is assumed to be placed horizontally, which

implies that ϕk,0 satisfies sinϕy′

k,0 sinϕ
x′

k,0 = sinαk (e.g.,

ϕx′

k,0 = 90° and ϕy′

k,0 = αk). To simulate d̃k, the path

gains {ak,ℓ}Lk−1
ℓ=1 are generated by using the exponential

power delay profile, while the paired AoAs {ϕk,ℓ}Lk−1
ℓ=1 are

produced according to the wrapped Gaussian power angle

spectrum, as described in the 3GPP technical report on non-

terrestrial networks [2, Section 6]. Moreover, the pathloss,

shadow fading and Rician factors are computed in accordance

with the suburban scenarios, and the ionospheric loss is set as

1 dB approximately [2, Section 6]. The average channel power

βk is simulated by 1
NS

∑NS

n=1‖dk,n‖2, where dk,n is the nth

sample of dk and the number of channel samples is set as

NS = 1000. The noise variance is given by σ2
k = kBTnB

where kB = 1.38× 10−23 J · K−1 is the Boltzmann constant,

Tn is the noise temperature and B is the system bandwidth.

In order to demonstrate the performance of the NN-based
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Fig. 4: Convergence of Algorithms 1 and 2.

approach, we use Algorithm 2 to generate the dataset. The

dataset for training and testing the NN is available at GitHub:

https://github.com/likexin1415. Besides, we use the Tensor-

Flow toolbox to train the NN. The structure of the NN, dataset

size, batch size, optimizer and learning rate are also presented

in TABLE I.

In Fig. 4, the convergence performance of Algorithms 1

and 2 is shown. It is observed that Algorithms 1 and 2 converge

within about 20 times of iterations. Hence, in the simulations,

the maximum number of iterations Niter is set as Niter = 20
for both Algorithms 1 and 2. By using the NN parameters as

shown in TABLE I, the complexity of the NN-based approach

is only about 5.6% of that of Algorithm 2.

In Fig. 5, the sum rate performance of Algorithms 1 and 2,

and the NN-based approach is depicted. The performance

for the precoding scheme with perfect iCSIT derived from

the MM algorithm is also illustrated in Fig. 5. It is shown

that Algorithms 1 and 2, as well as the NN-based approach,
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Fig. 5: DL sum rate performance of Algorithms 1 and 2, and

NN.

with only sCSIT can achieve close performance to that of the

precoding scheme with iCSIT. We can see that the difference

of the sum rate performance between Algorithms 1 and 2

is negligible, and the NN-based approach can achieve near-

optimal performance with much lower computational com-

plexity. In addition, the performance of the ASLNR pre-

coding vectors {waslnr
k }Kk=1 in the previous work [28] is

also shown for comparison, where waslnr
k =

√
pk · T

−1
k

gk

‖T−1
k

gk‖
,

Tk =
∑K

i=1 βigig
H
i +

σ2
k

pk
IM , and the power pk is set as

pk = P
K

for simplicity. The NN-based approach also shows

better performance compared with the ASLNR precoding

vectors, which have almost 1 dB performance loss at P = 25
dBW. Since the proposed precoding vector design approaches

only rely on the slow-varying sCSI, which is independent of

subcarriers and OFDM symbols within a stable sCSI period,

the onboard implementation complexity could be pretty low.

Therefore, the proposed approaches provide practical solutions

for high-throughput massive MIMO LEO SATCOM systems.

VI. CONCLUSION

In this paper, we have investigated the DL transmit design

with sCSIT in massive MIMO LEO SATCOM systems. First,

we derived the DL massive MIMO LEO satellite channel

model, where the satellite and the UTs are both equipped

with UPAs. Then, we showed that the single-stream precoding

for each UT is able to maximize the ergodic sum rate for

the linear transmitters. Afterwards, we devised an algorithm

to compute the precoding vectors by concentrating on the

ergodic sum rate maximization. To reduce the computational

complexity, we formulated another transmit design by using an

upper bound on the ergodic sum rate, for which the optimality

of single-stream precoding also holds. Moreover, we revealed

that the design of precoding vectors can be simplified into

that of scalar variables, for which an effective algorithm

was developed. Furthermore, we proposed a learning-based
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solution to compute the scalar variables, which involves much

lower implementation complexity than iterative algorithms.

Finally, the effectiveness and the performance gains of the

proposed DL transmit designs were verified via the simulation

results.

APPENDIX A

PROOF OF THEOREM 1

Our proof is in the spirit of the results in [44]. We first prove

that the optimal solution to P must be of rank-one. Then, the

proof steps can be directly applied to the optimal solution to

Pub. The gradient of Ri with respect to Qk can be calculated

by

∂Ri

∂QT
k

=







E

{
‖dk‖2

Tk(dk)

}

gkg
H
k , if i = k,

(

E

{
‖di‖2

Ti(di)

}

− E

{
‖di‖2

Ii(di)

})

gig
H
i , if i 6= k,

(42)

where Tk(dk) = σ2
k +

∑K

ℓ=1 g
H
k Qℓgk‖dk‖2 and Ik(dk) =

σ2
k +

∑

ℓ 6=k g
H
k Qℓgk‖dk‖2. The Lagrangian function of P is

given by

LP =

K∑

k=1

Rk − v





K∑

k=1

tr (Qk)− P



+

K∑

k=1

tr (ΦkQk) ,

(43)

where v ≥ 0 and Φk � 0 are the Lagrange multipliers

associated with the power constraint
∑K

k=1 tr (Qk) ≤ P and

the positive semidefinite matrix constraint Qk � 0. From the

Karush-Kuhn-Tucker (KKT) conditions, the gradient of LP
with respect to the optimal Qk should be zero, i.e.,

∂LP
∂QT

k

= −Ak +Bk − vIM +Φk = 0, (44)

where Ak =
∑

i6=k

(

E

{
‖di‖2

Ii(di)

}

− E

{
‖di‖2

Ti(di)

})

gig
H
i and

Bk = E

{
‖dk‖2

Tk(dk)

}

gkg
H
k are both positive semidefinite matri-

ces. From (44), Φk can be expressed as Φk = vIM+Ak−Bk.

To guarantee Φk � 0, we must have v > 0. Thus, we

have rank(vIM + Ak) = M . From the rank-sum inequality
∣
∣rank(A)− rank(B)

∣
∣ ≤ rank(A+B) [34, 0.4.5(d)], the rank

of Φk must satisfy rank(Φk) ≥M − 1. Due to the Sylvester

inequality rank(A)+rank(B)−n ≤ rank(AB) [34, 0.4.5(c)],

where n is the column number of A, we can obtain

rank(Φk) + rank(Qk)−M ≤ rank(ΦkQk)
(a)
= 0, (45)

where (a) follows from the complementary slackness condition

ΦkQk = 0. The rank of Qk will satisfy rank(Qk) ≤ 1. This

concludes the proof.

APPENDIX B

A MINORIZING FUNCTION OF Rk

By using the recovered data symbol ŝk in (18), we can

derive the mean-square error (MSE) for UT k as

MSEk = E

{

|ŝk − sk|2
}

=

K∑

i=1

∣
∣
∣w

H
i gk

∣
∣
∣

2 ∣
∣
∣c

H
k dk

∣
∣
∣

2

+ σ2
k ‖ck‖2

− 2ℜ
{

gH
k wk · cHk dk

}

+ 1. (46)

The linear receiver ck that minimizes MSEk is given by

cmmse
k = argmin

ck
MSEk

=
gH
k wk

σ2
k +

∑K
i=1

∣
∣wH

i gk

∣
∣
2‖dk‖2

· dk. (47)

The MMSE of UT k achieved by cmmse
k is given by

MMSEk = 1−
∣
∣wH

k gk

∣
∣
2‖dk‖2

σ2
k +

∑K

i=1

∣
∣wH

i gk

∣
∣
2‖dk‖2

=
1

1 + SINRk

. (48)

Thus, Rk can be rewritten as Rk = E
{
log (1 + SINRk)

}
=

−E {logMMSEk}. Given the precoding vectors in the nth

iteration W(n) = [w
(n)
1 · · ·w(n)

K ], the MMSE in the nth

iteration is given by MMSE
(n)
k = MMSEk|wk=w

(n)
k

,∀k∈K.

From the concavity of log(·), we can derive a minoring

function of Rk as

Rk ≥ R(n)
k − E

{

MMSEk −MMSE
(n)
k

MMSE
(n)
k

}

(a)

≥ R(n)
k + 1− E

{

MSEk

MMSE
(n)
k

}

, g
(n)
k , (49)

where R(n)
k is the DL ergodic rate of UT k in the nth iteration,

(a) follows from the inequality MMSEk ≤ MSEk. Note that

MSEk is a function of the precoding vectors in W and the

linear receiver ck . To make the inequality Rk ≥ g
(n)
k hold

with equality at W(n), the receiver ck in MSEk should be

given by c
(n)
k = cmmse

k |
wk=w

(n)
k

,∀k∈K. After substituting c
(n)
k

into MSEk, we have

E

{

MSEk

MMSE
(n)
k

}

= a
(n)
k

K∑

i=1

|wH
i gk|2

− 2ℜ
{

wH
k gk · b(n)k

}

+ c
(n)
k , (50)

where a
(n)
k = E

{

|dH
k c

(n)
k

|2

MMSE
(n)
k

}

, b
(n)
k = E

{

dH
k c

(n)
k

MMSE
(n)
k

}

and

c
(n)
k = E

{

σ2
k‖c

(n)
k

‖2+1

MMSE
(n)
k

}

.

APPENDIX C

PROOF OF THEOREM 3

The problem Sub can be reformulated as

Sub
1 : max

wk,γk,∀k

K∑

k=1

log(1 + γk) (51a)

s.t. γk ≤
∣
∣wH

k gk

∣
∣
2
βk

∑

i6=k

∣
∣wH

i gk

∣
∣
2
βk + σ2

k

, ∀k (51b)
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K∑

k=1

‖wk‖2 ≤ P. (51c)

Withe some rearrangement to the constraints in (51b), problem

Sub
1 can be rewritten as

Sub
2 : max

wk,γk,∀k

K∑

k=1

log(1 + γk) (52a)

s.t.
βk
γkσ2

k

∣
∣
∣w

H
k gk

∣
∣
∣

2

≥
∑

i6=k

βk
σ2
k

∣
∣
∣w

H
i gk

∣
∣
∣

2

+ 1, ∀k

(52b)

K∑

k=1

‖wk‖2 ≤ P. (52c)

The Lagrangian function for the problem Sub
2 is given by

LSub
2

=
K∑

k=1

log(1 + γk) +
K∑

k=1

λ̌k

(

βk
γkσ2

k

∣
∣
∣w

H
k gk

∣
∣
∣

2

−
∑

i6=k

βk
σ2
k

∣
∣
∣w

H
i gk

∣
∣
∣

2

− 1



− µ





K∑

k=1

‖wk‖2 − P



 ,

(53)

where λ̌k ≥ 0 and µ ≥ 0 are the Lagrange multipliers

associated with the constraints in (52b) and (52c), respec-

tively. We denote {w◦
k, γ

◦
k}Kk=1 as the optimal solution to

the problem Sub
2 . At the optimum to the problem Sub

2 , i.e.,

{wk, γk}Kk=1 = {w◦
k, γ

◦
k}Kk=1, there must exist some Lagrange

multipliers {λ̌◦k}Kk=1 and µ◦ such that

∂LSub
2

∂w∗
k

∣
∣
∣
∣
∣
wk=w◦

k

=
λ̌◦kβk
γ◦kσ

2
k

gkg
H
k w◦

k −
∑

i6=k

λ̌◦i βi
σ2
i

gig
H
i w◦

k

− µ◦w◦
k = 0, (54a)

∂LSub
2

∂γk

∣
∣
∣
∣
∣
γk=γ◦

k

=
1

1 + γ◦k
− λ̌◦kβk

(γ◦k)
2σ2

k

∣
∣
∣g

H
k w◦

k

∣
∣
∣

2

= 0. (54b)

The condition in (54a) reveals the direction of the precoding

vector w◦
k, while its power is reflected in (54b). From (54a),

we can see that

λ̌◦kβk
γ◦kσ

2
k

gkg
H
k w◦

k =
∑

i6=k

λ̌◦i βi
σ2
i

gig
H
i w◦

k + µ◦w◦
k. (55)

We divide (55) with µ◦ and obtain that

λ◦kβk
γ◦kσ

2
k

gkg
H
k w◦

k =
∑

i6=k

λ◦i βi
σ2
i

gig
H
i w◦

k +w◦
k, (56)

where λ◦k = λ̌◦k/µ
◦. After that, we add the term

(λ◦kβk/σ
2
k)gkg

H
k w◦

k at both sides of (56) in the following

1 + γ◦k
γ◦k

λ◦kβk
σ2
k

gkg
H
k w◦

k =

K∑

i=1

λ◦i βi
σ2
i

gig
H
i w◦

k +w◦
k = V◦w◦

k,

(57)

where V◦ ∈ CM×M is only determined by {λ◦k}Kk=1 as

follows

V◦ =

K∑

k=1

λ◦kβk
σ2
k

gkg
H
k + IM . (58)

From (57), w◦
k can be written as

w◦
k = (V◦)−1

gk ·
1 + γ◦k
γ◦k

λ◦kβk
σ2
k

gH
k w◦

k

︸ ︷︷ ︸

scalar

. (59)

By multiplying (59) with gH
k from the left side and then

eliminating gH
k w◦

k, we can derive

γ◦k
1 + γ◦k

=
λ◦kβk
σ2
k

gH
k (V◦)−1

gk. (60)

From (60), it can be seen that γ◦k is also fully characterized

by {λ◦k}Kk=1 as follows

γ◦k =
1

1− (λ◦kβk/σ
2
k)g

H
k (V◦)−1

gk

− 1. (61)

Most importantly, from (59), we can see that the precoding

vector w◦
k must be parallel to (V◦)−1

gk and thus, it can be

expressed as

w◦
k =

√

q◦k ·
(V◦)−1

gk

‖(V◦)−1
gk‖

, (62)

where q◦k = ‖w◦
k‖2 is the power of the precoding vector

w◦
k. By taking advantage of the condition in (54b), q◦k can

be written as

q◦k =
λ◦kβk(γ

◦
k + 1)

µ◦σ2
k

‖(V◦)−1
gk‖2. (63)

With the help of the power constraint
∑K

k=1‖w◦
k‖2 =

∑K

k=1 q
◦
k = P , the Lagrange multiplier µ◦ can be expressed

as

µ◦ =
1

P

K∑

k=1

λ◦kβk(γ
◦
k + 1)

σ2
k

‖(V◦)−1
gk‖2. (64)

From (63) and (64), it can be observed that q◦k is merely

dependent on {λ◦k}Kk=1 as well. In summary, once the scalar

variables {λ◦k}Kk=1 are known, the precoding vectors {w◦
k}Kk=1

can be computed by using (62) accordingly. After substituting

γ◦k in (61) into log(1 + γk), we can obtain that

log(1 + γ◦k) = − log

(

1− λ◦kβk
σ2
k

gH
k (V◦)−1

gk

)

= − log det

(

IM − λ◦kβk
σ2
k

gkg
H
k (V◦)−1

)

= log det





K∑

i=1

λ◦i βi
σ2
i

gig
H
i + IM





− log det




∑

i6=k

λ◦i βi
σ2
i

gig
H
i + IM



 , (65)

which is exactly equal to rk(λ
◦
1, . . . , λ

◦
K) in (30). Next, we

will show that the scalar variables {λ◦k}Kk=1 must satisfy
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∑K

k=1 λ
◦
k = P . Notice that the constraints in (52b) must hold

with equality at the optimum, i.e.,

βk
γ◦kσ

2
k

∣
∣
∣g

H
k w◦

k

∣
∣
∣

2

=
∑

i6=k

βk
σ2
k

∣
∣
∣g

H
k w◦

i

∣
∣
∣

2

+ 1. (66)

Multiplying λ◦k at both sides of (66) yields

λ◦kβk
γ◦kσ

2
k

∣
∣
∣g

H
k w◦

k

∣
∣
∣

2

=
∑

i6=k

λ◦kβk
σ2
k

∣
∣
∣g

H
k w◦

i

∣
∣
∣

2

+ λ◦k. (67)

On the other hand, we left-multiply (56) with
(
w◦

k

)H
to obtain

that

λ◦kβk
γ◦kσ

2
k

∣
∣
∣g

H
k w◦

k

∣
∣
∣

2

=
∑

i6=k

λ◦i βi
σ2
i

∣
∣
∣g

H
i w◦

k

∣
∣
∣

2

+‖w◦
k‖2 . (68)

Consequently, we can derive that

K∑

k=1

λ◦k
(a)
=

K∑

k=1

λ◦kβk
γ◦kσ

2
k

∣
∣
∣g

H
k w◦

k

∣
∣
∣

2

−
K∑

k=1

∑

i6=k

λ◦kβk
σ2
k

∣
∣
∣g

H
k w◦

i

∣
∣
∣

2

(b)
=

K∑

k=1

λ◦kβk
γ◦kσ

2
k

∣
∣
∣g

H
k w◦

k

∣
∣
∣

2

−
K∑

k=1

∑

i6=k

λ◦i βi
σ2
i

∣
∣
∣g

H
i w◦

k

∣
∣
∣

2

(c)
=

K∑

k=1

‖w◦
k‖2 = P , (69)

where (a) and (c) follow from (67) and (68), respectively, and

(b) comes from exchanging indices k and i. This concludes

the proof.

APPENDIX D

A MINORIZING FUNCTION OF rk

We first consider a virtual UL multi-user single-input

multiple-output (MU-SIMO) channel. In the virtual UL, each

single-antenna UT transmits one data stream to a BS equipped

with M antennas. The received signal y ∈ CM×1 at the BS

can be written as

y =

K∑

i=1

√

βi/σ2
i gi ·

√

λidi + z, (70)

where
√

βi/σ2
i gi is the channel vector between the UT i and

the BS, λi ≥ 0 and di are the transmit power and data symbol

of the UT i. The data symbol di is assumed to have zero mean

and unit variance, and z ∼ CN (0, IM ) is the additive complex

Gaussian noise.

We assume that the BS decodes the data streams of each

UT without successive interference cancellation (SIC) [45].

The BS uses a linear receiver uk ∈ CM×1 to recover the data

symbol from UT k. Then, the recovered data symbol d̂k of

UT k can be written as

d̂k = uH
k y

= uH
k gk

√

λkβk
σ2
k

dk +
∑

i6=k

uH
k gi

√

λiβi
σ2
i

di + uH
k z. (71)

The virtual MSE (VMSE) of UT k can be expressed as

VMSEk = E

{

|d̂k − dk|2
}

=

K∑

i=1

∣
∣
∣u

H
k gi

∣
∣
∣

2 λiβi
σ2
i

− 2ℜ
{

uH
k gk

}
√

λkβk
σ2
k

+‖uk‖2 + 1. (72)

The uk that minimizes VMSEk is given by

uvmmse
k = argmin

uk

VMSEk

=





K∑

i=1

λiβi
σ2
i

gig
H
i + IM





−1

gk

√

λkβk
σ2
k

, (73)

and the corresponding virtual MMSE (VMMSE) of UT k is

given by

VMMSEk = 1− λkβk
σ2
k

gH
k





K∑

i=1

λiβi
σ2
i

gig
H
i + IM





−1

gk.

(74)

Then, rk can be rewritten as rk = − logVMMSEk. De-

note {λ(n)k }Kk=1 as the scalar variables in the nth iteration.

The VMMSE of UT k in the nth iteration is given by

VMMSE
(n)
k = VMMSEk|λk=λ

(n)
k

,∀k∈K. By applying the

concavity of log(·), a minorizing function of rk can be derived

as

rk = − logVMMSEk

≥ r
(n)
k − VMMSEk −VMMSE

(n)
k

VMMSE
(n)
k

(a)

≥ r
(n)
k + 1− VMSEk

VMMSE
(n)
k

, h
(n)
k , (75)

where r
(n)
k is the computed rk in the nth iteration, (a)

follows from the inequality VMMSEk ≤ VMSEk. Notice

that VMSEk is relevant to {λk}Kk=1 and uk. To make the last

inequality in (75) hold with equality at {λ(n)k }Kk=1, we choose

uk in VMSEk as u
(n)
k = uvmmse

k |
λk=λ

(n)
k

,∀k∈K. Substituting

u
(n)
k into VMSEk yields

VMSEk

VMMSE
(n)
k

=

K∑

i=1

ψ
(n)
k,i

λiβi
σ2
i

− 2χ
(n)
k

√

λkβk
σ2
k

+ δ
(n)
k , (76)

where ψ
(n)
k,i =

|gH
i u

(n)
k

|2

VMMSE
(n)
k

, χ
(n)
k =

ℜ{gH
k u

(n)
k

}
VMMSE

(n)
k

and δ
(n)
k =

‖u(n)
k

‖2+1

VMMSE
(n)
k

.
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