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Over-the-Air Computation in OFDM Systems with
Imperfect Channel State Information

Yilong Chen, Huijun Xing, Jie Xu, Lexi Xu, and Shuguang Cui

Abstract—This paper studies the over-the-air computation
(AirComp) in an orthogonal frequency division multiplexing
(OFDM) system with imperfect channel state information (CSI),
in which multiple single-antenna wireless devices (WDs) si-
multaneously send uncoded signals to a multi-antenna access
point (AP) for distributed functional computation over multi-
ple subcarriers. In particular, we consider two scenarios with
best-effort and error-constrained computation tasks, with the
objectives of minimizing the average computation mean squared
error (MSE) and the computation outage probability over the
multiple subcarriers, respectively. Towards this end, we jointly
optimize the transmit coefficients at the WDs and the receive
beamforming vectors at the AP over subcarriers, subject to the
maximum transmit power constraints at individual WDs. First,
for the special case with a single receive antenna at the AP, we
propose the semi-closed-form globally optimal solutions to the
two problems using the Lagrange-duality method. It is shown
that at each subcarrier, the WDs’ optimized power control policy
for average MSE minimization follows a regularized channel
inversion structure, while that for computation outage probability
minimization follows an on-off regularized channel inversion,
with the regularization dependent on the transmit power budget
and channel estimation error. Next, for the general case with
multiple receive antennas at the AP, we present efficient algo-
rithms based on alternating optimization and convex optimization
to find converged solutions to both problems. It is shown that
with finite receive antennas at the AP, a non-zero computation
MSE for AirComp is inevitable due to the channel estimation
errors even when the transmit powers at WDs tend to infinity,
while with massive receive antennas, the average MSE and outage
probability vanish when the channel vectors are independent and
identically distributed. Finally, numerical results are provided to
demonstrate the effectiveness of the proposed designs.

Index Terms—Over-the-air computation (AirComp), orthogo-
nal frequency division multiplexing (OFDM), imperfect channel
state information (CSI), power control, receive beamforming.

I. INTRODUCTION

The advancements in artificial intelligence (AI) and the
Internet of Things (IoT) are expected to enable numerous
new applications, such as smart cities and auto-driving. The
emergence of these applications introduces new requirements
for wireless data aggregation (WDA), in which distributed
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data from wireless devices (WDs) need to be aggregated at
fusion centers for distributed sensing, distributed edge machine
learning (e.g., federated edge learning (FEEL)), and distributed
consensus [2]. This thus calls for a paradigm shift in the
multiple access techniques from the conventional separate-
communication-and-computation design to the new integrated-
communication-and-computation design. To address this, over-
the-air computation (AirComp) has attracted growing research
interests for WDA towards beyond fifth-generation (B5G)
and six-generation (6G) wireless networks [2], which exploits
the waveform superposition properties of wireless channels
to facilitate the distributed functional computation among
separate WDs. In particular, by implementing AirComp over a
multiple access channel (MAC), the access point (AP) receiver
is able to directly compute a class of so-called nomographic
functions (e.g., arithmetic mean, weighted sum, geometric
mean, polynomial, and Euclidean norm) [3], [4], based on dis-
tributed data from multiple WD transmitters via their one-shot
transmission. For instance, AirComp is particularly appealing
for supporting one-shot gradient/model aggregation in FEEL,
thereby enabling over-the-air FEEL (Air-FEEL) [5]–[7].

In general, AirComp can be realized in both coded and
uncoded manners [2]. While there have been some prior
works studying coded AirComp exploiting structured codes
for reliable functional computation (e.g., [8] and [9]), uncoded
AirComp has recently attracted extensive research interests
[10]–[17] due to its simplicity in implementation and its
optimality in computation mean squared error (MSE) mini-
mization over Gaussian MAC with independent and identically
distributed (i.i.d.) Gaussian sources [18]. Despite the benefits,
uncoded AirComp also faces various technical challenges. In
particular, how to combat against computation errors caused by
channel fading as well as noise and interference is particularly
challenging. To tackle this issue, there have been various
prior works investigating the transmit power control and the
transmit/receive beamforming for minimizing the computation
errors for AirComp. For instance, the authors in [10] presented
the transmit power control design for AirComp over a single-
antenna fading MAC, in which the average computation MSE
is minimized by properly balancing the tradeoff between
signal misalignment and noise-induced errors. Such transmis-
sion power control strategy was then extended to accelerate
the convergence of model training in Air-FEEL [11]–[13].
Furthermore, the authors in [14] utilized the multiple-input
multiple-output (MIMO) technique for multimodal AirComp,
in which the spatial multiplexing and array gains of MIMO are
exploited to simultaneously compute multiple function values
with reduced computation MSE. In addition, [15] studied
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the design of hybrid analog and digital beamforming for
massive MIMO AirComp, [16] proposed the joint transceiver
beamforming and device selection design for Air-FEEL with
multiple tasks, and [17] exploited the cooperative diversity for
enhancing the outage performance of AirComp via relaying.

Despite the benefits, the implementation of power con-
trol and beamforming in AirComp highly depends on the
availability of channel state information (CSI) at the WD
transmitters and the AP receiver. In practice, the CSI can be
obtained at the AP and the WDs via proper channel estimation
(e.g., by exploiting the uplink-downlink channel reciprocity
in time division duplex (TDD) systems). This, however, may
introduce channel estimation errors [19] that would degrade
the AirComp performance. In the literature, there have been
extensive prior works investigating the impact of imperfect
CSI on the design of conventional wireless communications
(see, e.g., [20]), but there are only a handful of prior works
analyzing the effect of imperfect CSI on the AirComp per-
formance under different setups [21]–[24]. For instance, the
authors in [23] and [24] studied the intelligent reflecting
surface (IRS)-assisted AirComp systems with imperfect CSI,
in which the joint resource allocation for both transceivers
and IRS was designed in [23] for optimizing the worst-case
MSE performance and the two-stage stochastic optimization
was implemented in [24] for performance optimization with
reduced signaling overhead. Nevertheless, these prior works
[21]–[24] considered the narrowband transmission with flat-
fading channels, and they only provided generally suboptimal
solutions under their respective setups.

Different from prior works, this paper investigates the
uncoded AirComp in single-input multiple-output (SIMO)
orthogonal frequency division multiplexing (OFDM) systems
operating over frequency-selective fading channels, where
multiple single-antenna WDs simultaneously transmit uncoded
data to a multi-antenna AP for computing function values
over subcarriers. Under this setup, we study the joint transmit
power control at the WDs and the receive strategy at the
AP for optimizing the AirComp performance in terms of
minimizing the computation MSE, by taking into account
the imperfect CSI caused by channel estimation errors. The
computation MSE consists of three components, namely the
signal misalignment error, CSI-related error, and noise-induced
error. This is in sharp contrast to the case with perfect
CSI, in which the CSI-related error is absent, thus making
conventional AirComp designs with perfect CSI (e.g., [10],
[14], [15]) inapplicable. In particular, we consider two differ-
ent AirComp scenarios with best-effort and error-constrained
computation tasks, respectively. In the first scenario with best-
effort computation, the AP aims to compute a given number
of function values over a specified time duration (e.g., for
gradient/model aggregation in Air-FEEL systems [5]–[7]), and
the batch of function values is treated as a whole (e.g., for the
model update in Air-FEEL). In this scenario, a certain level of
computation error for a particular function is tolerable. As a
result, we dedicate our best efforts to minimizing the average
MSE over all subcarriers. In the second scenario with error-
constrained computation, each function value plays a criti-
cal role in mission-critical applications (e.g., for distributed

consensus in vehicle platooning). In this scenario, we need
to ensure the desired error performance for each individual
function computation. Consequently, we aim to minimize the
computation outage probability or maximize the number of
successfully computed functions over all subcarriers, where an
outage or unsuccessful computation happens in a subcarrier
if the corresponding computation MSE exceeds a specific
threshold.

In the aforementioned two scenarios, we minimize the aver-
age computation MSE and the computation outage probability,
respectively, by jointly optimizing the transmit coefficients at
the WDs and the receive beamforming vector at the AP over
different subcarriers, subject to the maximum transmit power
constraints at individual WDs. However, both problems are
shown to be non-convex due to the coupling of the transmit
coefficients and the receive beamforming vectors. We address
the two problems by considering the special case with a single
receive antenna and the general case with multiple receive
antennas at the AP, respectively. The main results of this work
are summarized as follows.

• For the special single-input single-output (SISO) case
with a single antenna at the AP, we employ the Lagrange-
duality method to obtain semi-closed-form globally op-
timal solutions to both problems. It is shown that at
each subcarrier, the optimized power control policy at
the WDs follows a regularized channel inversion structure
for average MSE minimization and an on-off regularized
channel inversion for computation outage probability
minimization, where the regularization at each WD is
dependent on its transmit power budget and channel
estimation error. Notably, a non-zero computation MSE
is inevitable at each subcarrier due to channel estimation
errors even when the transmit power at each WD goes to
infinity.

• For the general SIMO case with multiple antennas at
the AP, we propose efficient algorithms based on alter-
nating optimization and convex optimization to obtain
converged solutions to both problems, where the transmit
coefficients and the receive beamforming vectors are
updated alternately with the other given. It is observed
that the optimized power control at WDs follows (on-off)
regularized channel inversion structures, similar to the
SISO case; while the optimized receive beamforming at
the AP follows a sum-minimum MSE (MMSE) structure,
which is to better aggregate signals from all the WDs to
facilitate the functional computation. Furthermore, it is
shown that with massive receive antennas, the compu-
tation MSE at each subcarrier would vanish when the
channel vectors are i.i.d., thus showing the benefit of
using massive antennas to mitigate channel estimation
errors in AirComp.

• Finally, numerical results are provided to showcase the
impact of channel estimation errors on the computation
MSE. The effectiveness of the proposed designs is val-
idated as compared to the benchmark scheme without
considering the CSI error, and those with equal power
allocation and channel inversion power control over dif-



3

S-P IFFT
𝒙𝑘

𝑥𝑘,0

𝑥𝑘,𝑀−1

·

·

·

Add

CP,

P-S

ҧ𝑥𝑘,0

ҧ𝑥𝑘,𝑀−1

·

·

·

ഥ𝒙𝑘

Re-

move

CP,

S-P

FFT
ഥ𝒚

ഥ𝒚0

ഥ𝒚𝑀−1

·

·

·

P-S

𝒚0

𝒚𝑀−1

·

·

·

𝒚

·

·

·

·

·

·

WD 𝐾

AP

·

·

·

WD 𝑘

WD 1

[ഥ𝒉𝑘,0, ⋯ , ഥ𝒉𝑘,𝐿−1]

[ഥ𝒉𝐾,0, ⋯ , ഥ𝒉𝐾,𝐿 −1]

[ഥ𝒉1,0, ⋯ , ഥ𝒉1,𝐿 −1]

·

·

·

·

·

·

ഥ𝒚 = {ഥ𝒚𝑀−𝜇 , … , ഥ𝒚𝑀−1, ഥ𝒚0, … , ഥ𝒚𝑀−1}

𝒚 = {𝒚0, … , 𝒚𝑀−1 }

Fig. 1. The uncoded AirComp in OFDM system (S-P: serial-to-parallel
converter; P-S: parallel-to-serial converter).

ferent subcarriers.

It is worth noting that there have been some prior works
studying AirComp [9] and Air-FEEL [5]–[7], [25] over OFDM
systems. The authors in [9] analyzed the computation rates
for coded AirComp over SISO OFDM systems. The authors
in [5] exploited the uncoded OFDM AirComp over SISO
channels (versus SIMO in this work) for Air-FEEL, in which
the suboptimal channel inversion power control (versus the
optimized power control in this work) was considered. [6]
and [7] studied the sign stochastic gradient descent (signSGD)
for Air-FEEL over OFDM systems by considering limited
constellation sizes such as binary phase shift keying (BPSK)
modulation. Furthermore, [25] investigated the uncoded Air-
FEEL estimator design at the AP for SISO OFDM systems
in the presence of channel gain mismatch and synchronization
errors. Different from these prior works [5]–[7], [9], [25], this
paper considers the more general SIMO setup with uncoded
transmit signals, in which the joint power control and receive
beamforming design is developed by taking into account the
imperfect CSI caused by channel estimation errors.

The remainder of the paper is organized as follows. Section
II presents the uncoded AirComp model in SIMO OFDM
systems with imperfect CSI, and formulates the average MSE
minimization problem for best-effort computation tasks as well
as the computation outage probability minimization problem
for error-constrained computation tasks. Section III presents
the optimal transceiver design solutions to the two formulated
problems in the special SISO case. Section IV proposes the
optimized transceiver designs for the two formulated problems
in the general SIMO case. Finally, Section V presents numer-
ical results, followed by the conclusion in Section VI.

Notations: Bold lower-case and upper-case letters are used
for vectors and matrices, respectively. For a vector a, symbols
a†, aH , and ∥a∥ denote its conjugate, conjugate transpose, and
Euclidean norm, respectively. I denotes the identity matrix
whose dimension will be clear from the context. Cm×n

denotes the space of m × n complex matrices. E[·] denotes
the statistic expectation. CN (µ,R) denotes the circularly
symmetric complex Gaussian (CSCG) distribution with mean
vector µ and covariance matrix R. ⌈·⌉ denotes the function
of rounding up to an integer.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. AirComp over OFDM systems

We consider the uncoded AirComp implemented over an
OFDM system, as illustrated in Fig. 1. In this system, an AP
aims to compute the function values of distributed data from
a set K ≜ {1, . . . ,K} of K ≥ 1 WDs. Each WD is equipped
with a single transmit antenna, while the AP is equipped with
Nr ≥ 1 receive antennas. Let M ≥ 1 denote the number of
subcarriers in the OFDM system and M ≜ {0, . . . ,M − 1}
denote the set of subcarriers. Each OFDM symbol consists of
a set M of M data samples and a set U ≜ {1, . . . , µ} of µ
samples for the cyclic prefix (CP).

In the OFDM-AirComp system, the AP aims to compute M
function values over an OFDM symbol, with each function
value corresponding to one subcarrier. Let sk,m denote the
transmitted message over subcarrier m ∈ M at WD k ∈ K.
Here, sk,m’s are assumed to be independent complex random
variables, each with zero mean and unit variance.1 The ob-
jective of the AP is to compute the averaging function of the
transmitted messages from all the K WDs for each subcarrier
m,2 which is expressed as

fm =
1

K

∑
k∈K

sk,m,∀m ∈ M. (1)

First, we consider the signal transmission at each WD
k ∈ K. Let bk,m denote the transmit coefficient over sub-
carrier m ∈ M at WD k. Accordingly, the transmitted
signal over the M subcarriers at WD k is given by xk =[
xk,0, . . . , xk,M−1

]T
, where xk,m = bk,msk,m.3 Let Pk de-

note the transmit power budget at WD k. Accordingly, we
have the constraint as follows.∑

m∈M
E
[
|xk,m|2

]
=

∑
m∈M

|bk,m|2 ≤ Pk,∀k ∈ K. (2)

For each WD k, let x̄k ∈ C(M+L)×1 denote the time-domain
transmitted signal vector over one OFDM symbol, consisting
of M + µ samples for both data and CP, which is given by

x̄k =
[
x̄k,M−µ, . . . , x̄k,M−1, x̄k,0, . . . , x̄k,M−1

]T
,∀k ∈ K.

(3)
As shown in Fig. 1, WD k implements the inverse discrete
Fourier transform (IDFT) or inverse fast Fourier transform
(IFFT) on xk to obtain x̄k. Thus, the transmitted signal at
sample n by WD k is given by

x̄k,n =
1√
M

∑
m∈M

xk,mej2π
mn
M ,∀k ∈ K, n ∈ M. (4)

1In this paper, we consider independent sources (with E
[
s2i,m

]
= 1 and

E
[
si,msj,m

]
= 0, ∀m ∈ M, i, j ∈ K, i ̸= j) for the ease of analysis,

similar to prior works on AirComp [14].
2Our proposed designs can be extended to other nomographic functions,

such as geometric mean, polynomial, and Euclidean norm, by employing
appropriate pre-processing at the WDs and post-processing at the AP [3].

3Notice that in this system, the transmitted signal at each subcarrier
is viewed as a continuous signal instead of a discrete one. Although the
signal needs to be quantized in such digital communication systems, we can
approximate it as a continuous one provided that the quantization levels are
sufficiently high.
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Next, we consider the wireless channels from the WDs
to the AP. Suppose that the distance from WD k ∈ K to
the AP is denoted by dk, and the corresponding transmission
delay of the line-of-sight (LoS) path is αk = dk

c , where c
denotes the speed of light. To enable time synchronization
for facilitating AirComp, each WD k implements a timing
advance βk based on its measured transmission delay. In
practice, due to inaccurate time synchronization, the timing
advance βk may deviate slightly from αk. In this case, we
assume that the reference time at the AP is chosen based
on the first (or the LoS) signal path from all the K WDs.
Consequently, the timing difference at each WD k can be
characterized by the relative delay given by

δk = αk − βk −min
i∈K

(αi − βi),∀k ∈ K. (5)

Furthermore, we consider the frequency-selective fading chan-
nel from each WD k to the AP, where the delay spread is
denoted by τk. By combining the relative delay δk and the
delay spread τk, we represent the multi-tap SIMO channel
from WD k to the AP as {h̄k,0, . . . , h̄k,L−1}, where L =
maxk∈K⌈ τk+δk

T ⌉ denotes the number of taps, with T denoting
the symbol period and h̄k,l ∈ CNr×1 denoting the channel
vector of the l-th tap, ∀l ∈ L ≜ {0, . . . , L − 1}.4 Notice that
for the first ∆k ≜ ⌈ δk

T ⌉ taps caused by the timing difference,
we have h̄k,l = 0,∀l ∈ {0, . . . ,∆k−1}, k ∈ K, for notational
convenience.

Then, we consider the received signal at the AP based on
the transmitted signals from WDs and the channel responses.
For data sample n, the received signal at the AP receiver is
given by

ȳn =
∑
k∈K

∑
l∈L

h̄k,lx̄k,n−l + z̄n,∀n ∈ M, (6)

where z̄n ∼ CN (0, σ2
zI) denotes the additive white Gaussian

noise (AWGN) at the AP receiver. By performing the discrete
Fourier transform (DFT) or fast Fourier transform (FFT), the
received signal at each subcarrier m is expressed as

ym =
∑
k∈K

hk,mbk,msk,m + zm,∀m ∈ M, (7)

where zm = 1√
M

∑
n∈M z̄ne

−j2πmn
M ∼ CN (0, σ2

zI) de-
notes the noise vector at each subcarrier m and hk,m =∑

l∈L h̄k,le
−j2πml

M denotes the channel vector from WD k ∈
K to the AP over subcarrier m ∈ M.

In practice, the AP adopts a receive beamforming vector
wm ∈ CNr×1 for data aggregation at each subcarrier m. By
further performing the averaging operation, the recovered av-
erage function value over subcarrier m at the AP is expressed
as

f̂m =
1

K
wH

mym,∀m ∈ M. (8)

4Notice that µ ≥ L is sufficient to mitigate the inter-symbol interference
(ISI) among different OFDM blocks. This indicates that a coarse time
synchronization with δk < µT,∀k ∈ K is adequate for implementing
AirComp over OFDM systems.

B. Computation MSE Minimization with Imperfect CSI

Next, we present the computation MSE between the ground
truth value fm in (1) and the recovered value f̂m in (8)
taking into account practical channel estimation errors. We
consider TDD systems, where the WDs and the AP estimate
the associated channel vectors based on the reverse links
by exploiting the uplink-downlink channel reciprocity. This
process, however, induces the channel estimation errors. Let
ĥk,m ∈ CNr×1 denote the estimated channel vector of WD k
at subcarrier m. Consequently, we have

ĥk,m = hk,m + ek,m,∀k ∈ K,∀m ∈ M, (9)

where ek,m ∼ CN (0, σ2
e,kI) denotes the channel estimation

error for estimating hk,m.
The receive beamforming vector wm at each subcarrier m

is designed based on the estimated CSI ĥk,m’s. Accordingly,
the recovered signal in (8) is reexpressed as

f̂m =
1

K

∑
k∈K

wH
m(ĥk,m−ek,m)bk,msk,m+wH

mzm,∀m ∈ M.

(10)
We utilize the computation MSE at each subcarrier m as

the performance metric of AirComp, which is expressed as
follows to characterize the distortion between the recovered
value f̂m in (10) and the ground truth average fm in (1), i.e.,

MSEm

(
{bk,m},wm

)
= E

[
|f̂m − fm|2

]
=

1

K2

(∑
k∈K

|wH
mĥk,mbk,m − 1|2︸ ︷︷ ︸

Signal misalignment error

+ ∥wm∥2σ2
z︸ ︷︷ ︸

Noise-induced error

+
∑
k∈K

∥wm∥2σ2
e,k|bk,m|2︸ ︷︷ ︸

CSI-related error

)
,∀m ∈ M.

(11)

Notice that in (11), the expectation is taken over the random-
ness of {sk,m}, {ek,m}, and zm, while the last equality holds
as the sources sk,m’s are independent. For each subcarrier m,
the MSE in (11) consists of three terms: the signal misalign-
ment error, the noise-induced error, and the CSI-related error
(due to channel estimation errors). This is different from prior
studies with perfect CSI (e.g., [10]), where only the first two
terms are present.

In particular, we consider two scenarios with different
computation tasks. In the first scenario with best-effort com-
putation tasks, the AP aims to compute a certain number of
function values over a specified time duration, and we are
interested in the computation errors of the batch of functions
across all the M subcarriers as a whole. Therefore, we employ
the average computation MSE over all the M subcarriers
as the performance metric, i.e, MSEavg

(
{bk,m}, {wm}

)
≜

1
M

∑M
m=1 MSEm

(
{bk,m},wm

)
. In the second scenario with

error-constrained computation, each function value is utilized
in mission-critical applications, and we need to ensure the
individual computation error of each function at each sub-
carrier. In this case, we define the computation outage or
unsuccessful computation for each subcarrier m as the event
when computation MSE MSEm

(
{bk,m},wm

)
exceeds a given
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threshold Γ. Accordingly, we define the outage indicator
function for each subcarrier m ∈ M as

Im
(
{bk,m},wm

)
=

{
0, if MSEm

(
{bk,m},wm

)
≤ Γ,

1, otherwise.
(12)

Accordingly, we utilize the computation outage probability or
the percentage of unsuccessfully computed functions over the
M subcarriers as the performance metric, which is defined as
MSEout

(
{bk,m}, {wm}

)
≜ 1

M

∑
m∈M Im

(
{bk,m},wm

)
.

For the two scenarios, we aim to minimize the average
computation MSE and the computation outage probability,
respectively, by jointly optimizing the transmit coefficients
{bk,m} at the WDs and the receive beamforming vector {wm}
at the AP, subject to the individual power budgets at the WDs.
The two problems are formulated as (P1) and (P2) as follows,
respectively.

(P1) : min
{bk,m},{wm}

1

M

M∑
m=1

MSEm

(
{bk,m},wm

)
s.t.

∑
m∈M

|bk,m|2 ≤ Pk,∀k ∈ K.

(P2) : min
{bk,m},{wm}

1

M

∑
m∈M

Im
(
{bk,m},wm

)
s.t.

∑
m∈M

|bk,m|2 ≤ Pk,∀k ∈ K.

Notice that both problems (P1) and (P2) are non-convex due
to the coupling between {bk,m} and {wm} in the objective
function. As a result, they are challenging to be optimally
solved. In the following, we will first present the globally
optimal solutions to the two problems for the special SISO
case with Nr = 1. Afterward, we will develop efficient
algorithms to find high-quality though suboptimal solutions
for the general SIMO case with Nr > 1.

III. OPTIMAL SOLUTIONS TO PROBLEMS (P1) AND (P2)
WITH Nr = 1

This section presents the optimal solutions to problems (P1)
and (P2) in the special SISO case with Nr = 1. In this case, the
channel vectors ĥk,m’s are reduced to scalars ĥk,m’s. Without
loss of optimality, we express the receive beamforming vectors
{wm} as real receive denoising factors {wm}, and set the

transmit coefficients as bk,m = b̃k,m
ĥ†
k,m

|ĥk,m|
,∀k ∈ K,m ∈ M,

in order to align the received signal phases for minimizing
the MSE at each subcarrier m, where b̃k,m ≥ 0 denotes the
transmit amplitude at WD k. As such, problems (P1) and (P2)
in the SISO case can be reformulated as problems (P1.1) and
(P2.1) as follows, in which the constant coefficients 1

K2 and
1
M are dropped for notational convenience.

(P1.1) : min
{b̃k,m≥0},{wm}

∑
m∈M

(∑
k∈K

(
(wm|ĥk,m|b̃k,m − 1)2

+w2
mσ2

e,k b̃
2
k,m

)
+ w2

mσ2
z

)
≜

∑
m∈M

M̃SEm

(
{b̃k,m}, wm

)
(13a)

s.t.
∑

m∈M
b̃2k,m ≤ Pk,∀m ∈ M. (13b)

(P2.1) : min
{b̃k,m≥0},{wm}

∑
m∈M

Ĩm
(
{b̃k,m}, wm

)
(14a)

s.t.
∑

m∈M
b̃2k,m ≤ Pk,∀k ∈ K, (14b)

where the outage indicator function at each subcarrier m ∈ M
becomes

Ĩm
(
{b̃k,m}, wm

)
=

{
0, if M̃SEm

(
{b̃k,m}, wm

)
≤ K2Γ,

1, otherwise.
(15)

Although (P1.1) and (P2.1) are not convex, they satisfy the
time-sharing condition when M becomes sufficiently large, in
which case the strong duality holds between primal problem
(P1.1) or (P2.1) and its corresponding dual problem [26].
In the following, we utilize the Lagrange-duality method to
obtain the optimal solutions to (P1.1) and (P2.1) for scenar-
ios with best-effort and error-constrained computation tasks,
respectively.

A. Optimal Solution to Average MSE Minimization Problem
(P1.1)

This subsection presents the optimal solution to problem
(P1.1) for the best-effort computation scenario. Let µk ≥
0 denote the dual variable associated with the transmit
power constraint in (13b) for each WD k ∈ K. The La-
grangian of (P1.1) is given by L1

(
{b̃k,m}, {wm}, {µk}

)
=∑

m∈M
∑

k∈K
(
(wm|ĥk,m|b̃k,m − 1)2 + w2

mσ2
e,k b̃

2
k,m

)
+∑

m∈M w2
mσ2

z +
∑

k∈K µk(
∑

m∈M b̃2k,m −Pk). Accordingly,
the dual function of (P1.1) is

g1
(
{µk}

)
= min

{b̃k,m},{wm}
L1

(
{b̃k,m}, {wm}, {µk}

)
, (16)

and the dual problem of (P1.1) is

(D1.1) : max
{µk}

g1
(
{µk}

)
, s.t. µk ≥ 0,∀k ∈ K.

Since the strong duality holds between (P1.1) and (D1.1),
we can solve problem (P1.1) by equivalently solving problem
(D1.1) [27]. We then have the following proposition.

Proposition 1: Suppose that {µI
k ≥ 0} denotes the optimal

dual solution to problem (D1.1). The optimal solution to
problem (P1.1) is given by {b̃Ik,m} and {wI

m}, where

b̃Ik,m =
wI

m|ĥk,m|
(wI

m)2(|ĥk,m|2 + σ2
e,k) + µI

k

,∀k ∈ K,m ∈ M,

(17)
and {wI

m} can be obtained via bisection search based on the
following equalities.∑

k∈K

|ĥk,m|2µk(
(wI

m)2(|ĥk,m|2 + σ2
e,k) + µI

k

)2 = σ2
z ,∀m ∈ M. (18)

Proof : See Appendix A. □
Remark 1: Proposition 1 provides interesting insights into

the optimal solution structure. It is observed in (17) that the
optimal transmit amplitude solution (or power control pol-
icy) {b̃Ik,m} follows a regularized channel inversion structure,
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where the regularization term (wI
m)2σ2

e,k + µI
k depends on

the channel estimation error σ2
e,k and the transmit power

budget. To be specific, based on the complementary slackness
condition that µI

k

(∑
m∈M(b̃Ik,m)2 − Pk

)
= 0, it follows that

for each WD k, if the transmit power constraint is inactive at
the optimality, then we have µI

k = 0. Accordingly, the transmit
coefficients are given by b̃Ik,m =

|ĥk,m|
wI

m(|ĥk,m|2+σ2
e,k)

,∀m ∈ M,
where the regularization only depends on the channel estima-
tion error σ2

e,k. By contrast, for each WD k with µI
k > 0, the

transmit power constraint is active at the optimality and the
transmit coefficients are given by (17), where the regulariza-
tion depends on both σ2

e,k and µI
k.

It is also interesting to analyze the average computation
MSE when each WD has asymptotically high transmit power
(i.e., Pk → ∞,∀k ∈ K), for which we have the following
proposition.

Proposition 2: When Pk → ∞,∀k ∈ K, it follows that
MSEm → Γm,1 ≜ 1

K2

∑
k∈K

σ2
e,k

|ĥk,m|2+σ2
e,k

, ∀m ∈ M.

Accordingly, we have MSEavg → 1
M

∑
m∈M Γm,1.

Proof : When Pk → ∞,∀k ∈ K, it can be shown that the
optimal receive denoising factors and the transmit amplitudes
are given by wI

m → 0 and b̃Ik,m =
|ĥk,m|

wI
m(|ĥk,m|2+σ2

e,k)
, respec-

tively, ∀k ∈ K,m ∈ M. By substituting them into (13a), we
have MSEm → Γm,1,∀m ∈ M. □

Proposition 2 reveals that due to the existence of channel
estimation errors σ2

e,k’s, a non-zero average MSE lower bound
becomes inevitable even when the transmit powers at WDs
approach infinity. This is different from the case with perfect
CSI (i.e., σ2

e,k = 0,∀k ∈ K), in which MSEavg → 0 when
Pk → ∞,∀k ∈ K.

B. Optimal Solution to Computation Outage Probability Min-
imization Problem (P2.1)

In this subsection, we present the optimal solution to
problem (P2.1) for the error-constrained computation scenario.
Notice that at each subcarrier m, if Γ is less than or equal
to the minimum MSE Γm,1 achieved when the transmit
powers tend to infinity (as described in Proposition 2), then
it always holds that Ĩm

(
{b̃k,m}, wm

)
= 1. By contrast, if

Γ ≥ 1
K , then we can achieve Ĩm

(
{b̃k,m}, wm

)
= 0 by even

setting b̃k,m = 0,∀k ∈ K. For these two trivial cases, we
straightforwardly have {b̃k,m = 0} and wm = 0 to be the
optimal solution. In the following, we focus on the non-trivial
case with Γm,1 < Γ < 1

K ,∀m ∈ M.
We employ the Lagrange-duality method to optimally solve

problem (P2.1). Let µk ≥ 0 denote the dual variable associated
with the transmit power constraint in (14b) for WD k ∈ K. The
Lagrangian of (P2.1) is given by L2

(
{b̃k,m}, {wm}, {µk}

)
=∑

m∈M Ĩm
(
{b̃k,m}, wm

)
+

∑
k∈K µk(

∑
m∈M b̃2k,m − Pk).

Accordingly, the dual function of (P2.1) is

g2
(
{µk}

)
= min

{b̃k,m},{wm}
L2

(
{b̃k,m}, {wm}, {µk}

)
, (19)

and the dual problem of (P2.1) is

(D2.1) : max
{µk}

g2
(
{µk}

)
, s.t. µk ≥ 0,∀k ∈ K.

Since the strong duality holds between problems (P2.1) and
(D2.1), we solve (P2.1) by equivalently solving (D2.1) [27].

First, we find the dual function g2
(
{µk}

)
in (19) un-

der given {µk ≥ 0}. By dropping the constant term
−
∑

k∈K µkPk, the problem in (19) can be decomposed into
the following M subproblems, each corresponding to one
subcarrier m ∈ M.

(P3.m) : min
{b̃k,m},wm

Ĩm
(
{b̃k,m}, wm

)
+

∑
k∈K

µk b̃
2
k,m.

To solve problem (P3.m), we need to find the minimum values
of Ĩm

(
{b̃k,m}, wm

)
+

∑
k∈K µk b̃

2
k,m under the cases with

Ĩm
(
{b̃k,m}, wm

)
= 0 and Ĩm

(
{b̃k,m}, wm

)
= 1, respectively,

and then compare them to find the minimum one. First, in the
case with Ĩm

(
{b̃k,m}, wm

)
= 1, i.e., the computation MSE

exceeds the threshold Γ, the objective of (P3.m) is minimized
to be 1 by simply setting {b̃k,m = 0}. Next, in the other
case with Ĩm

(
{b̃k,m}, wm

)
= 0, i.e., the computation MSE is

no greater than the threshold Γ, minimizing the objective of
(P3.m) is equivalent to solving the following problem.

(P3.1.m) : min
{b̃k,m},wm

∑
k∈K

µk b̃
2
k,m

s.t. M̃SEm

(
{b̃k,m}, wm

)
≤ K2Γ.

To facilitate the solution to problem (P3.1.m), we denote
Γm,2 ≜

∑
k∈K,µk>0

1
K2 + 1

K2

∑
k∈K,µk=0

σ2
e,k

|ĥk,m|2+σ2
e,k

as the
minimum MSE for subcarrier m when the WDs with µk = 0
are switched on with Pk → ∞ and those with µk > 0 are
switched off with Pk = 0. We then have the following lemma,
in which only the nontrivial case when at least one µk is non-
zero and Γ ̸= Γm,2 is considered.

Lemma 1: Let λ∗
m > 0 denote the optimal dual variable

associated with the MSE constraint in problem (P3.1.m). The
optimal solution to (P3.1.m) is given by {b̃∗k,m} and w∗

m,
where

b̃∗k,m =

0, if µk > 0 and Γm,2 < Γ < 1
K ,

w∗
m|ĥk,m|

(w∗
m)2(|ĥk,m|2+σ2

e,k)+
µk
λ∗
m

, otherwise, ∀k ∈ K,

(20)
and

w∗
m =


K
σz

√
Γ− Γm,2, if Γm,2 < Γ < 1

K ,

1
σz

√∑
k∈K

v∗
m|ĥk,m|2µk

(v∗
m|ĥk,m|2+v∗

mσ2
e,k+µk)2

, otherwise.

(21)
Here, v∗m ≜ λ∗

m(w∗
m)2 > 0 is obtained by a bisection search

based on ∑
k∈K

v∗mσ2
e,k + µk

v∗m|ĥk,m|2 + v∗mσ2
e,k + µk

= K2Γ. (22)

Proof : See Appendix B. □
Note that in Lemma 1, we first find v∗m based on (22), then

obtain w∗
m by (21), and finally determine {b̃∗k,m} based on (20)

with λ∗
m =

v∗
m

(w∗
m)2 . Based on Lemma 1, we have the following

proposition to solve (P3.m) and thus problem (19) optimally.
Notice that Proposition 3 can be verified by comparing the op-
timal value of 1 achieved when Ĩm

(
{b̃k,m}, wm

)
= 1 versus



7

that of
∑

k∈K µk(b̃
∗
k,m)2 achieved when Ĩm

(
{b̃k,m}, wm

)
=

0, for which the details are omitted.
Proposition 3: Let {b̃⋆k,m} and w⋆

m denote the optimal
solution to problem (P3.m). For each subcarrier m, if∑

k∈K µk(b̃
∗
k,m)2 > 1, then the optimal solution is {b̃⋆k,m = 0}

and w⋆
m = 0; if

∑
k∈K µk(b̃

∗
k,m)2 ≤ 1, then the optimal

solution is {b̃⋆k,m = b̃∗k,m} and w⋆
m = w∗

m.
Next, we solve the dual problem (D2.1), which is convex

but not necessarily differentiable. To handle this, we solve
(D2.1) by applying subgradient-based methods such as the
ellipsoid method [27]. For the objective function g2

(
{µk}

)
, the

subgradient at µk is
∑

m∈M(b̃⋆k,m)2−Pk,∀k ∈ K. By utilizing
this subgradient, the ellipsoid method can be implemented
efficiently, based on which we can obtain the optimal dual
solution to (D2.1) as {µII

k }.
Then, we present the optimal solution to the primal problem

(P2.1). With the optimal dual variables {µII
k } at hand, the

corresponding optimal solutions {b̃⋆k,m} and {w⋆
m} to problem

(19) in Proposition 3 can be directly used for constructing
the optimal primal solution to (P2.1), denoted by {b̃IIk,m} and
{wII

m}.
Remark 2: It is observed from (20) that the optimal transmit

amplitude solution (or power control policy) {b̃IIk,m} follows
an on-off regularized channel inversion structure, where the
regularization and on-off control are determined by the power
budget, channel estimation error, and MSE threshold. Specif-
ically, for each subcarrier m, if

∑
k∈K µII

k (b̃
II
k,m)2 > 1,

then the WDs are turned off with b̃IIk,m = 0,∀k ∈ K,
such that the outage happens with Ĩm

(
{b̃k,m}, wm

)
= 1.

This is due to the fact that the transmit power required for
successful computation is too high in this case. By contrast,
if

∑
k∈K µII

k (b̃
∗
k,m)2 ≤ 1, then the computation is successful

in this subcarrier with Ĩm
(
{b̃k,m}, wm

)
= 0, for which the

transmit policy at the WDs has the following properties.
• For WD k, if the transmit power constraint for this

WD is inactive or the transmit power is sufficient, then
we have µII

k = 0. Accordingly, the optimal transmit
amplitude becomes b̃IIk,m =

|ĥk,m|
wII

m(|ĥk,m|2+σ2
e,k)

, where the

regularization depends solely on σ2
e,k, similarly as that

for the best-effort computation scenario.
• For WD k, if µII

k > 0, then the transmit amplitudes
satisfy that

∑
m∈M(b̃IIk,m)2 = Pk, i.e., the transmit power

constraint is active. In this case, WD k may adopt on-off
transmission control depending on the MSE threshold Γ.
In particular, if Γm,2 < Γ < 1

K , then WD k is turned off
with b̃IIk,m = 0. This is due to the fact that the transmission
of other WDs with sufficient power (especially those with
µII
k = 0) can meet the computation error requirement.

On the other hand, if Γm,1 < Γ < Γm,2, then WD k

transmits with b̃IIk,m =
wII

m|ĥk,m|

(wII
m)2(|ĥk,m|2+σ2

e,k)+
µII
k

λ∗
m

, where

the regularization depends on σ2
e,k, µII

k , and λ∗
m. This

is different from (17) for the best-effort computations
scenario.

It is also interesting to discuss the case when each WD has
asymptotically high transmit power (i.e., Pk → ∞,∀k ∈ K).

In this case, it follows from Proposition 2 that the minimum
achievable MSE at each subcarrier m is given by Γm,1.
As a result, if the MSE threshold is set such that Γ ≥
Γm,1,∀m ∈ M, then the zero computation outage probability
MSEout = 0 is achievable. However, if the MSE threshold
Γ < Γm,1 for any subcarrier m, then computation outage
becomes inevitable. This is different from the case with perfect
CSI, in which MSEout = 0 as long as Pk → ∞,∀k ∈ K.

IV. PROPOSED SOLUTIONS TO PROBLEMS (P1) AND (P2)
WITH Nr > 1

This section considers problems (P1) and (P2) in the general
SIMO case with Nr > 1. To minimize the computation
MSE in this case, with phase alignment, we set the transmit

coefficients as bk,m = b̃k,m
ĥ

H
k,mwm

|wH
mĥk,m|

,∀k ∈ K,m ∈ M, where

b̃k,m ≥ 0 is the transmit amplitude. Therefore, (P1) and (P2)
are equivalently reformulated as follows for scenarios with
best-effort and error-constrained computation tasks, respec-
tively.

(P1.2) : min
{b̃k,m≥0},{wm}

∑
m∈M

(∑
k∈K

(
(|wH

mĥk,m|b̃k,m − 1)2

+ ∥wm∥2σ2
e,k b̃

2
k,m

)
+ ∥wm∥2σ2

z

)
≜

∑
m∈M

MSEm

(
{b̃k,m},wm

)
s.t.

∑
m∈M

b̃2k,m ≤ Pk,∀k ∈ K.

(P2.2) : min
{b̃k,m≥0},{wm}

∑
m∈M

Īm
(
{b̃k,m},wm

)
s.t.

∑
m∈M

b̃2k,m ≤ Pk,∀k ∈ K,

where the outage indicator function at each subcarrier m ∈ M
becomes

Īm
(
{b̃k,m},wm

)
=

{
0, if MSEm

(
{b̃k,m},wm

)
≤ K2Γ,

1, otherwise.
(23)

For problems (P1.2) and (P2.2), to deal with the coupling of
the transmit coefficients and the receive combining vectors, we
propose efficient algorithms based on alternating optimization,
where {b̃k,m} and {wm} are updated alternately with the other
given.

A. Proposed Solution to Average MSE Minimization Problem
(P1.2)

1) Optimal Solution of {wm} to Problem (P1.2) with Given
{b̃k,m}: First, we optimize {wm} in problem (P1.2) under
given {bk,m}, or equivalently {b̃k,m}. This involves solving
the following M unconstrained subproblems, each for one
subcarrier m ∈ M.

min
wm

∑
k∈K

(|wH
mĥk,mbk,m−1|2+∥wm∥2σ2

e,k b̃
2
k,i)+∥wm∥2σ2

z .

(24)
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Problem (24) is convex. Therefore, by setting the gradient of
the objective function to zero, the optimal solution to (24) is
given by

wIII
m =

(∑
k∈K

b̃2k,m(ĥk,mĥ
H

k,m + σ2
e,kI) + σ2

zI
)−1

·
∑
k∈K

ĥk,mbk,m.
(25)

For each subcarrier m, the optimized receive beamforming
solution in (25) is observed to have a sum-MMSE structure.
This is in order to better aggregate the signals from all the
WDs to facilitate the functional computation.

2) Optimal Solution of {b̃k,m} to Problem (P1.2) with
Given {wm}: Next, we optimize {b̃k,m} for problem (P1.2)
under given {wm}, which is equivalently transformed into the
following K subproblems, each for one WD k ∈ K.

min
{b̃k,m}

∑
m∈M

(
(|wH

mĥk,m|b̃k,m − 1)2 + ∥wm∥2σ2
e,k b̃

2
k,m

)
s.t.

∑
m∈M

b̃2k,m ≤ Pk.

(26)
By exploiting the KKT conditions, the optimal solution to
problem (26) is given by

b̃IIIk,m =
|wH

mĥk,m|
|wH

mĥk,m|2 + ∥wm∥2σ2
e,k + µIII

k

,∀m ∈ M, (27)

where µIII
k ≥ 0 denotes the optimal dual variable as-

sociated with the transmit power constraint in (26). If∑
m∈M(

|wH
mĥk,m|

|wH
mĥk,m|2+∥wm∥2σ2

e,k

)2 < Pk, we have µIII
k = 0;

otherwise, µIII
k is obtained by using a bisection search based on

the equality of
∑

m∈M(
|wH

mĥk,m|
|wH

mĥk,m|2+∥wm∥2σ2
e,k+µIII

k

)2 = Pk.

Remark 3: The optimized transmit amplitude solution or
equivalently power control policy in (27) is observed to
exhibit a regularized channel inversion structure (by viewing
|wH

mĥk,m|2
∥wm∥2 as the equivalent channel power gain), similar

to that in (17) for the SISO case, where the regularization
depends on the transmit power budget and channel estimation
error.

3) Complete Algorithm for Solving to Problem (P1.2): The
alternating-optimization-based algorithm for solving (P1.2) is
implemented in an iterative manner. In each iteration, we first
update the transmit coefficients as {b̃IIIk,m} in (27) under given
{wm}, and then update the receive beamforming vector as
{wIII

m } based on (25) under given {b̃k,m}. Notice that in
each iteration, both problems (24) and (26) are optimally
solved. Therefore, the updated average MSE is ensured to be
monotonically nonincreasing. As the average MSE in (P1.2) is
lower bounded, the convergence of our proposed alternating-
optimization-based algorithm can be guaranteed.

It is interesting to discuss the average computation MSE
in the cases with sufficient transmit powers or a massive
number of receive antennas, for which we have the following
propositions.

Proposition 4: Under any given receive beamforming
vector wm, if Pk → ∞,∀k ∈ K, then we have

MSEm → Γ̄m,1 ≜ 1
K2

∑
k∈K

∥wm∥2σ2
e,k

|wH
mĥk,m|2+∥wm∥2σ2

e,k

≥
1

K2

∑
k∈K

σ2
e,k

∥ĥk,m∥2+σ2
e,k

,∀m ∈ M. Accordingly, it follows

that MSEavg → 1
M

∑
m∈M Γ̄m,1.

Proposition 4 can be similarly verified as Proposition 2,
where the inequality holds based on the Cauchy-Schwarz
inequality. It follows from Proposition 4 that with a finite
number of receive antennas, a non-zero MSE is inevitable even
when the WDs employ extremely high transmit powers.

Proposition 5: If Nr → ∞ and hk,m’s (and equivalently
ĥk,m’s) are i.i.d. random vectors, then we have MSEm →
0,∀m ∈ M, and accordingly MSEavg → 0.

Proof : In this case, the channel vectors among different
WDs become asymptotically orthogonal, i.e., 1

Nr
ĥi,mĥ

H

j,m ≈
0 and ĥi,mĥ

H

i,m ≈ Nrσ
2
hI , ∀i, j ∈ K, i ̸= j,m ∈

M, where σ2
h denotes the variance of ĥk,m’s. Accord-

ingly, we have wIII
m = 1

η
(1)
m +η

(2)
m +η

(3)
m

∑
k∈K ĥk,mbk,m, where

η
(1)
m =

∑
k∈K b̃2k,mNrσ

2
h, η

(2)
m =

∑
k∈K b̃2k,mσ2

e,k, and
η
(3)
m = σ2

z . By substituting wIII
m into the objective function

of problem (P1.2), the computation MSE becomes MSEm =
(η(2)

m +η(3)
m )2+η(1)

m η(2)
m +η(1)

m η(3)
m

K2(η
(1)
m +η

(2)
m +η

(3)
m )2

. As Nr → ∞, we have η
(1)
m →

∞,∀m ∈ M. As a result, we have MSEm → 0,∀m ∈ M. □
Proposition 5 shows that increasing the number of receive

antennas is efficient to combat against the imperfect CSI, thus
showing the benefit of massive antennas in AirComp.

B. Proposed Solution to Computation Outage Probability
Minimization Problem (P2.2)

1) Optimal Solution of {wm} to Problem (P2.2) with given
{b̃k,m}: First, we optimize {wm} for problem (P2.2) under
given {b̃k,m}. In this case, we design {wm} to minimize the
computation MSE at each subcarrier. For subcarriers m with
b̃k,m = 0,∀k ∈ K, there is no need to update wm. For the
other subcarriers, wm is optimized as follows, the same as the
sum-MMSE beamformer in (25) for problem (P1.2).

wIV
m =

(∑
k∈K

b̃2k,m(ĥk,mĥ
H

k,m + σ2
e,kI) + σ2

zI
)−1

·
∑
k∈K

ĥk,mbk,m.
(28)

2) Optimal Solution of {b̃k,m} to Problem (P2.2) with
Given {wm}: Next, we optimize {b̃k,m} for problem (P2.2)
under given {wm}, which is expressed as the following
problem.

(P2.3) : min
{b̃k,m}

∑
m∈M

Īm
(
{b̃k,m},wm

)
(29a)

s.t.
∑

m∈M
b̃2k,m ≤ Pk,∀k ∈ K. (29b)

As problem (P2.3) satisfies the time-sharing condition when
M becomes sufficiently large, we employ the Lagrange-duality
method to find its optimal solution. Before proceeding, notice
that similar to problem (P1.2), when Γ ≤ Γ̄m,1 +

∥wm∥2σ2
z

K2

or Γ ≥ 1
K +

∥wm∥2σ2
z

K2 , for any m ∈ M (with Γ̄m,1
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defined in Proposition 4), we have Ī
(
{b̃k,m},wm

)
= 1 or

Ī
(
{b̃k,m},wm

)
= 0. For the two cases, we straightforwardly

set b̃k,m = 0,∀k ∈ K. In the following, we only need to
consider the non-trivial case with Γ̄m,1 < Γ − ∥wm∥2σ2

z

K2 <
1
K ,∀m ∈ M.

Let µk ≥ 0 denote the dual variable associated with
the transmit power constraint in (29b) for WD k ∈ K.
The Lagrangian of (P2.3) is given by L3

(
{b̃k,m}, {µk}

)
=∑

m∈M Īm
(
{b̃k,m},wm

)
+

∑
k∈K µk(

∑
m∈M b̃2k,m − Pk).

Accordingly, the dual function of P(2.3) is

g3
(
{µk}

)
= min

{b̃k,m}
L3

(
{b̃k,m}, {µk}

)
, (30)

and the dual problem of (P2.3) is

(D2.3) : max
{µk}

g3
(
{µk}

)
, s.t. µk ≥ 0,∀k ∈ K.

Since the strong duality holds between problems (P2.3) and
(D2.3), we solve (P2.3) by equivalently solving (D2.3) [27].

First, we find the dual function g3
(
{µk}

)
in (30) under

given {µk ≥ 0}. The problem in (30) can be decomposed
into the following M subproblems, each for one subcarrier
m ∈ M.

(P4.m) : min
{b̃k,m}

Īm
(
{b̃k,m},wm

)
+

∑
k∈K

µk b̃
2
k,m.

Similar to problem (P3.m), we first solve problem (P4.m) in
two cases with Īm

(
{b̃k,m},wm

)
= 1 and Īm

(
{b̃k,m},wm

)
=

0, respectively, and then compare the optimal values obtained
in these two cases. If Īm

(
{b̃k,m},wm

)
= 1, then the optimal

value of (P4.m) is 1; if Īm
(
{b̃k,m},wm

)
= 0, then (P4.m) is

equivalent to the following problem.

(P4.1.m) : min
{b̃k,m}

∑
k∈K

µk b̃
2
k,m

s.t. MSEm

(
{b̃k,m},wm

)
≤ K2Γ.

To facilitate the solution to problem (P4.1.m), similar to
problem (P3.1.m), we define Γ̄m,2 ≜

∑
k∈K,µIV

k >0
1

K2 +

1
K2

∑
k∈K,µIV

k =0

∥wm∥2σ2
e,k

|wH
mĥk,m|2+∥wm∥2σ2

e,k

. We then have the fol-
lowing lemma, in which only the nontrivial case when at least
one µk is non-zero is considered.

Lemma 2: Let λ∗∗
m > 0 denote the optimal dual variable

associated with the computation MSE constraint in prob-
lem (P4.1.m). The optimal solution to (P4.1.m) is given by
b̃∗∗k,m,∀k ∈ K, where

b̃∗∗k,m =

0, if µk > 0 and Γ̄m,2 ≤ Γ− ∥wm∥2σ2
z

K2 < 1
K ,

|wm
H ĥk,m|

|wm
H ĥk,m|2+∥wm∥2σ2

e,k+
µk
λ∗∗
m

, otherwise.

(31)
Here, λ∗∗

m is obtained by applying the bisection search based
on the following equality.∑
k∈K

(∥wm∥2σ2
e,k + µk

λ∗∗
m
)2 + |wm

H ĥk,m|2∥wm∥2σ2
e,k

(|wm
H ĥk,m|2 + ∥wm∥2σ2

e,k + µk

λ∗∗
m
)2

+∥wm∥2σ2
z = K2Γ.

(32)

Proof : See Appendix C. □

Accordingly, problem (P4.m) can be optimally solved via
the following proposition, which can be proved similarly as
Proposition 3 for problem (P3.m) in the SISO case.

Proposition 6: Let {b̃⋆⋆k,m} denote the optimal solution to
(P4.m). For each subcarrier m with

∑
k∈K µk(b̃

∗∗
k,m)2 > 1, the

optimal solution to (P4.m) is {b̃⋆⋆k,m = 0}; for each subcarrier
m with

∑
k∈K µk(b̃

∗∗
k,m)2 ≤ 1, the optimal solution to (P4.m)

is {b̃⋆⋆k,m = b̃∗∗k,m}.
Next, we utilize subgradient-based methods such as the

ellipsoid method [27] to solve the dual problem (D2.3).
Utilizing the fact that the subgradient of objective function
g3
(
{µk}

)
at µk is

∑
m∈M(b̃⋆⋆k,m)2−Pk,∀k ∈ K, the ellipsoid

method can efficiently obtain the optimal dual solution to
(D2.3) as {µIV

k }.
Then, we present the optimal solution to the primal problem

(P2.3). By replacing {µk} as the optimal dual variables {µIV
k },

the optimal solution {b̃⋆⋆k,m} to problem (30) in Proposition
6 becomes the optimal primal solution to (P2.3) with given
{wm}, denoted by {b̃IVk,m}.

Remark 4: It is worth noting that for the general SIMO case,
the optimized transmit amplitude solution (or power control
policy) in (31) follows an on-off regularized channel inversion
structure, similar to that in Remark 2 for the special SISO case.

3) Complete Algorithm for Solving Problem (P2.2): Fi-
nally, the alternating-optimization-based algorithm for solving
(P2.2) is implemented in an iterative manner. In each iteration,
we first update the transmit coefficients as {b̃IVk,m} in (31) under
given {wm}, and then update the receive beamforming vector
as {wIV

m } based on (28) under given {b̃k,m}.
It is interesting to discuss the case when each WD has

asymptotically high transmit power (i.e., Pk → ∞,∀k ∈ K).
According to Proposition 4, if Γ ≥ Γ̄m,1,∀m ∈ M, then
MSEout = 0; otherwise, if Γ < Γ̄m,1 for any subcarrier
m ∈ M, then the computation outage becomes inevitable.
Furthermore, we consider the case when the AP is equipped
with a massive number of receive antennas (i.e., Nr → ∞)
and the channel vectors are i.i.d.. In this case, according to
Proposition 5, we have MSEm → 0,∀m ∈ M. This implies
that no matter how small the MSE threshold Γ is, we can
achieve a zero outage probability by exploiting the receive
beamforming with massive antennas, which highlights the
benefit of massive antennas for AirComp again.

V. NUMERICAL RESULTS

This section evaluates the AirComp performance of our
proposed designs. We consider the following three benchmarks
for performance comparison.

• Benchmark ignoring CSI errors: The WDs and AP op-
timize the transceiver design via solving problems (P1)
and (P2) by ignoring the channel estimation errors.

• Equal power allocation: Each WD k ∈ K transmits with
the full power and aligned phase, where the power is
equally allocated among its M subcarriers, i.e., bk,m =√

Pk

M

ĥ
H
k,mwm

|wH
mĥk,m|

.
• Channel inversion power control: Each WD k ∈ K

sets the transmit coefficients for its M subcarriers
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Fig. 2. The average MSE and computation outage probability versus transmit
power P for the SISO case with K = 5, M = 128, σ2

e = 0.2, and Γ = 0.05.

based on the channel inversion principle, i.e., bk,m =√
Pk

M
mini∈K ∥ĥi,m∥√
∥ĥk,m∥2+σ2

e,k

ĥ
H
k,mwm

|wH
mĥk,m|

.

Notice that in the last two schemes, the receive beamforming
vectors {wm} at the AP are designed similarly as that in
Sections III and IV for SISO and SIMO cases, respectively.

In the simulation, we set the channel vectors hk,m’s as inde-
pendent CSCG random vectors with zero mean and covariance
σ2
h,kI , where σ2

h,k’s are randomly generated to capture the
differences of large-scale Rayleigh fading at different WDs.
We also set Pk = P and σ2

e,k = σ2
e , ∀k ∈ K.

Figs. 2(a) and 2(b) show the average MSE and computation
outage probability versus the transmit power P at each WD
in the SISO case for the best-effort computation and error-
constrained computation scenarios, respectively, where K = 5,
M = 128, σ2

e = 0.2, and Γ = 0.05. It is observed that
the proposed design outperforms the other benchmarks across
the entire transmit power regime. In Fig. 2(a), we show
the MSE lower bound for comparison, which corresponds
to 1

M

∑
m∈M Γm,1. When P becomes large, the computa-

tion MSE achieved by the proposed design is observed to
approach the lower bound, as indicated in Proposition 2. In
the low transmit power regime, the equal power allocation
is observed to perform close to the proposed design, as it
can efficiently suppress the noise-induced error that dominates
the MSE in this case. In the high transmit power regime, the
channel inversion power control is observed to perform close
to the proposed design, due to the efficient signal magnitude
alignment. For the best-effort computation scenario in Fig.
2(a), the benchmark ignoring CSI errors exhibits the poorest
performance and leads to an increased MSE when P becomes
large. This is due to the fact that the CSI errors are amplified
by the high transmit power, hence deteriorating the MSE
performance. For the error-constrained computation scenario
in Fig. 2(b), the benchmark ignoring CSI errors leads to a
computation outage probability of one in the whole transmit
power regime. This is because this scheme only considers the
signal misalignment error and noise-induced error terms in
(11) when minimizing the MSE, and the actually achieved
MSE will exceed the threshold when the CSI-related error
term is further taken into account.

Figs. 3(a) and 3(b) show the average MSE and computation
outage probability versus the variance of CSI error σ2

e in
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Fig. 3. The average MSE and computation outage probability versus channel
estimation error σ2

e for the SISO case with P = 30 dB, K = 5, M = 128,
and Γ = 0.05.
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Fig. 4. The average MSE and computation outage probability versus the
number of WDs K for the SISO case with P = 30 dB, M = 128, σ2

e = 0.2,
and Γ = 0.05.

the SISO case for the best-effort computation and error-
constrained computation scenarios, respectively, where P =
30 dB, K = 5, M = 128, and Γ = 0.05. It is observed that
the proposed design outperforms the other benchmarks across
the entire regime of σ2

e . The performance gap between the
proposed design and equal power allocation/channel inversion
power control diminishes as σ2

e increases. This is because with
larger CSI errors, the impact of power control becomes less
significant, and these schemes are more influenced by the CSI-
related error. For the best-effort computation scenario in Fig.
3(a), the benchmark ignoring CSI errors is observed to perform
far worse than the other benchmarks when σ2

e becomes large.
For the error-constrained computation scenario in Fig. 3(b),
the benchmark ignoring CSI errors leads to the computation
outage probability of one in the whole transmit power regime,
which can be similarly explained as for Fig. 2(b).

Figs. 4(a) and 4(b) show the average MSE and computation
outage probability versus the number of WDs K in the SISO
case for the best-effort computation and error-constrained
computation scenarios, respectively, where P = 30 dB,
M = 128, σ2

e = 0.2, and Γ = 0.05. It is observed that the
computation MSEs achieved by all four schemes decrease as
K increases, due to the fact that the AP can aggregate more
data for averaging. For the best-effort computation scenario
in Fig. 4(a), the performance gap between the proposed
design and the three benchmarks is observed to become more
significant as K increases, indicating the effectiveness of the
proposed scheme in managing CSI errors.
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Fig. 5. The average MSE and computation outage probability versus transmit
power P for the SIMO case with Nr = 4, K = 5, M = 128, σ2

e = 0.2,
and Γ = 0.05.
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Fig. 6. The average MSE and computation outage probability versus the
number of antennas at the AP Nr for the SIMO case with P = 30 dB,
K = 5, M = 128, σ2

e = 0.2, and Γ = 0.05.

Figs. 5(a) and 5(b) show the average MSE and computation
outage probability versus the transmit power P at each WD
in the SIMO case with Nr = 4 for the best-effort computa-
tion and error-constrained computation scenarios, respectively,
where K = 5, M = 128, σ2

e = 0.2, and Γ = 0.05. Similar to
the observations in the SISO case, it is observed that in the low
power regime, the equal power allocation performs close to the
proposed design, while in the high power regime, the channel
inversion power control performs close to the proposed design.
The benchmark ignoring CSI errors is observed to perform the
worst and even lead to an increased MSE when P becomes
large. In Fig. 5(a), we show the MSE lower bound, which
corresponds to 1

M

∑
m∈M Γ̄m,1 in Proposition 4. When P

becomes large, it is observed that there exists a gap between
the computation MSE achieved by the proposed design versus
the lower bound, which is due to the sub-optimality of the
proposed design.

Figs. 6(a) and 6(b) show the average MSE and computation
outage probability versus the number of receive antennas Nr at
the AP in the SIMO case for the best-effort computation and
error-constrained computation scenarios, respectively, where
P = 30 dB, K = 5, M = 128, σ2

e = 0.2, and Γ = 0.05. It is
observed that as Nr increases, the performances achieved by
the equal power allocation and the channel inversion power
control approach that by the proposed design. This is due to
the fact that the receive beamforming becomes more critical
for data aggregation in this case, and thus the gain provided
by transmit power control becomes marginal.

VI. CONCLUSION

This paper considered the joint transceiver design to mini-
mize the computation MSE for an uncoded OFDM AirComp
system with imperfect CSI. We considered two scenarios with
best-effort and error-constrained computation tasks, with the
objectives of minimizing the average MSE and the compu-
tation outage probability over subcarriers, respectively. For
the SISO case, we derived the optimal (on-off) regularized
channel inversion power control solutions to the two problems.
For the SIMO case, we proposed alternating-optimization-
based algorithms to find high-quality solutions. In addition, we
derived interesting analytic results on the computation MSE
in the regimes with asymptotically high transmit powers or an
asymptotically large number of receive antennas. Remarkable
MSE performance gains were observed by our proposed de-
signs, in comparison with benchmark schemes, which showed
the importance of jointly optimizing the transmit power control
and the receive strategy to combat against channel estimation
errors for reliable AirComp.

APPENDIX

A. Proof of Proposition 1

In the following, we first obtain the dual function g1
(
{µk}

)
with given dual variables, and then search over {µk ≥ 0} to
minimize g1

(
{µk}

)
.

First, we find the dual function g1
(
{µk}

)
in (16) un-

der given {µk ≥ 0}. By dropping the constant term
−
∑

k∈K µkPk, the problem in (16) can be decomposed into
the following M subproblems, each for one subcarrier m ∈
M.

(P5.m) : min
{b̃k,m},wm

∑
k∈K

(
(wm|ĥk,m|b̃k,m − 1)2

+ w2
mσ2

e,k b̃
2
k,m

)
+ w2

mσ2
z +

∑
k∈K

µk b̃
2
k,m.

To solve problem (P5.m), we first optimize {b̃k,m} under
given wm. In this case, (P5.m) can be further decomposed
into the following K subproblems, each for one WD k ∈ K.

(P5.m.k) : min
b̃k,m

(wm|ĥk,m|b̃k,m−1)2+w2
mσ2

e,k b̃
2
k,m+µk b̃

2
k,m.

By checking the first derivative of the objective function, the
optimal solution of {b̃k,m} to problem (P5.m.k) is obtained
as

b̃∗∗∗k,m =
wm|ĥk,m|

w2
m|ĥk,m|2 + w2

mσ2
e,k + µk

. (33)

Then, we optimize wm. By substituting {b̃∗∗∗k,m} back to
(P5.m), the optimization of wm is expressed as

min
wm

∑
k∈K

w2
mσ2

e,k + µk

w2
m|ĥk,m|2 + w2

mσ2
e,k + µk

+ w2
mσ2

z ≜ G(wm).

(34)
By setting the gradient ∂G(wm)

∂w2
m

to be zero, the optimal solution
of wm to problem (34) should satisfy∑

k∈K

|ĥk,m|2µk(
(w∗∗∗

m )2(|ĥk,m|2 + σ2
e,k) + µk

)2 = σ2
z , (35)
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where the left-hand side (L.H.S.) is monotonically decreasing
w.r.t. w∗∗∗

m . Therefore, we can find w∗∗∗
m by using a bisection

search based on (35) efficiently. By substituting w∗∗∗
m into (33),

we get {b̃∗∗∗k,m} w.r.t. {µk}. Therefore, subproblems (P5.m)
are finally solved under given {µk}, and the dual function
g1
(
{µk}

)
in (16) is accordingly obtained.

Next, we solve the dual problem (D1.1) by applying
subgradient-based methods such as the ellipsoid method [27].
The subgradient of objective function g1

(
{µk}

)
at µk is∑

m∈M(b̃∗∗∗k,m)2 − Pk,∀k ∈ K. Using this subgradient, the
ellipsoid method can obtain the optimal dual solution to (D1.1)
as {µI

k}.
Now, we present the optimal solution to the primal problem

(P1.1). With the optimal dual variables {µI
k} at hand, the

optimal solution {b̃∗∗∗k,m} and {w∗∗∗
m } in (33) and (35) to

problem (16) can be directly used for constructing the optimal
primal solution {b̃Ik,m} and {wI

m} to (P1.1).

B. Proof of Lemma 1

To solve problem (P3.1.m), for each WD k with
µk = 0, according to Proposition 2, we set {b̃∗k,m =

|ĥk,m|
wm|ĥk,m|2+wmσ2

e,k

}k∈K,µk=0 to minimize the computation
MSE without affecting the objective. Therefore, solving
(P3.1.m) remains to optimize b̃k,m’s with µk > 0 by the
following problem.

(P3.2.m) : min
{b̃k,m}k∈K,µk>0,wm

∑
k∈K,µk>0

µk b̃
2
k,m

s.t.
∑

k∈K,µk>0

(
(wm|ĥk,m|b̃k,m − 1)2 + w2

mσ2
e,k b̃

2
k,m

)
+

∑
k∈K,µk=0

σ2
e,k

|ĥk,m|2 + σ2
e,k

+ w2
mσ2

z ≤ K2Γ.

For problem (P3.2.m), we first consider the case with
Γm,2 < Γ < 1

K , for which we can simply set {b̃∗k,m =

0}k∈K,µk>0 and w∗
m = K

σz

√
Γ− Γm,2 to make the MSE

constraint hold.
Lemma 3: For the case with Γm,2 < Γ < 1

K , if problem
(P3.2.m) is feasible, then with finite transmit power, it cannot
happen that Γm,2 → Γ.

Proof : If so, then according to the discussion above, the
MSE constraint in (P3.2.m) in this case becomes K2Γm,2 +
w2

mσ2
z ≤ K2Γ, which implies w∗

m → 0 and {b̃∗k,m →
∞}k∈K,µk=0. □

Next, we consider the case with Γm,1 < Γ ≤ Γm,2. Let
{λm ≥ 0} denote the dual variable associated with the MSE
constraint in (P3.2.m). The Lagrangian of (P3.2.m) is

L4

(
{b̃k,m}k∈K,µk>0, wm, λm

)
=

∑
k∈K,µk>0

µk b̃
2
k,m

+ λm

( ∑
k∈K,µk>0

(
(wm|ĥk,m|b̃k,m − 1)2 + w2

mσ2
e,k b̃

2
k,m

)
+

∑
k∈K,µk=0

σ2
e,k

|ĥk,m|2 + σ2
e,k

+ w2
mσ2

z −K2Γ
)
,

(36)

whose first derivative for {b̃k,m} equals to zero when

b̃k,m =
λmwm|ĥk,m|

λmw2
m|ĥk,m|2 + λmw2

mσ2
e,k + µk

,∀k ∈ K, µk > 0.

(37)
Lemma 4: For the case with Γm,1 < Γ ≤ Γm,2, if (P3.2.m)

is feasible, then with finite transmit power, there is at least
one WD k satisfying that µk > 0, and it follows that λm > 0
and wm > 0.

Proof : If µk = 0,∀k ∈ K, then we have Γm,1 = Γm,2.
If either λm = 0 or wm = 0, then according to (37), we
have {b̃∗k,m = 0}k∈K,µk>0, thus the MSE constraint becomes
K2Γm,2 + w2

mσ2
z ≤ K2Γ. Both are in contradiction with the

fact Γm,1 < Γ ≤ Γm,2. □

Substituting (37) into (36), when the gradient
∂L4({b̃k,m}k∈K,µk>0,wm,λm)

∂w2
m

equals to zero, it follows that

λm

(∑
k∈K,µk>0

λm|ĥk,m|2µk

(λmw2
m|ĥk,m|2+λmw2

mσ2
e,k+µk)2

− σ2
z

)
= 0,

which is equivalent to the equality as follows as λm > 0 and
wm > 0 hold.

∑
k∈K,µk>0

vm|ĥk,m|2µk

(vm|ĥk,m|2 + vmσ2
e,k + µk)2

= w2
mσ2

z , (38)

where vm ≜ λmw2
m > 0. Substituting (38) back, the MSE

constraint in (P3.2.m) w.r.t. λm becomes

∑
k∈K

vmσ2
e,k + µk

vm|ĥk,m|2 + vmσ2
e,k + µk

≤ K2Γ, (39)

whose L.H.S. is monotonously decreasing from K2Γm,2 to
K2Γm,1 as vm increases from 0 to infinity. Since λm > 0,
(39) is tight at the optimality. Therefore, we can determine
v∗m based on the equality of (39) by applying the bisection
search.

Lemma 5: For the case with Γm,1 < Γ ≤ Γm,2, if problem
(P3.2.m) is feasible, then with finite transmit power, it cannot
happen that Γm,2 = Γ.

Proof : If so, then according to the previous discussion, we
have v∗m = 0, which is in contradiction with Lemma 4. □

Finally, by substituting v∗m into (38), we get the optimal
solution of wm to (P3.2.m), and thus (P3.1.m) as w∗

m, and
accordingly obtain the optimal dual variable λm as λ∗

m =
v∗m/(w∗

m)2. Substituting λ∗
m and w∗

m back to (37), we obtain
the optimal solution of {b̃k,m}k∈K,µk>0 as {b̃∗k,m}k∈K,µk>0.
This thus completes the proof.

C. Proof of Lemma 2

Similar to problem (P3.1.m) for the SISO case, we re-
express problem (P4.1.m) as follows by setting {b̃∗∗k,m =
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|wm
H ĥk,m|

|wm
H ĥk,m|2+∥wm∥2σ2

e,k

}k∈K,µk=0,

(P4.2.m) : min
{b̃k,m}k∈K,µk>0

∑
k∈K,µk>0

µk b̃
2
k,m

s.t.
∑

k∈K,µk>0

(
(|wH

mĥk,m|b̃k,m − 1)2 + ∥wm∥2σ2
e,k b̃

2
k,m

)
+

∑
k∈K,µk=0

∥wm∥2σ2
e,k

|wH
mĥk,m|2 + ∥wm∥2σ2

e,k

+ ∥wm∥2σ2
z ≤ K2Γ,

and when Γ ≥ Γ̄m,2 +
∥wm∥2σ2

z

K2 , setting {b̃∗∗k,m = 0}k∈K,µk>0

can make the MSE constraint hold.
When Γ̄m,1 < Γ − ∥wm∥2σ2

z

K2 < Γ̄m,2, let {λm ≥ 0}
denote the dual variable associated with the MSE thresh-
old constraint in problem (P4.2.m). The Lagrangian of
(P4.2.m) is given by L5({b̃k,m}, λm) =

∑
k∈K µk b̃

2
k,m +

λm

(∑
k∈K,µk>0

(
(|wH

mĥk,m|b̃k,m−1)2+∥wm∥2σ2
e,k b̃

2
k,m

)
+∑

k∈K,µk=0

∥wm∥2σ2
e,k

|wH
mĥk,m|2+∥wm∥2σ2

e,k

+ ∥wm∥2σ2
z − K2Γ

)
,

whose first derivative for {b̃k,m} equals zero when

b̃k,m =
λm|wm

H ĥk,m|
λm|wm

H ĥk,m|2 + λm∥wm∥2σ2
e,k + µk

,

∀k ∈ K, µk > 0.

(40)

Similar to Lemma 4 in Appendix B, there is always at least one
WD k satisfying µk > 0 and it holds that λm > 0. Substituting
(40) back, the constraint in (P4.2.m) w.r.t. λm becomes∑
k∈K

(λm∥wm∥2σ2
e,k + µk)

2 + λ2
m|wm

H ĥk,m|2∥wm∥2σ2
e,k

(λm|wm
H ĥk,m|2 + λm∥wm∥2σ2

e,k + µk)2

≤ K2Γ− ∥wm∥2σ2
z ,

(41)
whose L.H.S. monotonously decreases from K2Γ̄m,2 to
K2Γ̄m,1 as λm increases from 0 to infinity, and the equality
holds at the optimality as λm > 0. Therefore, we can obtain
the optimal dual variable λ∗∗

m by applying the bisection search
based on the equality of (41). Substituting λ∗∗

m back to (40),
we get the optimal solution to (P4.2.m), and thus (P4.1.m) as
{b̃∗∗k,m}. This thus completes the proof.
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