
HAL Id: hal-00777131
https://hal.science/hal-00777131v1

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of a GF(64)-LDPC Decoder Based on the EMS
Algorithm

Emmanuel Boutillon, Laura Conde-Canencia, Ali Al Ghouwayel

To cite this version:
Emmanuel Boutillon, Laura Conde-Canencia, Ali Al Ghouwayel. Design of a GF(64)-LDPC Decoder
Based on the EMS Algorithm. IEEE Transactions on Circuits and Systems Part 1 Fundamental Theory
and Applications, 2013, 60 (10), pp.2644 - 2656. �10.1109/TCSI.2013.2279186�. �hal-00777131�

https://hal.science/hal-00777131v1
https://hal.archives-ouvertes.fr

1

Design of a GF(64)-LDPC Decoder Based on the
EMS Algorithm

Emmanuel Boutillon,Senior Member, IEEE,Laura Conde-Canencia,Member, IEEE,and Ali Al Ghouwayel

Abstract—This paper presents the architecture, performance
and implementation results of a serial GF(64)-LDPC decoder
based on a reduced-complexity version of the Extended Min-
Sum algorithm. The main contributions of this work correspond
to the variable node processing, the codeword decision and the
elementary check node processing. Post-synthesis area results
show that the decoder area is less than 20% of a Virtex 4
FPGA for a decoding throughput of 2.95 Mbps. The implemented
decoder presents performance at less than 0.7 dB from the
Belief Propagation algorithm for different code lengths and rates.
Moreover, the proposed architecture can be easily adapted to
decode very high Galois Field orders, such as GF(4096) or higher,
by slightly modifying a marginal part of the design.

Index Terms—Non-Binary low-density parity-check decoders,
low-complexity architecture, FPGA synthesis, Extended Min Sum
algorithm.

I. I NTRODUCTION

T HE extension of binary Low-Density Parity-Check
(LDPC) codes to high-order Galois Fields (GF(q), with

q > 2), aims at further close the gap of performance with the
Shannon limit when using small or moderate codeword lengths
[1]. In [2], it has been shown that this family of codes, named
Non-Binary (NB) LDPC, outperforms convolutional turbo-
codes (CTC) and binary LDPC codes because it retains the
benefits of steep waterfall region for short codewords (typical
of CTC) and low error floor (typical of binary LDPC). Com-
pared to binary LDPC, NB-LDPC generally present higher
girths, which leads to better decoding performance. Moreover,
since NB-LDPC are defined on high-order fields, it is possible
to identify a closer connection between NB-LDPC and high-
order modulation schemes. When associating binary LDPC
to M-ary modulation, the demapper generates likelihoods that
are correlated at the binary level, initializing the decoder
with messages that are already correlated. The use of iter-
ative demapping partially mitigates this effect but increases
the whole decoder complexity. Conversely, in the NB case,
the symbol likelihoods are uncorrelated, which automatically
improves the performance of the decoding algorithms [3]
[4]. Moreover, a better performance of theq-ary receiver
processing has been observed in MIMO systems [5] [6].
Finally, NB-LDPC codes also outperform binary LDPC codes
in the presence of burst errors [7] [8]. Further research on NB-
LDPC considers their definition over finite groups G(q), which

E. Boutillon and L. Conde-Canencia are with the Lab-STICC laboratory,
Lorient, CNRS, Université de Bretagne Sud

A. Al Ghouwayel is with the Lebanese International University.
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

is a more general framework than finite Galois fields GF(q)
[9]. This leads to hybrid [10] and split or cluster NB-LDPC
codes [11], increasing the degree of freedom in terms of code
construction while keeping the same decoding complexity.

From an implementation point of view, NB-LDPC codes
highly increase complexity compared to binary LDPC, espe-
cially at the reception side. The direct application of the Belief
Propagation (BP) algorithm to GF(q)-LDPC leads to a com-
putational complexity dominated byO(q2) and considering
values ofq > 16 results in prohibitive complexity. Therefore,
an important effort has been dedicated to design reduced-
complexity decoding algorithms for NB-LDPC codes. In [12]
and [13], the authors present an FFT-Based BP decoding that
reduces complexity to the order ofO(dc × q × log q), where
dc is the check node degree. This algorithm is also described
in the logarithm domain [14], leading to the so-called log-BP-
FFT. In [15] [16], the authors introduce the Extended Min-Sum
(EMS), which is based on a generalization of the Min-Sum
algorithm used for binary LDPC codes ([17], [18] and [19]).
Its principle is the truncation of the vector messages fromq to
nm values (nm << q), introducing a performance degradation
compared to the BP algorithm. However, with an appropriate
estimation of the truncated values, the EMS algorithm can
approach, or even in some cases slightly outperform, the BP-
FFT decoder. Moreover, the complexity/performance trade-off
can be adjusted with the value of thenm parameter, making the
EMS decoder architecture easily adaptable to both implemen-
tation and performance constraints. A complexity comparison
of the different iterative decoding algorithms applied to NB-
LDPC is presented in [20]. Finally, the Min-Max algorithm
and its selective-input version are presented in [21].

In the last years several hardware implementations of NB-
LDPC decoding algorithms have been proposed. In [22] and
[23], the authors consider the implementation of the FFT-BP
on an FPGA device. In [24] the authors evaluate implemen-
tation costs for various values ofq by the extension of the
layered decoder to the NB case. An architecture for a parallel
or serial implementation of the EMS decoder is proposed in
[16]. Also, the implementation of the Min-Max decoder is
considered in [25], [26] and optimized in [27] for GF(32).
Finally, a recent paper1 presents an implementation of a NB-
LDPC decoder based on the Bubble-Check algorithm and a
low-latency variable node processing [28].

Even if the theoretical complexity of the EMS is in the
order ofO(nm × lognm), for a practical implementation, the
parallel insertion needed to reorder the vector messages atthe

1Paper published during the reviewing process of our manuscript.

2

TABLE I
NOTATION

Code parameters
q order of the Galois Field
m number of bits in a GF(q) symbol,m = log2 q
H parity-check matrix
M number of rows inH
N number of columns inH or number of symbols in a codeword
dc check node degree
dv variable node degree
hj,k an element of theH matrix

Notation for the decoding algorithm
X a codeword
xk a GF(q) symbol in a codeword
xk,i the ith bit of the binary representation ofxk
Y received codeword (channel information)
yk a GF(q) symbol in a received codeword
yk,i the ith noisy channel sample inyk
nm size of the truncated message in the EMS algorithm
Lk(x) LLR value of thekth symbol
x̃k symbol of GF(q) that maximizesP (yk|x)
ĉk a decoded symbol
Ĉ the decoded codeword
{Lk(x)} the intrinsic message, (x ∈ GF(q))
C2V k

j check to variable message associated to edgehj,k

V 2Ck
j variable to check message associated to edgehj,k

λk EMS message associated to symbolxk
λk(l)GF GF(q) value of thelth element in the EMS message
λk(l)L LLR value of thelth element in the EMS message

Architecture parameters
nb number of quantization bits for an intrinsic message
ny number of quantization bits for the representation ofyk,i
nit number of decoding iterations
nop number of operations in an elementary check node processing
Ldec latency of the decoding process (in number of clock cycles)
LV N latency of the variable node processing
LCN latency of the check node processing
nbub number of bubbles
SC2V subset of GF(q), SC2V = {C2V GF (l)}l=1...nm

S̄C2V subset of GF(q) that contains the symbols not inSC2V

Elementary Check Node (ECN) increases the complexity to
the order ofO(n2

m). An algorithm to reduce the EMS ECN
complexity is introduced in [29] for a complexity reductionin
the order ofO(nm

√
nm). The complexity of this architecture

was further reduced without sacrifying performance with the
L-Bubble-Check algorithm [30].

As the EMS decoder considers Log-Likelihood Ratios
(LLR) for the reliability messages, a key component in the
NB decoder is the circuit that generates thea priori LLRs
from the binary channel values. An LLR generator circuit
is proposed in [31], but this algorithm is software oriented
rather than hardware oriented, since it builds the LLR list
dynamically. In [32], an original circuit is proposed as well as
the accompanying sorter which provides the NB LLR values
to the processing nodes of the EMS decoder.

In this paper, we present a design and a reduced-complexity
implementation of the L-Bubble Check EMS NB-LDPC de-
coder focusing our attention on the following points: the
Variable Node (VN) update, the Check Node (CN) processing
as a systolic array of ECNs and the codeword decision-making.
Table I summarizes the notation used in the paper.

The paper is organized as follows: section II introduces
ultra-sparse quasi-cyclic NB-LDPC codes, which are the one
considered by the decoder architecture. This section also

reviews NB-LDPC decoding with particular attention to the
Min-Sum and the EMS algorithms. Section III is dedicated
to the global decoder architecture and its scheduling. The VN
architecture is detailed in section IV. The CN processor and
the L-Bubble Check ECN architecture are presented in section
V. Section VI is dedicated to performance and complexity
issues and, finally, conclusions and perspectives are discussed
in section VII.

II. NB-LDPC CODES ANDEMS DECODING

This section provides a review of NB-LDPC codes and the
associated decoding algorithms. In particular, the Min-Sum
and the EMS algorithms are described in detail.

A. Definition of NB-LDPC codes

An NB-LDPC code is a linear block code defined on a
very sparse parity-check matrixH whose nonzero elements
belong to a finite field GF(q), whereq > 2. The construction of
these codes is expressed as a set of parity-check equations over
GF(q), where a single parity equation involvingdc codeword
symbols is:

∑dc

k=1 hj,kxk = 0, wherehj,k are the nonzero
values of thej-th row of H and the elements of GF(q) are
{0, α0, α1, . . . , αq−2}. The dimension of the matrixH is M×
N , whereM is the number of parity-Check Nodes (CN) and
N is the number of Variable Nodes (VN), i.e. the number
of GF(q) symbols in a codeword. A codeword is denoted by
X = (x1, x2, . . . , xN), where (xk), k = 1 . . .N is a GF(q)
symbol represented bym = log2(q) bits as follows:xk =
(xk,1 xk,2 . . . xk,m).

The Tanner graph of an NB-LDPC code is usually much
more sparse than the one of its homologous binary counterpart
for the same rate and binary code length ([33], [34]). Also,
best error correcting performance is obtained with the lowest
possible VN degree,dv = 2. These so-calledultra-sparse
codes [33] reduce the effect of stopping and trapping sets,
and thus, the message passing algorithms become closer to
the optimal Maximum Likelihood decoding. For this reason,
all the codes considered in this paper are ultra-sparse. To
obtain both good error correcting performance and hardware
friendly LDPC decoder, we consider the optimized non-binary
protograph-based codes [35] [36] withdv = 2 proposed
by D. Declercqet al. [37]. These matrices are designed to
maximize the girth of the associated bi-partite graph, and
minimize the multiplicity of the cycles with minimum length
[38]. This NB-LDPC matrix structure is similar to that of most
binary LDPC standards (DVB-S2, DVB-T2, WiMax,...), and
allows different decoder schedulings: parallel or serial node
processors2. Finally, the nonzero values ofH are limited to
only dc distinct values and each parity check uses exactly those
dc distinct GF(q) values. This limitation in the choice of the
hj,k values reduces the storage requirements.

B. Min-Sum algorithm for NB-LDPC decoding

The EMS algorithm [15] is an extension of the Min-Sum
([39] [40]) algorithm from binary to NB LDPC codes. In this

2The final choice will be determined by the latency and surfaceconstraints.

3

section we review the principles of the Min-Sum algorithm,
starting with the definition of the NB LLR values and the
exchanged messages in the Tanner graph.

1) Definition of NB LLR values:Considering a BPSK
modulation and an Additive White Gaussian Noise (AWGN)
channel, the received noisy codewordY consists ofN ×
m binary symbols independently affected by noise:Y =
(y1,1 y1,2 . . . y1,m y2,1 . . . yN,m), whereyk,i = B(xk,i)+wk,i,
k ∈ {1, 2, . . . , N}, i ∈ {1, . . . ,m}, wk,i is the realization of
an AWGN of varianceσ2 andB(x) = 2x− 1 represents the
BPSK modulation that associates symbol ‘-1’ to bit 0 and
symbol ‘+1’ to bit 1.

The first step of the Min-Sum algorithm is the computation
of the LLR value for each symbol of the codeword. With the
hypothesis that the GF(q) symbols are equiprobable, the LLR
valueLk(x) of the kth symbol is given by [21]:

Lk(x) = ln
(P (yk|x̃k)
P (yk|x)

)

(1)

wherex̃k is the symbol of GF(q) that maximizesP (yk|x), i.e.
x̃k = {argmaxx∈GF(q), P (yk|x)}.

Note thatLk(x̃k) = 0 and, for all x ∈ GF(q), Lk(x) ≥
0. Thus, when the LLR of a symbol increases, its reliability
decreases. This LLR definition avoids the need to re-normalize
the messages after each node update computation and permits
to reduce the effect of quantization when considering finite
precision representation of the LLR values.

As developed in [32],Lk(x) can be expressed as:

Lk(x) =
m
∑

i=1

((yk,i −B(xi))
2

2σ2
+

yk,i −B(x̃k,i)
2

2σ2

)

(2)

=
1

2σ2

m
∑

i=1

(

2yk,i(B(x̃k,i)−B(xi))
)

. (3)

Using (3),Lk(x) can be written as:

Lk(x) =
m
∑

i=1

|LLR(yk,i)|∆k,i, (4)

where∆k,i = xi XOR x̃k,i, i.e. ∆k,i = 0 if xi and x̃k,i have
the same sign, 1 otherwise andLLR(yk,i) = 2

σ2 yk,i is the
LLR of the received bityk,i.

2) Definition of the edge messages:The Check to Variable
(C2V) and the Variable to Check (V2C) messages associated
to edgehj,k are denotedC2V k

j andV 2Ck
j , respectively. Since

the degree of the VN is equal to 2, we denote the two C2V
(respectively V2C) messages associated to the variable nodek
(k = 1 . . .N) C2V k

jk(1)
andC2V k

jk(2)
(respectivelyV 2Ck

jk(1)

and V 2Ck
jk(2)

) where jk(1) and jk(2) indicate the position
of the two nonzero values of thekth column of matrixH .
Similarly, thedc C2V (respectively V2C) messages associated
to CN j (j = 1 . . .M) are denotedC2V

kj(v)
j (respectively

V 2C
kj(v)
j), v = 1 . . . dc, wherekj(v) indicates the position of

the vth nonzero value in thejth row of H .

3) The Min-Sum decoding process:The Min-Sum algo-
rithm is performed on the Tanner bi-partite graph. At high
level, this algorithm does not differ from the classical binary
decoding algorithms that use the horizontal shuffle scheduling
[41] or the layered decoder [42] principle.

The decoding process iteratesnit times and for each itera-
tion M CN updates andM × dc VN updates are performed.
During the last iteration a decision is taken on each symbol,the
decoded symbol is denoted byĉk and the decided codeword
by Ĉ. The codeword decision performed in the VN processors
concludes the decoding process and the decoder then sequen-
tially outputsĈ to the next block of the communication chain.

The steps of the algorithm can be described as:

Initialisation : generate the intrinsic message
{Lk(x)}x∈GF(q), k = 1 . . .N and set
V 2Ck

jk(v)
= Lk for k = 1 . . .N andv = 1, 2.

Decoding iterations: for 1 to the maximum number
of iterations
for (j = 1 . . .M) do

1) Retrieve in parallel from memory
V 2C

kj(v)
j , v = 1 . . . dc messages associated to

CN j.
2) Perform CN processing to generatedc new

C2V
kj(v)
j , v = 1 . . . dc messages3.

3) For each variable nodekj(v) connected to
CN j, update the secondV 2C message using
the newC2V message and theLk intrinsic
message.

Final decision For each variable node, make a
decisionĉk using theC2V k

jk(1)
, C2V k

jk(2)
messages

and the intrinsic message.

4) VN equations in the Min-Sum algorithm:Let L(x),
V 2C(x) andC2V (x) be respectively the intrinsic, V2C and
C2V LLR values associated to symbolx. The decoding
equations are:

Step 1: VN computation : for allx ∈ GF(q)

V 2C(x) = C2V (x) + L(x) (5)

Step 2: Determination of the minimum V2C LLR
value

x̂ = arg min
x∈GF(q)

{V 2C(x)} (6)

Step 3: Normalization

V 2C(x) = V 2C(x)− V 2C(x̂) (7)

5) CN equations in the Min-Sum algorithm:With the
forward-backward algorithm [43] a CN of degreedc can be
decomposed into3(dc−2) ECNs, where an ECN has two input
messagesU andV and one output messageE (see Figure 7).

E(x) = min
xu,xv∈GF(q)2

{U(xu) + V (xv)}xu⊕xv=x (8)

where⊕ is the addition in GF(q).

3Note that the multiplicative coefficients associated to theedge of the
Tanner graph are included in the CN processor.

4

6) Decision-making equations in the Min-Sum algorithm:
The decision̂ck, k = 1 . . .N is expressed as:

ĉk = arg min
x∈GF(q)

{C2V k
jk(1)

(x) + C2V k
jk(2)

(x) + Lk(x)} (9)

C. The EMS algorithm

The main characteristic of the EMS is to reduce the size of
the edge messages fromq to nm (nm << q) by considering
the sorted list of the first smallest LLR values (i.e. the set of
thenm most probable symbols) and by giving a default LLR
value to the others.

Let λk be the EMS message associated to thekth sym-
bol xk knowing yk (the so-called intrinsic message).λk is
composed ofnm couples(λk(l)L, λk(l)GF)l=1...nm

, where
λk(l)GF is a GF(q) element andλk(l)L is its associated
LLR: Lk(λk(l)GF) = λk(l)L. The LLR verifiesλk(1)L ≤
λk(2)L ≤ . . . ≤ λk(nm)L. Moreover, λk(1)L = 0. In
the EMS, a default LLR valueλk(nm)L + O is associated
to each symbol of GF(q) that does not belong to the set
{λk(l)GF }l=1...nm

, whereO is a positive offset whose value
is determined to maximize the decoding performance [15].

The structure of the V2C and the C2V messages is identical
to the structure of the intrinsic messageλk. The output
message of the VN should contain only, in sorted order, the
first nm smallest LLR valuesV 2C(l)L, l = 1 . . . nm and their
associated GF symbolsV 2C(l)GF , l = 1 . . . nm. Similarly, the
output message of the CN contains only the firstnm smallest
LLR values C2V (l)L, l = 1 . . . nm (sorted in increasing
order), their associated GF symbolsC2V (l)GF , l = 1 . . . dc
and the default LLR valueC2V (nm)L +O.

Except for the approximation of the exchanged messages,
the EMS algorithm does not differ from the Min-Sum algo-
rithm, i.e., it corresponds to equations (5) to (9).

III. A RCHITECTURE AND DECODING SCHEDULING

This section presents the architecture of the decoder and its
characteristics in terms of parallelism, throughput and latency.

A. Level of parallelism

We propose a serial architecture that implements a horizon-
tal shuffled scheduling with a single CN processor anddc VN
processors. The choice of a serial architecture is motivated
by the surface constraints as our final objective is to include
the decoder in an existing wireless demonstrator platform
[44]) (see section VI). The horizontal shuffled scheduling
provides faster convergence because during one iteration aCN
processor already benefits from the processing of a former CN
processor. This simple serial design constitutes a first FPGA
implementation to be considered as a reference for future
parallel or partial-parallel enhanced architecture designs.

B. The overall decoder architecture

The overall view of the decoder architecture is presented
in Figure 1. A single CN processor is connected todc
VN processors anddc RAM V2C memory banks. The CN

processor receives in paralleldc V2C messages and provides,
after computation,dc C2V messages. The C2V messages are
then sent to the VN processors to compute the V2C messages
of their second edge.

Fig. 1. Overall decoder architecture

Note that, for the sake of simplicity, we have omitted the
description of the permutation nodes that implement the GF(q)
multiplications. The effect of this multiplication is to replace
the GF(q) valueV 2CGF (l) by V 2CGF (l) × hj,k where the
GF multiplication requires only a few XOR operations.

1) Structure of the RAMs:The channel informationY and
theV 2C message associated to theN variables are stored in
dc memory banks RAMy and RAM V2C respectively4. Each
memory bank contains information related toN/dc variables.
In the case of RAMy, the (yk,i)i=1...m received values asso-
ciated to the variablexk are stored inm consecutive memory
addresses, each of sizeny bits, whereny is the number of bits
of the fixed-point representation ofyk,i (i.e. the size of RAMy
is (N/dc ×m) words ofny bits). Similarly, each RAM V2C
is also associated toN/dc variables. The informationV 2Ck

related toxk is stored innm consecutive memory addresses,
each location containing a couple (V 2CL(l), V 2CGF (l)), i.e.,
two binary words of size(nb,m), wherenb is the number
of bits to encode theV 2CL(l) values. To reduce memory
requirements, for each symbolxk, only the channel samples
yk,i and the extrinsic messages are stored in the RAM blocks.
The intrinsic LLR are stored after their computation but they
are overwritten by the V2C messages during the first decoding
iteration. Each time an intrinsic LLR is required for the VN
update, it is re-computed in the VN processor by the LLR
generator circuit. Such approach avoids the memorisation of
all the LLR of the input message (q messages) and thus, saves
significant area when considering high-order Galois Fields
(q ≥ 64).

The partition of theN variables in thedc memories is a
coloring problem: thedc variables associated to a given CN
should be stored each in a different memory bank to avoid
memory access conflicts (i.e. each memory bank must have a
different color). A general solution to this problem has been

4In this paper, we represent two separate RAMs for the sake of clarity.
However, in the implementation, RAMy and RAM V2C are merged into a
single RAM.

5

studied in [45]. Since the NB-LDPC matrices considered in
our study are highly structured (see [37]), the problem of
partitioning is solved by the structure of the code.

2) Wormhole layer scheduling:The proposed architecture
considers a wormhole scheduling. The decoding process starts
reading the storedY and V2C information sequentially and
sends, inm + nm clock cycles, the wholeV 2C message to
the CN. After a maximum delayLCN , the CN starts to send
the C2V messages to the VN processors, again with a value
C2V (l), l = 1 . . . nm at each clock cycle5.

After a delay ofLV N (see section IV-B), the VNs send the
newV 2C messages to the memory. The process is pipelined,
i.e, every∆ = (m + LCN + nm) clock cycles, a new CN
processing is started. The total time to processnit decoding
iterations is:

Ldec = nit ×M ×∆+ LV N + nm (10)

whereLdec is given in clock cycles. Figure 2 illustrates the
scheduling of the decoding process.

Fig. 2. Scheduling of the global architecture

3) The decoding steps:The decoding process iteratesnit

times performingM CN updates andM × dc VN updates
at each iteration. During the last iteration a decision is taken
on each symbol. The codeword decision is performed in the
VN processors. This concludes the decoding process and the
decoder then sequentially outputsĈ to the next block of the
communication chain. Note that the interface of the decoder
is then rather simple:

1) Loadyk and store them in RAMy (N×m clock cycles).
2) Compute intrinsic information fromyk to initialize the

V 2C messages.
3) Perform thenit decoding iterations.
4) During the second edge processing of the last iteration,

use the decision process to determineĉ.
5) Output the decoded message (N clock cycles) and wait

for the new input codeword to decode.

IV. VARIABLE NODE ARCHITECTURE

Although most papers on NB-LDPC decoder architectures
focus on the CN, the implementation of the VN architecture

5The time scheduling of the C2V message generation is not fully regular
(see section V-C), but we consider a global latencyLCN so that the last
elementC2V (nm) arrives afterLCN + nm clock cycles

Fig. 3. Variable node architecture of the EMS NB-LDPC decoder

is almost as complex, if not more, than the implementation of
the CN in terms of control. In the proposed decoder, the VN
processor works in three different steps: 1) the intrinsic gener-
ation; 2) the VN update and 3) the codeword decision. During
the first step, prior to the decoding iterations, the Intrinsic
Generation Module (IGM) circuit is active and generates the
intrinsic message(λk)k=1...N from the receivedyk samples.
During the VN update, all the blocks of the VN processor,
except theDecisionblock, are active. Finally, during the last
decoding iteration, theDecisionblock is active (see Figure 3).

A. The Intrinsic Generator Module (IGM)

The role of the IGM is to compute theλk intrinsic messages.
In [32], the authors propose an efficient systolic architecture
to perform this task. The purpose is to iteratively construct
the intrinsic LLR list considering, at the beginning, only the
first coordinate, then the first two coordinates and so on, up to
the complete computation of the intrinsic vector. The systolic
architecture works as a FIFO that can be fed when needed.
Once the input symbolsyk,i are received, and after a delay
of m + 2 clock cycles (m = log2(q)), the IGM generates a
new outputλk(l) at every clock cycle. When pipelined, this
module generates a new intrinsic vector everynm + 1 clock
cycles. Each intrinsic message is stored in the corresponding
V2C memory location in order to be used during the first step
of the iterative decoding process.

In the present design, in order to minimize the amount
of memory, the intrinsic messages are not stored but re-
generated when needed,i.e., during each VN update of the
iterative decoding process. This choice was dictated by the
limited memory resources of the existing FPGA platform. In
another context, it could be preferable to generate only once
the intrinsic messages, store them in a specific memory and
retrieve them when needed.

B. The VN update

In the VN processor, the blocks involved in the VN update
are the following: the elementary LLR generator (eLLR), the
Sorter, the IGM , the Flag memory and theMin block.

The task of the VN update is simple: it extracts in sorted
order the nm smallest values, and their associated GF(q)
symbols, from the setS = {C2V L(x) + L(x)} indexed by
x ∈ GF(q) to generate the new V2C message.

6

The set of GF(q) values can be divided into two disjoint sub-
setsSC2V and S̄C2V , with SC2V the subset of GF(q) defined
as SC2V = {C2V GF (l)}l=1...nm

. In this set,C2V L(x) =
C2V L(l), with l such thatC2V GF (l) = x. The second set,
S̄C2V contains the symbols not inSC2V . If x ∈ S̄C2V , then
C2V L(x) takes the default valueC2V L(nm)+O (see section
II-C). The generation ofSC2V is done serially in 3 steps:

1) C2V GF (l) is sent to theeLLR module to compute
L(C2V GF (l)) according to (4). The value ofC2V GF (l)
is also used to put a flag from 0 to 1 in theFlag memory
of size q = 2m to indicate that this GF(q) value now
belongs toSC2V . To be specific, theFlag memory is
implemented as two memory blocks in parallel, working
in ping-pong mode to allow the pipeline of two consec-
utive C2V messages without conflicts.

2) L(C2V GF (l)) is added to C2V L(l) to generate
SC2V (l). Note thatSC2V is no more sorted in increasing
order.

3) The Sorter reorders serially the values inSC2V in
increasing order. The architecture of thisSorter is
described in section IV-C.

The IGM is used to generate the second setS̄C2V . Each
output valueλ(l)L of the IGM is first added toC2V L(nm)+
O. Then, if λ(l)GF belongs toSC2V (i.e. the flag value at
addressλ(l)GF in the flag memory equals ‘1’), the value is
discarded and a new valueλ(l+1)L is provided by theIGM
component to theMin component.

The Min component serially selects the input with the
minimum LLR value fromSC2V and S̄C2V . Each time it
retrieves a value from a set, it triggers the production of a new
value of this set until all thenm values ofV 2C are generated.

C. The architecture of the Sorter block in the VN

The Sorter block in the VN processor is composed
of ⌈log2(nm)⌉ stages, where⌈x⌉ is the smallest interger
greater than or equal tox (see Figure 4). Theith (i =
1, . . . , ⌈log2(nm)⌉) stage serially receives two sorted lists of
size 2i−1, and provides a sorted list of size2i. The first
received list goes intoFIFO H and the second list goes
into FIFO L . Then, theMin Selectblock compares the first
values of the two FIFOs, pulls the minimum one from the
corresponding FIFO and outputs it. In practice, a stage starts
to output the sorted list as soon as the first element of the
second list is received. The latency of a stage is then2i−1+1
clock cycles, plus one cycle for the pipeline, i.e.2i−1+2 clock
cycles. The size ofFIFO H is double (i.e.2× 2i−1) in order
to allow receiving a new input list while outputting the current
sorted list.

As an example, to order a list ofnm = 16 values, theSorter
consists of4 stages. The first stage receives 16 sequences of
size20 = 1 and outputs 8 sorted lists of size21 = 2 (i.e. the
elements are ordered by couples). The second stage outputs 4
lists of size22 = 4, the third stage outputs 2 lists of size 8
and, finally, the last stage outputs the whole sorted list of size
24 = 16. The global latency of theSorter is then expressed

Fig. 4. Architecture of the Sorter block in the VN processor

as:

Lsorter(nm) =

⌈log
2
(nm)⌉

∑

i=1

(2i−1 + 2) (11)

Note that the sorter is able to process continuously blocks of
size power of two, i.e., fornm = 12, it is able to process a new
block every 16 clock cycles and the latency isLsorter(nm) =
23.

D. Decision circuit architecture

The architecture of the simplified codeword decision circuit
is presented in Figure 5. The optimal decoding is given by:

ĉk = arg min
x∈GF(q)

{C2V k
jk(1)

(x)L+C2V k
jk(2)

(x)L+L(x)} (12)

Since the decision is done during the second branch update,
we can replace in equation (12)C2V k

jk(1)
(x)L + L(x) by

V 2Ck
jk(2)

(x)L (see equation (5)). Thus, we can write:

ĉk = arg min
x∈GF(q)

{V 2Ck
jk(2)

(x)L + C2V k
jk(2)

(x)L} (13)

The processing of this equation is rather complex, since it
requires either an exhaustive search for all values ofx, or a
complex Content Addressable Memory (CAM) to search for
the common GF(q) values in the V2C and C2V messages. At
this point, any method leading to a hardware simplification
without significant performance degradation can be accepted.
In a very pragmatic way, we tried several methods and we
propose to replace, , in equation (13),x ∈ GF(q) by x ∈
{V 2Ck

jk(2)
(m)GF }m=1,2,3 in order to reduce the size of the

CAM from nm to 3.
Let S0 be the set of the common values between the C2V

and V2C messages, indexed bym:

S0 = {{C2V k
jk(2)

(l)}GF
l=1...nm

}∩{{V 2Ck
jk(2)

(m)}GF
l=1,2} (14)

The decided symbol̂ck is defined as:

ĉk = argmin{V 2Ck
jk(2)

(3)L;C2V k
jk(2)

(l)L+V 2Ck
jk(2)

(m)L}
(15)

whereargmin refers to the associated GF(q) value.
Figure 5 presents the architecture of the Decision circuit

and Figure 6 shows performance simulation of the decision
circuit comparing CAM sizes 3 and 12 for 8 and 20 decoding
iterations. Note that reducing the CAM size from 12 to 3
does not introduce any performance loss when considering
20 decoding iterations.

7

Fig. 5. Architecture of the codeword decision circuit

2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45
10

−6

10
−5

10
−4

10
−3

10
−2

Eb/No

F
E

R

CAM size = 12; 20 iter
CAM size = 3; 20 iter
CAM size = 12; 8 iter
CAM size = 3; 8 iter

Fig. 6. Simulation of the decoder performance for differentCAM sizes in
the decision circuit

E. The latency of the VN

The critical path in the VN is the one containing theSorter
block, because this block waits for the arrival of the last
C2V message to start its processing. The latencyLV N is then
determined by the latency of theSorter, i.e. Lsorter, plus a
clock cycle for the adder and another one for theMin block.

LV N = Lsorter(nm) + 2 (16)

V. THE CHECK NODE PROCESSOR

The CN processor receivesdc messagesV 2C
kj(v)
j , performs

its update based on the parity test described in equation (8),
and generatesdc messagesC2V

kj(v)
j to be sent to the corre-

spondingdc VNs. The processing of the received messages is
executed according to the Forward-Backward algorithm [43]
which splits the data processing into 3 layers ofdc− 2 ECNs,
as shown in Figure 7. The main advantage of this architecture
is that it can be easily modified to implement different values
of dc (i.e., to support different code rates).

Each ECN receives two vector messagesU and V , each
one composed ofnm (LLR,GF) couples, and outputs a vector
messageE whose elements are defined by equation (8) [15]
[16]. This equation corresponds to extracting thenm minimum
values of a matrixTΣ, defined asTΣ(i, j) = U(i) + V (j),
for (i, j) ∈ [1, nm]2. In [16], the authors propose the use
of a sorter of sizenm which gives aO(n2

m) computational
complexity and constitutes the bottleneck of the EMS algo-
rithm. In order to reduce this computational complexity, two
simplified algorithms were proposed [29] [30]. In [29] the
Bubble-Check algorithm simplifies the ECN processing by

Fig. 7. Architecture scheme of a forward/backward CN processor withdc =
6. The number of ECNs is3× (dc − 2)

Fig. 8. L-Bubble Check exploration of matrixTΣ. Thenbub = 4 values in
the sorter are initialized with the matrix valuesTΣ(i, 1), for i = 1, . . . , 4,
and only a maximum of4×nm−4 values inTΣ are considered in the ECN
processing.TΣ(i, j) = U(i) + V (j)

exploiting the properties of the matrixTΣ and by considering
a two-dimensional solution of the problem. This results in a
reduction of the size of the sorter, theoretically in the order
of

√
nm. It is also shown in [29] that no performance loss is

introduced when considering a size of the sorter smaller than
the theoretical one.

In [30], the authors suppose that the most reliable symbols
are mainly distributed in the first two rows and two columns
of matrix TΣ and propose to use the so called L-Bubble
Check which presents an interesting performance/complexity
tradeoff for the EMS ECN processing. As depicted in Figure
8, the nbub = 4 values in the sorter are initialized with the
matrix valuesTΣ(i, 1), i = 1, . . . , 4, and only a maximum
of 4 × nm − 4 values in TΣ are considered in the ECN
processing. Simulation results provided in [30] showed that
the complexity reduction introduced by the L-Bubble Check
algorithm does not introduce any significant performance loss.
For this reason, we adopt the L-Bubble Check algorithm for
the implementation of the present NB-LDPC decoder.

A. The L-Bubble ECN Architecture

The L-Bubble ECN architecture is depicted in Figure 9.
The input values are stored in two RAMsU andV to be read
during the ECN processing. At each clock cycle, each RAM

8

Fig. 9. Architecture scheme of the L-Bubble Check,nbub = 4

receives a new (LLR, GF) couple and outputs a couple from
a predetermined address. The LLR values of the couples read
from the RAMs are added and the associated GF symbols are
Xored (added modulo 2) to generate an elementTΣ(i

′, j′)
that feeds the sorter. This sorter is composed of four registers
(B@ind) with @ind ∈ {0, 1, 2, 3} (from left to right), four
multiplexers and oneMin operator that outputs the (LLR, GF)
couple having the minimum LLR value.

The values fetched from the memories are denoted byU(i′)
andV (j′), the valuesU(i′) + V (j′) are namedbubblesand
feed the registers. The bubbles are tagged as follows:@0 :
(1, j), @1 : (2, j), @2 : (i, j), @3 : (i, 1). This addressing
scheme is based on the position of the bubbles in theTΣ

matrix.
The complete ECN operation can be summarized as:

1) ReadU(i′) andV (j′) from memoriesU andV .
2) ComputeTΣ(i

′, j′) = U(i′)+V (j′). This bubble feeds
the sorter to replace the bubble extracted in the preceding
cycle. The corresponding register is thus bypassed.

3) Using theMin operator, determine the minimum bub-
ble in the sorter and its associated index@ind =
argmin{Bi, i = 0, . . . , 3}.

4) From @ind, update the address of theith bubble and
store it for the next cycle. The replacing rule is:

a) if @ind = 0 or 1, then(i′, j′) = (i, j + 1)
b) elsif (@ind = 3 & j = 1) then (i′, j′) = (3, 2)
c) else(i′, j′) = (i+ 1, j′)

This architecture garanties the generation of the ordered list
UL(i) + V L(j). However, redundant associated GF symbols
may appear, which are deleted at the output of the ECN [16].
In order to compensate this redundancy,nop operations are
performed in the ECN. Simulation results showed that the best
performance/complexity trade-off is obtained fornop = nm+
1.

The critical path of the CN processor is then imposed by
the ECN computation composed of RAM access, an adder,

two serial comparators and an index update operation.

B. Multiplication and division in GF(q)

As described in section II, the messages crossing the edges
between VNs and CNs are multiplied by predetermined GF(q)
coefficientshj,k = αaj,k when entering the CN and divided
by the same coefficients (i.e. multiplied byh−1

j,k = αq−1−aj,k)
when leaving the CN towards the VN. In order to per-
form these multiplications in GF(q), we have designed two
wired multipliers dedicated to perform the multiplicationover
GF (26). Each multiplier implemented on Virtex IV consumes
14 slices and operates at 900 MHz. The operands of the
multiplier are theV 2CGF (respectively, theC2V GF) and the
predefined coefficients stored in Read Only Memory (ROM)
calledROMmul (respectivelyROMdiv). Each ROM contains
a M × 6m binary matrix, where each entry contains the six
GF(q) coefficients.

C. Timing Specifications

This section describes the timing and scheduling details of
the CN processor in the NB-LDPC EMS decoder. We first
consider the scheduling at the ECN level and then at the
CN processor, which is composed of three layers of serially
concatenated ECNs.

1) ECN timing specifications:Figure 10 depicts the oper-
ations executed in the ECN at each Clock Cycle (CC). In this
Figure, WM stands for Write Memory, RM for Read Memory,
Ind upd for Index Update and NV for Non Valid output. The
input data is represented byD and corresponds to two (LLR,
GF) incoming couples. Finally,E represents the output (LLR,
GF) couple.

The Sorter is represented by a vertical rectangle where a
blank case represents an empty register and a dark one a filled
one. At CC0, the vectorsU andV receive their first inputs to
be stored in the RAMs at CC1. At CC2, the stored messages
are read, fed to the adder and then to the sorter. As shown in
Figure 10, the first register is filled (dark case) with the adder
output and this (LLR, GF) couple directly goes to the output
(E1) as it corresponds to the minimum LLR value6.

The latency of the ECN is 2 cycles. During the next three
CCs, the ECN receives three new data couples and outputs
three NV outputs. This 3-CC latency is denoted as Sorter
Filling Latency (SFL). After the SFL, at CC4, the four registers
in the sorter are filled and the second valid data couple is
output.

The number of cycles needed to generatenm valid outputs
is thennm+3. However, due to the redundant GF(q) symbols
that may appear when adding two input messages inU and
V , some extra cycles are allowed in order to guarantee the
generation ofnm different GF(q) symbols. To be specific, we
considernop = nm + 1, as detailed in section III-B2.

2) CN timing specifications:The Forward-Backward im-
plementation of the CN processor consists of three layers of
dc−2 serially concatenated ECNs (see Figure 7). Let ECNeLl

denote theeth ECN of layer l, where the numeration is

6Let us recall that vectorsU andV are sorted in increasing order.

9

Fig. 10. ECN execution in the first CCs.D (resp.E) represents the input
(resp. output) data corresponding to a (LLR, GF) couple;nbub = 4

Fig. 11. Global CN execution

considered from left to right and top to bottom. The execution
progress for each CC is depicted in Figure 11. The inputs
U0(0) andU1(0) (resp.U4(0) andU5(0)) feed ECN1L1

(resp.
ECN4L1

). Note that only these two ECNs have both inputs
directly connected to the RAMs. All the other ECNs have at
least one input generated by an adjacent ECN. Because of the
latency contraints of the ECN, ECN1L1

and ECN4L2
provide

their first output at CC2. These outputs activate ECN2L1
and

ECN3L2
, that deliver their first output at CC4.

Note that each ECN is in SFL after the generation of its
first output. This means that at each of the following three
CCs, an NV output is delivered. Four different states are then
possible for an ECN:

State 1: Non active.
State 2: Generating first output. The sorter is not
filled.
State 3: Generating a NV output. The sorter is not
completely filled yet.
State 4: Generating a valid output and the sorter
is filled. At this state, all the generated outputs are
valid.

The global CN execution is represented in Figure 11. At

each CC, the state of each ECN in the Forward/Backward
architecture is indicated. For example, at CC0, no ECN is
active (State 1). As the ECN latency for the first valid output
is 2 CCs, ECN1L1

and ECN4L2
are in State 2 at CC2; ECN2L1

and ECN3L2
are in State 2 at CC4; at CC6, ECN3L1

, ECN2L2
,

ECN2L3
and ECN3L3

are in State 2; finally, at CC8, ECN1L3

and ECN4L3
are in State 2, as well as ECN1L2

and ECN4L1
.

From CC12, all the outputs are valid, as all the ECNs are in
State 4.

The decoding process of the whole CN is constrained by
ECN1L3

and ECN4L3
. For these ECN, the latency to output

the first value is2(dc − 2). The SFL then follows (i.e. 3 CCs)
and during the nextnop − 1 CCs, the rest of the message is
output. The latencyLCN of the CN is then given by:

LCN = 2× (dc − 2) + 3 + nop − nm (17)

VI. PERFORMANCE AND COMPLEXITY

A. Decoding throughput

We consider a GF order ofq = 64 for the implementation of
the NB-LDPC decoder. The following code lengths and rates
are chosen for the decoder synthesis:

• N = 192 symbols,R = 2/3, dc = 6
• N = 48 symbols,R = 1/2, dc = 4
• N = 72 symbols,R = 1/2, dc = 4

The decoding throughput of the architecture (in bits per
second) is

D =
N ×R×m

Ldec

× Fclock

whereLdec is the number of cycles to decode a frame (see
equation (10)) andFclock is the clock frequency. For example,
for N = 192 symbols,R = 2/3 anddc = 6 with nm = 12,
nop = 13, m = 6 and dc = 6, the latency values for the
CN and VN processing areLCN = 12 andLV N = 25 clock
cycles. The delay is∆ = 31 clock cycles, which constitutes
a maximum decoding latency ofLdec = nit ×M × 31 + 37
clock cycles to decode a frame andD = 2.95 Mbps. Note
that D is the maximum decoding throughput assuming that
there is a ping-pong input and output RAM to avoid idle times
between the input loading of a new codeword and the output
of a decoded one.

The serial architecture has been synthetized on a Xilinx
Virtex4 XC4VLX200 FPGA. Table II presents the synthesis
results7 for three different frame lengths and code rates con-
sidering 8 decoding iterations and 6-bit quantization for input
data (intrinsic LLR) as well as for the check-to-variable and
variable-to-check messages. The proposed architeture canbe
easily adapted for any quasi-cyclic ultra-sparse (i.e.,dv = 2)
GF(q)-LDPC code.

B. Emulation results

To obtain performance curves in record time we have
implemented the complete digital communication chain on
an FPGA device. For this, the hardware description of the

7these synthesis results do not include the ping-pong input and output RAM

10

TABLE II
POST-SYNTHESIS RESULTS OF THE SERIAL DECODER ARCHITECTURE FOR

DIFFERENT CODE LENGTHS AND RATES ON THEX ILINX V IRTEX 4 FPGA

N = 48,R = 1/2 N = 72,R = 1/2 N = 192,R = 2/3
Slices 8727 (9%) 9277 (10%) 18758 (10%)
Slices Flip Flops 6330 6530 11712
Slices LUT 15906 (8%) 16894 (9%) 34846 (19%)
FIFO16/RAMB16s 4 (1%) 4 (1%) 6 (1%)
Maximum
frequency (MHz)

64.15 62.53 61.33

Throughput
(Mbps)

1.77 1.73 2.95

TABLE III
POST-SYNTHESIS AREA RESULTS FOR THE ENTIRE DIGITAL

COMMUNICATION CHAIN IN THE HARDWARE EMULATOR PLATFORM

Resources Slice Registers Slice LUTS
Virtex5 FX70T 44800 (100%) 44800 (100%)
PowerPC 440
Virtex-5

2 (0%) 3 (0%)

PowerPC 440
DDR2 Memory
Controller

2300 (5%) 1755 (4%)

LDPC-IP 8615 (19%) 14134 (32%)

different parts of the digital communication chain is required,
namely the source, the encoder, the channel and the decoder.
The source generates random bits that are encoded, BPSK
modulated, affected by a an Additive White Gaussian Noise
(AWGN), then demodulated and decoded. To emulate the
effect of AWGN in the baseband channel, we consider the
Hardware Discrete Channel Emulator as in [46]. We use
the Xilinx ML507 FPGA DevKit which contains a Virtex5.
The PowerPC processor is available as hardcore IP in the
FPGA and can be used for software development. For practical
purposes, we developped a Human Machine Interface (HMI)
for the control of the emulation chain and the generation of
performance curves. This HMI consists of a web server/FTP
and its main advantage is being multiplatform, i.e. all the
control can be done through a web server. More details about
the emulator platform can be found in [47].

Table III summarises the post-synthesis area results. LDPC-
IP stands for the digital communication chain including the
NB-LDPC decoder. The PowerPC is mainly implemented
as hardcore IP, which explains that its cells requirement is
negligible. The digital chain is a multi-cadenced system, where
the LDPC-IP block is cadenced at a frequency of 50 MHz8.

We compared emulation and software throughputs for differ-
ent scenarios (i.e. different code rates and frame lengths). The
speedup factor between software simulation9 and hardware
emulation was greater than 100 for all cases. The performance
results obtained with the hardware emulator platform were
compared to the EMS and BP simulation results. The number
of iterations for the BP was fixed to 100. Figure 12 considers
a frame length ofN = 192 symbols and a code rateR = 2/3.

8Note that the maximum frequency of the LDPC-IP block is of 65MHz.
However, we select a frequency of 50 MHz because it is faster for design
tools to find a place-and-route solution for a system with lower frequency
constraints

9performed on an Intel Bi-Quad8× 2 GHz processor with 24 Go RAM
and 6144 Mo Cache

1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

FE
R

SW simulation 8 iter
HW emulation 8 iter
HW emulation 20 iter
BP floating point

Fig. 12. Performance curves obtained with software simulation and hardware
emulation for a GF(64)-LPDC code;N = 192 symbols,R = 2/3. The number
of iterations for the BP is fixed to 100.

0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

FE
R

SW simulation
HW emulation
BP floating point

Fig. 13. Performance curves obtained with software simulation and hardware
emulation for a GF(64)-LPDC code;N = 48 symbols,R = 1/2. The number
of iterations for the BP is fixed to 100.

0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Eb/No

FE
R

SW simulation
HW emulation
BP floating point

Fig. 14. Performance curves obtained with software simulation and hardware
emulation for a GF(64)-LPDC code;N = 72 symbols,R = 1/2. The number
of iterations for the BP is fixed to 100.

11

TABLE IV
SYNTHESIS COMPARISON OF STATE-OF-THE-ART NB-LDPCDECODERS.

COMPARISON WITH [28] IS DISCUSSED IN THE TEXT.

Parameters [23] [26] [27] Our work
q 8 32 32 64

Target
FPGA
Virtex2P

FPGA
Virtex2P

–
FPGA Vir-
tex4

Serial/parallel Serial 31-parallel 31-parallel Serial
Throughput
(Mbps)

1 9.3 10 2.95

Algorithm Mix Domain Min-Max
Min-Max (op-
timized CNU)

EMS

Word length 8 5 5 6
Approx. Area
(normalized)

1 10 4.6 4

Speed/area 1 1.08 2.17 0.74
Max.
Frequency
(MHz)

99.7 106.2 150 61.3

nit 10-20 15 15 8

The curves show the good agreement between simulation and
emulation results. Also, a gain of about 0.5 dB can be obtained
when increasing the number of iterations from 8 to 20. The
emulation results show that no error floor appears (up to a
FER of 10−7). Note that the performance of the implemented
decoder is at less than 0.5 dB of the BP performance.

Figure 13 and Figure 14 considerR = 1/2 with N = 48 and
N = 72 symbols, respectively. They both confirm the good
agreement between emulation and simulation, and show that
the performance of the implemented decoder is at less than
0.7 dB of the BP performance. The decoder generalization for
different frame lengths and code rates is also validated.

C. Comparison with other NB-LDPC decoder implementa-
tions

Table IV summarizes the comparison of the synthesis results
presented in [23] [26] [27] and our approach. Note that the GF
order (q) and the decoding algorithm is not the same for each
implementation, so the comparison is quite approximative but
allows us to place our work in the state-of-the-art of NB-LDPC
decoder implementations. In a general way, as we considerq =
64, complexity increase and significant performance gain are
expected compared to [23], whereq = 8, and [26] [27], where
q = 32. The best speed-over-area ratio is presented by the
31-parallel ASIC implementation in [27], where the authors
propose a trellis-Min-max algorithm for the CN processing.
However, a performance loss of about 0.1 dB is to be expected,
compared tonm = 16-EMS decoding10.

The serial implementation in [23] considersq = 8 and
results in a 1-Mbps throughput and a synthesis on a Virtex2P
device that consumes 4660 slices. This area is considered
as a reference for the normalized area comparison in Table
IV. Considering BP decoding, the GF(64) decoder would
lead to an increase of complexity fromq2[23] = 82 = 64 to
q2[our work] = 642 = 4096 (i.e. a factor of 64). However, as
we consider the EMS algorithm (withnm = 12) the area is
increased by only a factor 4 for the serial GF(64) decoder and
the performance is at less than 0.5 dB of the BP performance
for N = 192.

10Note that the authors in [27] considernm = q/2, and clasicallynm <<
q in the EMS.

Note that the speed/area parameter is around 1 for [23][26]
and 0.74 for our design. As [23] and [26] consider GF
orders of 8 and 32, respectively, while our work considers
q = 64, this comparison shows the interest of our work
in terms of performance/area/throughput trade-off. Moreover,
the reduced area required for serial architecture suggeststhat
more complex semi-parallel architecture can be implemented,
increasing the throughput of the decoding algorithm. Also,
some effort should be dedicated to increase the maximum
frequency of the design, knowing that the critical path is at
the ECN.

While revising our paper, the work of [28] was published.
There are many similarities between this work and ours: [28]
uses the Bubble Check algorithm with the forward-backward
implementation and both papers use a reduced-complexity VN
processor. However, there are many significant differences: 1)
in [28], the CN architecture is based on the Bubble-Check
algorithm while our CN architecture is based on the more
efficient and simplified algorithm called L-Bubble Check;
2) [28] proposes an interesting pre-fetching technique that
permits to reduce the critical path of the Bubble Check; 3)
the VN architecture in [28] is characterised by the use of the
first LS−V N values of the Intrinsic message (LS−VN ≤ nm)
for both computation of V2C messages and decision making.
However, in our work, the VN architecture uses all the 64
intrinsic values for the computation of the V2C message and
only the first 3 values for the decision making. In terms of
complexity, similar results are obtained for a rate-1/2 NB-
LDPC decoder11. The (960,480) NB-LDPC decoder imple-
mented in [28] consumes 12444 slice registers, 15099 slice
LUTs and operates at 100 MHz with a decoding throughput of
2.44 Mbit/s. A performance degradation of 0.5 dB is obtained
compared to the BP algorithm at a FER of10−4, nm = 12
andnit = 10. In our implementation, the (72,36) NB-LDPC12

consumes 6530 slice registers, 15906 slice LUTs and operates
at 62 MHz with a decoding throughput of 1.73 Mbit/s. The
same performance degradation of 0.5 dB is obtained with
nm = 12 andnit = 8.

D. Toward decoding of NB-LDPC of high field order

Table V summarizes complexity of the main components
as a fonction ofm in the proposed architecture. Note that the
Flag memory is the only component that has a size scaling
with q = 2m. As mentioned in section IV-B, thisFlag memory
allows to determine if a given intrisic messageλ(l)GF belongs
to the receivedC2V GF messages (refer to section IV-B).
This task can also be done using an associated memory of
nm words of sizem. If we do so, all the elements in the
architecture scale withm, i.e., log2(q), except for the GF
multiplier that scales inm2 but represents a small part of the
overall decoder. In other words, doubling the size of the field
order would only have a small impact on the architectural cost.
Thus, the use of CAM for theFlag memories opens the way
to efficient decoding of high-order NB-LDPC codes, such as
GF(256) or even higher.

11The implementation of a rate-2/3 decoder is not considered in [28]
12Note that the size of the codeword does not have any impact on the

processing hardware but only on the memory size

12

TABLE V
COMPLEXITY AND PROCESSING TIME OF THE MAIN COMPONENTS AS A

FONCTION OFm

Component Complexity Number of clock cycles
IGM (Variable Node) m PE (see [32]) m

∆ m

eLLR (in VN) m 1
flag (in VN) q = 2m 1
U, V memories (in CN) word of sizenb + m 1
GF multiplier m2 1
RAM y N

dc
× m words 1

RAM V2C word size ofnb + m 1

VII. C ONCLUSION

This paper is dedicated to the architecture design of a
GF(64) NB-LDPC decoder based on a simplified version of
the EMS algorithm. Particular attention was given to NB
LLR generation, VN update, codeword decision and reduced-
complexity CN processing. For a frame length of 192 symbols,
the FPGA-based decoder implementation consumes 19 Kslices
on a Virtex 4 device and operates at 2.95 Mbps for 8
decoding iterations. The implementation is also generalized
for other code rates and lengths and, in all cases, the hardware
performance is at less than 0.7 dB of the BP decoding
performance. The integration of the decoder in a hardware
emulator platform provided emulation results showing that
no error floor appears up to a FER of10−7. A general
comparison of our synthesis results with the existing works
shows the interesting performance/area/throughput trade-off of
our design. Moreover, as highlighted in the previous section,
replacing theFlag memory in the VN by a CAM of sizenm,
makes that the architecture complexity scales innm×m, (with
q = 2m). In other words, decoding very high-order field NB-
LDPC codes, such as GF(256) or even GF(4096), is feasible
with the proposed architecture.

From this work we can draw important conclusions about
the implementation of EMS-like algorithms for NB-LDPC.
First, the design of the VN is as complex as the design of
the CN, even if most of the papers in the literature focus on
the CN implementation which is considered as the bottleneck
of the decoder. Note that the high complexity of the VN is due
to the use of ordinate lists to represent the messages, which
constitutes a high overhead cost. Second, many computations
in the CN are useless: among thedc × nm inputs, less than
3× nm are used in the output. Thanks to this point, it should
be possible to decrease the number of computations in the
CN to generate an output. To conclude, efficient decoding of
NB-LDPC is still an open field. Other techniques should be
invented to represent messages and/or to process parity-checks
and variable updates.

ACKNOWLEDGMENT

This work is supported by INFSCO-ICT-216203 DAVINCI
“Design And Versatile Implementation of Non-binary wireless
Communications based on Innovative LDPC Code” (www.ict-
davinci-codes.eu) funded by the European Commission under
the Seventh Framework Program (FP7). The work has been
done using also resources of the CPER PALMYRE II, with

FEDER and the Brittany region fundings. The authors would
also like to thank Dr. Yvan Eustache for synthesis and emu-
lation results.

REFERENCES

[1] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),”IEEE Communications Letters, vol. 2, no. 6, pp. 159–166,
June 1998.

[2] S. Pfletschinger, A. Mourad, E. Lopez, D. Declercq, and G.Bacci, “Per-
formance evaluation of non-binary LDPC codes on wireless channels,”
in Proceedings of ICT Mobile Summit. Santander, Spain, June 2009.

[3] D. Sridhara and T. Fuja, “Low density parity check codes defined over
groupes and rings,” inProc. Inf. Theory Workshop, Oct. 2002.

[4] D. Declercq, M. Colas, and G. Gelle, “Regular GF(2q)-LDPC coded
modulations for higher order QAM-AWGN channel,” inProc. ISITA.
Parma, Italy, Oct. 2004.

[5] X. Jiand, Y. Yan, X. Xia, and M. Lee, “Application of non-binary
LDPC codes based on euclidean geometries to MIMO systems,” in
Int. Conference on wireless communications and signal processing,
WCSP’09. Nanjing, China, Nov. 2009, pp. 1–5.

[6] F. Guo and L. Hanzo, “Low-complexity non-binary LDPC andmodula-
tion schemes communicatins over MIMO channels,” inIEEE Vehicular
Technology Conference (VTC’2004). Los Angeles, USA, Sept. 2004.

[7] J. Chen, L. Wang, and Y. Li, “Performance comparison between non-
binary LDPC codes and Reed-Solomon codes over noise burst channels,”
in IEEE Int. Conf. on Comm., Circuits and Systems (ICCCAS’2005).
Hong Kong, China, May 2005.

[8] P. S. A. Marinoni and S. Valle, “Efficient design of non-binary LDPC
codes for magnetic recording channels, robust to error bursts,” in IEEE
Int. Symp. on Turbo Codes and Related Topics. Laussane, Switzerland,
Sept. 2008.

[9] W. Chen, C. Poulliat, D. Declercq, L. Conde-Canencia, A.Al-
Ghouwayel, and E. Boutillon, “Non-binary LDPC codes definedover
general linear group: Finite length design and practical implementation
issues,” in IEEE 69th Vehicular Technology Conference: VTC2009-
Spring. Barcelona, Spain, April 2009.

[10] L. Sassatelli and D. Declercq, “Non-binary hybrid LDPCcodes -
structure, decoding and optimisation,” inIEEE Inf. Theory Workshop
(ITW’2006). Chengdu, China, Oct. 2006.

[11] B. Shams, D. Declercq, and V. Y. Heinrich, “Non-binary split LDPC
codes defined over finite groups,” inProc. of IEEE ISWCS’2009. Siena-
Tuscany, Italy, Sept. 2009.

[12] D. J. C. MacKay and M. Davey, “Evaluation of Gallager codes for short
block length and high rate applications,” inProc. IMA Workshop Codes,
Syst., Graphical Models, 1999.

[13] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(2q),” in Proc. Inf. Theory Workshop. Paris, France, Mars 2003, pp.
70–73.

[14] H. Song and J. R. Cruz, “Reduced-complexity decoding ofq-ary LDPC
codes for magnetic recording,”IEEE Trans. Magn., vol. 39, pp. 1081–
1087, Mars 2003.

[15] D. Declercq and M. Fossorier, “Decoding algorithms fornonbinary
LDPC codes over GF(q),”IEEE Trans. Comm., vol. 55, no. 4, pp. 633–
643, April 2007.

[16] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low
complexity, low memory EMS algorithm for non-binary LDPC codes,”
in IEEE Intern. Conf. on Commun., ICC’2007. Glasgow, England, June
2007.

[17] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation
of min-sum algorithm and its modifications for decoding LDPCcodes,”
IEEE Trans. Commun., vol. 53, no. 4, pp. 549–554, April 2005.

[18] M. Fossorier, M. Mihaljevi, and H. Imai, “Reduced complexity iterative
decoding of LDPC codes based on belief propagation,”IEEE Trans.
Commun., vol. 47, p. 673, May 1999.

[19] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum product algorithm,”IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[20] L. Conde-Canencia, A. Al-Ghouwayel, and E. Boutillon,“Complexity
comparison of non-binary LDPC decoders,” inProceedings of ICT
Mobile Summit. Santander, Spain, June 2009.

[21] V. Savin, “Min-max decoding for non binary LDPC codes,”in Proc.
IEEE Int. Symp. Information Theory, ISIT’2008. Toronto, Canada, July
2008.

13

[22] C. Spagnol, W. Marnane, and E. Popovici, “FPGA implementations of
LDPC over GF(2m) decoders,” inIEEE Workshop on Signal Processing
Systems. Shanghai, China, Oct. 2007, pp. 273–278.

[23] C. Spagnol, E. Popovici, and W. Marnane, “Hardware implementation of
GF(2m) LDPC decoders,”IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 56, no. 12, pp. 2609–2620, Dec. 2009.

[24] T. Lehnigk-Emden and N. Wehn, “Complexity evaluation of non-binary
Galois field LDPC code decoders,” inInt. Symp. on Turbo Codes,
vol. 56. Brest, France, Sept. 2010, pp. 63–67.

[25] J. Lin, J. Sha, and Z. Wang, “Efficient decoder desing fornonbinary
quasicyclic LDPC codes,”IEEE Trans. Circuits Syst. II, Exp. Briefs, pp.
273–278, Jan. 2010.

[26] Z. Xinmiao and C. Fang, “Efficient partial-parallel decoder architecture
for quasi-cyclic nonbinary LDPC codes,”IEEE Trans. CAS-I, vol. 58,
no. 2, pp. 402–414, February 2011.

[27] ——, “Reduced-complexity decoder architecture for non-binary LDPC
codes,”IEEE Trans. VLSI, vol. 19, no. 7, pp. 1229–1238, July 2011.

[28] Y. Tao, Y. Park, and Z. Zhang, “High-throughput architecture and
implementation of regular (2,dc) nonbinary LDPC decoders,” inIEEE
Int. Symp. Circuits and Systems (ISCAS). Seoul, Korea, May 2012, pp.
2625–2628.

[29] E. Boutillon and L. Conde-Canencia, “Bubble-check: a simplified al-
gorithm for elementary check node processing in extended min-sum
non-binary LDPC decoders,”Electronics Letters, vol. 46, pp. 633–634,
April 2010.

[30] ——, “Simplified check node processing in nonbinary LDPCdecoders,”
in Int. Symposium on Turbo Codes and Iterative Information Processing.
Brest, France, Sept. 2010, pp. 201–205.

[31] A. Valembois and M. Fossorier, “An improved method to compute lists
of binary vectors that optimize a given weight function withapplication
to soft-decision decoding,”IEEE Trans. Commun., vol. 5, no. 11, pp.
456–458, Nov. 2001.

[32] A. Al Ghouwayel and E. Boutillon, “A systolic LLR generation archi-
tecture for non-binary LDPC decoders,”Communications Letters, IEEE,
vol. 15, no. 8, pp. 851 –853, Aug. 2011.

[33] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-
LDPC codes over GF(q) using their binary images,”IEEE Trans.
Commun., vol. 56, no. 10, pp. 1626–1635, Oct. 2008.

[34] X.-Y. Hu and E. Eleftheriou, “Binary representation ofcycle Tanner
graph GF(2b) codes,” inIEEE Int. Conf. Commun. ICC’2004. Paris,
France, June 2004.

[35] L. Zeng, L. Lan, Y. Tai, S. Song, S. Lin, and K. Abdel-Ghaffar,
“Transactions papers - constructions of nonbinary quasi-cyclic ldpc
codes: A finite field approach,”Communications, IEEE Transactions
on, vol. 56, no. 4, pp. 545 –554, april 2008.

[36] R. Peng and R. Chen, “Design of nonbinary quasi-cyclic LDPC cycle
codes,” inInformation Theory Workshop. Tahoe City, USA, Sept. 2007,
pp. 13–18.

[37] D. Declercq, C. Poulliat, and E. Boutillon, “Report on robust and
hardware compliant design of non-binary protographs,”DAVINCI De-
liverable 4.5, avalaible at http://www.ict-davinci-codes.eu, 2009.

[38] A. Venkiah, D. Declercq, and C. Poulliat, “Design of cages with a
randomized progressive edge growth algorithm,”IEEE Commun. Letters,
vol. 12(4), pp. 301–303, April 2008.

[39] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation of
Min-Sum algorithm and its modifications for decoding LDPC codes,”
IEEE Trans. Commun., vol. 53, no. 4, pp. 549–554, April 2005.

[40] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of LDPC codes based on belief propagation,”IEEE Trans.
Commun., vol. 47, no. 5, pp. 673–680, May 1999.

[41] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans-
actions on Communications, vol. 23, no. 2, pp. 209–213, June 2005.

[42] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, no. 6, pp. 976 –996, Dec. 2003.

[43] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decod-
ing of LDPC codes over GF(q),” inIEEE Intern. Conf. on Commun.,
ICC’2004. Paris, France, June 2004, pp. 772–776.

[44] M. Desmet and A. Dewilde, “Wireless demonstrator description and
test,” in INFSCO-ICT-216203 DAVINCI D3.3.2. avalaible at www.ict-
davinci-codes.eu/project/deliverables/D332.pdf, June2010, pp. 1–24.

[45] C. Chavet and P. Coussy, “A memory mapping approach for parallel
interleaver design with multiple read and write accesses,”in Proc. of
IEEE ISCAS’2010. Paris, France, June 2010, pp. 3168–3171.

[46] E. Boutillon, Y. Tang, C. Marchand, and P. Bomel, “Hardware discrete
channel emulator,” inInt. Conf. on High Performance Computing and
Simulation (HPCS 2010). Caen, France, June 2010, pp. 452–458.

[47] E. Boutillon, Y. Eustache, P. Bomel, A. Haroune, and L. Conde-
Canencia, “Performance measurement of DAVINCI code by emulation,”
in INFSCO-ICT-216203 DAVINCI D6.2.3. avalaible at www.ict-davinci-
codes.eu/project/deliverables/D623.pdf, July 2011, pp.1–47.

