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Graphfool: Targeted Label Adversarial Attack on
Graph Embedding

Jinyin Chen, Xiang Lin, Dunjie Zhang, Wenrong Jiang, Guohan Huang, Hui Xiong, and Yun Xiang

Abstract—Deep learning is effective in graph analysis. It is widely applied in many related areas, such as link prediction, node
classification, community detection, and graph classification etc. Graph embedding, which learns low-dimensional representations for
vertices or edges in the graph, usually employs deep models to derive the embedding vector. However, these models are vulnerable.
We envision that graph embedding methods based on deep models can be easily attacked using adversarial examples. Thus, in this
paper, we propose Graphfool, a novel targeted label adversarial attack on graph embedding. It can generate adversarial graph to attack
graph embedding methods via classifying boundary and gradient information in graph convolutional network (GCN). Specifically, we
perform the following steps: 1),We first estimate the classification boundaries of different classes. 2), We calculate the minimal
perturbation matrix to misclassify the attacked vertex according to the target classification boundary. 3), We modify the adjacency
matrix according to the maximal absolute value of the disturbance matrix. This process is implemented iteratively. To the best of our
knowledge, this is the first targeted label attack technique. The experiments on real-world graph networks demonstrate that Graphfool
can derive better performance than state-of-art techniques. Compared with the second best algorithm, Graphfool can achieve an
average improvement of 11.44% in attack success rate.

Index Terms—Graph embedding, targeted label attack, node classification, deep learning
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1 INTRODUCTION

G RAPH networks are applied in many real-world scenarios,
such as social networks [1], traffic networks [2], communi-

cation networks [3], and biological networks [4], etc. The graph
embedding, which can learn low-dimensional representations for
vertices and edges, provides an effective and efficient way to
analyze graphs [5]. It is used in many real-world applications,
such as link prediction [6], [7], node classification [8], [9], and
community detection [10], [11]. By converting a graph into a set
of low-dimensional vectors, downstream graph analysis can be
more efficient.

Generally, existing graph embedding techniques transform the
graph into a similarity graph and calculate its eigenvectors, e.g.,
IsoMAP [12], Laplacian eigenmap [13], and local linear embed-
ding [14], etc. As the recent development of machine learning,
researchers try to apply the deep learning methods to graph em-
bedding [15]. Graph neural network (GNN) is a semi-supervised
graph embedding method It utilizes vertex attributes labels to train
the model parameters [16], which extends the existing neural
network methods into the graph domain [17]. Recently, many
GNN models with excellent performance are proposed, such as
GCN [18], GAE [19], and GN [20].

Deep learning techniques are already widely used in security
areas, especially in computer vision [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31] are catching our attention recently.
Adversarial attacks are triggered by carefully crafted adversarial
perturbation added to the original image to fool a convolutional
neural network (CNN) model [32]. Similarly, in the network
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area, people care about personal privacy protection against graph
analysis [33]. To protect personal privacy against excessive graph
mining, individuals require the technique to actively manage their
connections and hence, fool the graph analysis tools.

Inspired by adversarial attack in computer vision area [21], we
propose a novel attack method, Graphfool, on graph embedding.
Compared to the existing attack methods, Graphfool can achieve
targeted label attack. In essence, we reverse the classification
boundary-based optimization procedure of graph convolution net-
work (GCN) model and treat the adjacency matrix as the learning
hyperparameters. Our main contributions are summarized as fol-
lows:

• To the best of our knowledge, this is the first work tar-
geting label adversarial attack on graph embedding. We
propose a novel attack method, Graphfool, to invalidate graph
embedding algorithms, such as GCN [18], DeepWalk [6],
Node2vec [34], and GraphGAN [35]. The experimental re-
sults show Graphfool can trick the well-trained deep model
with less average number of modified edges(AME) and better
attack success rate(ASR).

• Unlike the existing graph embedding attack methods, Graph-
fool can construct targeted label attack by modifying certain
edges of the original graph. Therefore, the attacked vertex
can be misclassified as any specific class.

• Regarding the concealment of Graphfool attack and the
processing power of local network, we propose disturbance-
limited attack. It controls the perturbation of adjacency matrix
to be close to the attacked vertex. Meanwhile, disturbance-
limited attack can also reduce the complexity of Graphfool.

The rest of paper is organized as follows. Sec. 2 introduces
existing graph attack methods. Sec. 3 discusses the basic theories
and techniques of GCN. Sec. 4 describes in detail the Graphfool
technique. Sec. 5 evaluates our Graphfool method on several real-
world data sets. Sec. 6 concludes this paper and describes the
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future works.

2 RELATED WORK
The related work can be generalized into two categories, graph
embedding methods and graph attack methods, respectively.

2.1 Graph embedding methods

Recently, studies are focused on embedding graph into a low-
dimensional vector space based on word2vec model [36]. They
are called shallow graph embedding, such as DeepWalk [6],
Node2vec [34], LINE [37], and GraRep [38], etc. DeepWalk [6]
is the first model to learn language from a graph, which uses
random walk to sample a sequence for each vertex and treats these
generated sequences as sentences using the skip-gram mechanism.
Tang et al. propose a novel graph embedding method LINE [37],
which is a special case of DeepWalk with the window size of
contexts set to one. Inspired by DeepWalk, Grover et al. propose
an extension of DeepWalk, called Node2vec [34]. Node2vec em-
ploys a biased second-order random walk model to provide more
flexibility for generating the context vertices. Cao et al. propose
an embedding method called GraRep [38], which can preserve
the node proximities by constructing different k-step probability
transition matrices.

In recent years, many deep embedding methods are proposed,
which are generally based on deep learning models, such as convo-
lutional neural network (CNN) [39], [40] and generative adversar-
ial networks model (GAN) [41]. Kipf et al. propose GCN [18] for
semi-supervised node classification, which scales linearly in the
number of graph vertices and learns hidden layer representations
by encoding both local graph structure and features of vertices.
Similarly, Pham et al. propose column network (CLN), which is
a deep learning model for collective classification [42]. Compared
with GCN, this model emphasises on relation learning, which
can process multi-relational data. Monti et al. propose a unified
framework MoNet [43], which extends the convolution operation
to non-Euclidean domains. To strengthen the extraction of critical
information, Wang et al. propose non-local neural network [44],
which has the ability to capture more detailed information of graph
structure. Wang et al. propose GraphGAN [35], which combines
two classes of graph representation learning techniques.

2.2 Graph attack methods

Adversarial attacks on graph have a wide range of applications. In
community detection, Nagaraja propose the first community de-
ception method [45]. Waniek et al. propose disconnect internally,
connect externally (DICE) [46], which ensconces community by
randomly deleting edges between members and adding edges
between members and non-members. Fionda et al. propose a
novel community deception method based on the safeness [47].
In link prediction, Waniek et al. propose two strategies called
closed-triad-removal and open-triad-creation [48], which solve the
privacy problem caused by link prediction methods. Zhou et al.
propose a method to attack local similarity and global similarity by
deleting edges [49]. Fard et al. introduce a subgraph perturbation
method to randomize the destination of an edge within subgraphs
to protect sensitive edges [50]. They later propose a neighborhood
randomization mechanism to probabilistically randomize the des-
tination of an edge within a local neighborhood [33].

Similar to the adversarial attack in computer vision area, many
graph attack techniques are proposed. Dai et al. demonstrate that
GNNs are vulnerable by challenging a few edges. They propose
reinforcement learning-based method [51] to attack graph embed-
ding methods. Zügner et al. propose NETTACK, which is an ad-
versarial attack on graph [52]. It generates adversarial graph based
on GCN iteratively. Dai et al. propose RL-S2V [51]. It can learn to
modify the graph structure with the prediction feedback from the
target classifier. The modification is implemented by sequentially
adding or dropping edges from the graph. Chen et al. propose
FGA [53] and IGA [54]. FGA extracts the gradient of pairwise
vertices based on the adversarial graph, and then selects the pair of
vertices with maximum absolute edge gradient to realize the attack
and update the adversarial graph. IGA is designed to mislead the
link prediction methods. This method generates adversarial graphs
to the target edge. Wang et al. propose Greedy-GAN [55], which
inserts some fake vertices with corresponding fake features into
the graph. The attacker is a greedy algorithm, which can generate
adjacency and feature matrices of fake vertices. Sun et al. propose
Opt-attack [56], which is based on projected gradient descent
and attacks unsupervised vertex embedding algorithms, such as
DeepWalk and LINE.

3 PRELIMINARIES

First, we define notations which are used throughout the paper. A
graph can be represented by G = (V,E), where V is the vertex
set with |V | = n and E is the edge set. The definition of symbols
are listed in the TABLE 1.

TABLE 1: The definitions of symbols.

Symbol Definition
G = (V,E) input original network with nodes V and edges E

Ḡ = (V, Ē,M) disturbance network with vertices V ,edges Ē and weight M
G̃ = (V, Ẽ) the adjacency matrix of original network G

Ā the adjacency matrix added self-connections
N the number of vertices of network G
IN identity matrix
Z the output of the GCN model
σ Relu active function
Wi the weight matrices of GCN model
X the feature matrix of all vertices
C the number of feature dimensions for each vertex
H the number of feature maps for hidden layer
F the number of class for vertices in the network
L the loss function of the GCN model
VL the set of vertices with labels
Y the real label confidence list
η learning rate
θ the sign function

3.1 GCN model
GCN applies the traditional convolutional neural networks to the
graph domain. The model uses an efficient layer-wise propagation
rule based on the fist-order approximation of spectral convolutions
on graphs. The GCN model can achieved good performance in
semi-supervised node classification. In this paper, GCN model
is used as the adversarial graph generator to trick other node
classification algorithms.

Specifically, we employ a two-layer GCN model with softmax
classifier. Its forward model is defined as follows.

Z = softmax(Āσ(ĀXW0)W1), (1)
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where X ∈ RN×C is the feature matrix of all vertices,
Ā = D̃−1/2ÃD̃−1/2, Ã = A + IN , D̃ =

∑
j Ãij , A is the

adjacency matrix, and IN is the identity matrix. Therefore, Ã
is the adjacency matrix of the graph with self-connections, D̃
is a degree matrix of Ã, W0 ∈ RC×H is the input-to-hidden
weight matrix with the hidden layer of H feature maps, and
W1 ∈ RH×|F | is the hidden-to-output weight matrix. σ denotes
the Relu active function. W0 and W1 can be derived using
gradient descent training.

The loss function is defined as the cross-entropy error over all
labeled examples.

L = −
|VL|∑
l=1

|F |∑
k=1

Ylk ln(Zlk), (2)

where VL is the set of vertices with labels, |F | is the dimension
of the output features which is equal to the number of classes, Z
is the output feature.

In training process, the GCN model uses the classical gradient
descent to optimize the parameters.

Wm+1
i = Wm

i − η
∂L

∂Wm
i

, (3)

where η is the learning rate. During each iteration, the weights
Wi, i ∈ {0, 1} are updated.

The GCN model combines vertex features and graph structures
using graph convolution. The features of labeled vertices can be
mixed with those of unlabeled vertices according to adjacency
matrix. Therefore, GCN model can achieve better performance on
certain benchmarks [18].

4 THE GRAPTHFOOL METHOD

Based on two-layered GCN model, Graphfool is designed to
achieve targeted label attack by adding or removing few edges
of original graph. In this section, we describe the Graphfool in
detail.

4.1 The framework of graphfool
GCN model with proper training can achieve good performance
in node classification. However, if we modify its relationship with
other vertices, the node classification result can be completely
different. In that case, Graphfool is a adversarial attack technique
targeting graph embedding. It consists of two parts, which are
adversarial graph generation and adversarial attack, respectively.
The framework of Graphfool is shown in Fig. 1.

• Adversarial graph generation: First, we use the orig-
inal graph and certain labeled vertices to train the GCN
model. Then, for each attacked vertex, we use an iterative
linearization method to generate minimal adjacency matrix
perturbations sufficient to change node classification results.
Thus, we derive the final adversarial graph.

• Adversarial attack: We use the generated adversarial graph
to prevent the attacked vertex from the GCN model. Since
GCN has excellent generalization ability, the adversarial
attack can be implemented on many other graph embedding
methods, i.e., the perturbation generated by GCN is universal
and the attack has strong transferability.

In adversarial graph generation stage, for a graph dataset,
we first derive the node classification results based on adjacency
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Fig. 1: The frame work of Graphfool.

matrix and the trained GCN model. Then for the attacked vertex,
we can calculate the classification boundaries (f1, f2 and f3).
We can also derive the minimal distance d1, d2 and d3, where
d1 > d3 > d2. In untargeted label attack, we select the most
vulnerable label whose classification boundary (f2) is closest
to the attacked node. Then the disturbance matrix is calculated
and the adversarial graph can be derived by adding/deleting the
edges. For the targeted label attack, it is generally the same as
the untargeted label attack. The only difference is that in targeted
label attack we should assign the corresponding label of the
attacked vertex. In adversarial attack stage, we use the adversarial
graph to test the attack effect of Graphfool using various network
embedding algorithms.
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4.2 Adversarial graph generator

In Sec. 3, we introduce the structure and training processing of a
two-layered GCN. Based on this model, Graphfool generates the
adversarial graph.

4.2.1 Disturbance of adjacent matrix

For the GCN model, the classifier converts the feature of each
vertex to an F -dimension vector where F is the number of classes.
For each GCN layer, the adjacency matrix is used to capture the
structural information of the graph. Therefore, a GCN classifier
can be defined as f : RC → RF . For vertex i, its classification is
implemented using the following mapping equation.

k̂ (xi, A) = argmaxfk (xi, A) , (4)

where xi is the feature vector of vertex i, A is the graph adjacency
matrix, fk (xi, A) is the output of the k-th class of f (xi, A).

According to Eq. 4, if we want to influence the node classifica-
tion result of vertex i, we can change xi and A. However, in actual
graph networks, such as social networks and communication net-
works, the feature vectors of vertices are predetermined and thus,
difficult to change. However, changing the relationship between
the target vertex and other vertices is easier and more concealed.
Therefore, Graphfool conducts attacks by changing the adjacency
matrix of the graph. In that case, Eq. 4 can be modified according
to the following equation.

k̂ (A) = argmaxf ik (A) . (5)

To simplify the attack problem, we first assume an linear
classifier f i (A), i.e., f i (A) = WTA + b, where W and b are
trained classifier parameters. The goal is to make the target vertex
misclassified by adding minimal perturbation on A. Therefore, the
attack problem can be modeled as follows.

argmin‖R‖2
s.t.∃k : wk

T (A0 +R) + bk ≥ wk̂(A0)
T (A0 +R) + bk̂(A0)

,
(6)

where A0 is the original adjacency matrix of the graph, R is
perturbation matrix, and wk is the k-th column of W . Thus, for
the k-th class, we can construct class boundary function between
f ik (A) and k̂ (A) using the following equation.

f ik (A)− k̂ (A) = 0(k 6= k̂ (A0)). (7)

For original adjacency matrix A0, the minimal perturbation
R(A0) corresponds to the minimal distance between A0 to these
boundaries. It can be calculated using the following equation.

R(A0) = argmin
k 6=k̂(A0)

|f i
k (A0)− k̂ (A0) |(wT

k (A0)− wT
k̂(A0)

(A0))

‖wT
k (A0)− wT

k̂(A0)
(A0)‖22

.

(8)

For general non-linear classifiers, we approximate the node
classification boundary function using the first-order Taylor ex-
pansion of each classifier.

f i
k (A0)− k̂ (A0) + Of i

k (A0)
T
A− Ok̂ (A0)

T
A = 0(k 6= k̂ (A0)).

(9)
R(A0) can be derived similarly using Eq. 8.

To guide the change of A0, we need to calculate the value
of R(A0). Since the adjacent matrix of an undirected graph is

symmetric, we symmetrize R(A0) to obtain R̂(A0) as shown in
the following equation.

R̂ij(A0) = R̂ji(A0) =

{
Rij(A0)+Rji(A0)

2 i 6= j
0 i = j.

(10)

In Eq. 10, the elements in R̂(A0) have continuous values. For
a specific element R̂ij(A0) in R̂(A0), its positive/negative value
indicates that we should adding/deleting the edge between the pair
of vertices (vi, vj). The larger value of

∣∣∣R̂ij(A0)
∣∣∣ indicates the

added/deleted edge can influence the classification result of the
target node more significantly.

4.2.2 Adversarial graph generator
In this section, we propose an adversarial graph generator based on
our adjacent matrix disturbance generation technique. We modify
one edge during each iteration and the generation process runs for
K iterations. To avoid excessive perturbation, the total iteration
number K should be limited. For a given graph, its average degree
represents the sparseness of the graph. Therefore, we limit K
based on the graph average degree. The generation process is
iterative.

The flows of the generation process is shown in Alg. 1.

1) We construct R̂(Ah−1) based on Ah−1. Using Eq. 7
and Eq. 8, we calculate the classification surface closest
to Ah−1, its target label lh−1, and the perturbation
R̂(Ah−1) with A0 = A.

2) We select perturbation edges. Based on R̂(Ah−1), we
select a pair of vertices (vi, vj) which has maximal
absolute value R̂ij(Ah−1). It should be noted that if
R̂ij(Ah−1) is positive/negative and vi and vj are con-
nected/disconnected in Ah−1, we cannot further add or
delete the edge between this pair of vertices. Hence,
we just ignore such pairs of vertices in the process and
continue.

3) We update the adjacency matrix Ah. We modify the
(h−1)-th adjacency matrix with selected pair of vertices
and generate a new adversarial graph. The h-th adjacency
matrix is calculated using the following equation.

Ah ij = Ah−1 ij + θ(R̂ij(Ah−1)) (11)

where Ah ij and Ah−1 ij are the elements of Ah and
Ah−1 and θ(R̂ij(Ah−1)) is the signed value of the pair
of elements with maximal absolute values in perturbation
matrix R̂(Ah−1).

4.3 Targeted label attack
In the previous sections, we introduce our technique to generate
adversarial graph based on classification boundary and minimal
disturbance of adjacency matrix. Moreover, Graphfool can also
perform targeted label attack. Thus, we define a new goal, i.e., for
vertex i, we want to misclassify it into class l(l 6= k̂ (A0)). Thus,
the attack problem can be generalized as follow.

argmin‖R‖2
s.t.∀k(k 6= l) : wl

T (A0 +R) + bl ≥ wk
T (A0 +R) + bk

.

(12)
In general, during iteration h, when f il (Ah−1) 6= k̂ (Ah−1),

the goal is to add the minimal perturbation R to make vertex

4



Algorithm 1: Adversarial graph generator via GCN
Input: Original graph G, number of iteration K .
Output: The adversarial graph G̃.

1 Train the GCN model on original graph G to obtain
model parameters W via Eq. 3.

2 Initialize the adjacency matrix of the adversarial graph by
A0 = A;

3 for h = 1 to K do
4 Construct R̂(Ah−1) based on Ah−1;
5 Select the perturbation edges which has maximum

absolute value in R̂(Ah−1);
6 Update the adjacency matrix Ah according to
7 Ah ij = Ah−1 ij + θ(R̂ij(Ah−1));

8 Return the adversarial graph G̃, with the adversarial
adjacency matrix AK

i crossover the classification boundary f il (A) − k̂ (A) = 0.
This minimum perturbation can be derived using the following
equation.

R(Ah−1) =
|f i

l (Ah−1)− k̂ (Ah−1) |(wT
l (Ah−1)− wT

k̂(Ah−1)
(Ah−1))

‖wT
l (Ah−1)− wT

k̂(Ah−1)
(Ah−1)‖22

.

(13)

4.4 Transferring adversarial attack
Besides the baseline GCN model, we can also use the modified
adjacency matrix to attack other node classification methods.
Most node classification algorithms rely upon the connection
relationship between vertices. Vertices with strong relationship are
typically divided into the same class. Therefore, these algorithms
have similar decision boundaries. In that case, the GCN based
adversarial attack can also be effective on many other node
classification methods. In the experiment section, we use the
adversarial graph generated by Graphfool to attack other node
classification algorithms. The experimental results show strong
transferability of our technique.

5 EXPERIMENTAL RESULTS

To validate our technique, we test it for both untargeted label
attack and targeted label attack. Moreover, to demonstrate the
concealment of Graphfool, we also perform the single-edge attack
and disturbance-limited attack.

5.1 Experimental setup
Our experiments are performed on a machine with i7-7700K
3.5GHzx8 (CPU), TITAN Xp 12GiB (GPU), 16GBx4 memory
(DDR4), and Ubuntu 16.04 (OS).

5.1.1 Datasets
In the experiment, we test different techniques on three datasets,
which are Cora, Citeseer, and Pol.blogs, respectively. Their statis-
tics are provided in TABLE 2.

• Cora: The Cora dataset consists of 2708 scientific publica-
tions categorized into seven classes [57]. The citation graph
consists of 5429 edges. Each edge represents the citation
relationship.

TABLE 2: The basic statistics of three network datasets.

Datasets Nodes Links Classes
Cora 2708 5429 7

Citeseer 3312 4732 6
Pol.blogs 1490 19090 2

• Citeseer: The Citeseer dataset consists of 3312 scientific
publications categorized into six classes [57]. The citation network
consists of 4732 edges.

• Pol.blogs: The Pol.blogs dataset [58] shows the political
divide of blog. It contains 1490 vertices and 19090 edges. The
vertices are divided into two classes.

5.1.2 Evaluation criteria

In this section, we introduce the evaluation criteria for the com-
paring methods.

• Attack success rate (ASR): We attack a series of vertices
in the graph and the ASR is defined as follows.

ASR =
Ns

N
× 100%, (14)

where Ns is the number of misclassified vertices and N is
the total number of nodes being attacked.

• The average number of modified edges (AME): To attack
the target vertex, we add/delete edges between vertices.
The modifications should be minor and undetectable.
Thus, the method with smaller AME is better. The AME
equation is defined as follows.

AME =
1

N

N∑
i=1

Li, (15)

where N is the total number of nodes being attacked and
Li is the number of modified edges for vertex i.

5.1.3 Comparing methods

To validate our Graphfool technique, we compre it with five state-
of-art graph embedding attack techniques shown as follows.

• DICE [46]: For each iteration, DICE removes b edges of
the target vertex randomly and then add edges between the
target vertex and K − b vertices of different classes.

• NETTACK [52]: NETTACK selects key edges based on
pivotal data characteristics, e.g., degree distribution. Then
it uses two scoring functions to measure the change in
the confidence value. After modifying an edge, it uses the
feature with highest score to update the adversarial graph
according to the confidence value change.

• FGA [53]: FGA extracts the gradient of pairwise vertices
based on the original graph. Then it selects the pair of
vertices with the maximal absolute edge gradient to update
the adversarial graph.

• RL-S2V [51]: RL-S2V is a hierarchical reinforcement
learning based attack method. It learns a Q-function pa-
rameterized by S2V to perform a generalized attack.

• GraArgmax [51]: GradArgmax calculates the gradient of
adjacency matrix based on the output of each hidden layers
and the loss function. Then it adopts greedy algorithm to
select the pairs of vertices to attack the original graph.
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TABLE 3: The attack effects obtained by different attack methods toward varous network embedding methods on multiple datasets.

Datasets Model
ASR(%) AME

Graphfool BASELINE Graphfool BASELINE
unlimited direct indirect FGA NATTECK RL-S2V GradArgmax DICE unlimited direct indirect FGA NATTECK RL-S2V GradArgmax DICE

Cora

GCN 100 100 89.66 100 92.87 93.83 90.32 54.95 1.78 1.92 5.60 2.54 6.09 6.65 7.02 9.13
GraRep 100 100 87.53 100 97.22 100 95.35 89.09 5.43 5.57 9.41 5.56 5.94 5.96 7.29 7.37

Deepwalk 100 100 76.70 100 94.06 95.40 90.95 93.52 5.57 5.13 11.07 5.61 7.24 6.92 7.89 7.20
node2vec 100 100 77.57 100 97.29 100 96.24 89.09 4.94 4.94 10.21 5.66 6.75 6.14 7.44 7.37

LINE 100 100 85.72 100 96.34 95.51 89.98 88.99 5.38 5.47 9.41 5.64 7.02 6.96 8.10 7.66
GraphGAN 100 100 74.77 100 92.26 95.56 88.24 84.55 5.63 5.05 10.65 5.65 8.82 6.90 8.02 7.96

Average 100 100 81.99 100 95.01 96.72 91.85 83.37 4.79 4.68 9.39 5.11 6.98 6.59 7.63 7.78

Citeseer

GCN 100 100 93.55 100 87.50 91.84 88.33 70.37 1.42 1.32 4.65 3.52 6.88 5.86 6.62 9.87
GraRep 100 100 97.63 100 94.28 94.44 89.23 93.22 5.27 5.89 8.25 5.32 6.51 6.94 6.89 7.56

Deepwalk 100 100 81.03 100 96.96 94.34 90.96 93.44 5.38 5.74 5.38 5.68 7.06 6.56 6.90 7.08
node2vec 100 100 79.31 100 93.93 93.88 89.09 91.38 4.48 4.75 9.33 5.62 6.34 7.02 6.80 7.13

LINE 100 100 98.36 100 95.82 93.88 86.66 96.72 5.76 6.25 7.95 5.88 6.02 6.80 7.26 7.21
GraphGAN 100 100 77.19 100 92.06 94.12 85.32 88.24 5.54 5.58 9.25 5.91 7.42 7.04 7.79 8.26

Average 100 100 87.85 100 93.43 93.75 88.27 88.90 4.64 4.92 5.16 7.46 6.71 6.70 7.04 7.98

Pol.blogs

GCN 95.25 93.62 21.27 87.87 82.97 82.98 78.34 50.27 4.92 5.91 17.49 8.42 11.89 9.09 10.21 11.85
GraRep 94.87 94.87 5.28 83.88 79.91 79.17 75.69 61.06 7.21 7.56 19.36 9.58 10.48 11.02 11.88 14.22

Deepwalk 95.25 97.87 4.26 84.26 75.41 78.72 76.25 64.52 6.26 6.01 18.96 9.84 10.06 10.09 11.04 12.35
node2vec 97.87 97.87 6.38 84.34 78.32 79.17 73.32 67.89 7.13 7.04 18.72 9.72 10.58 10.89 11.62 14.86

LINE 96.52 95.87 5.47 85.25 76.35 75.00 70.26 66.74 6.84 7.12 19.56 9.90 10.26 11.30 11.73 12.82
GraphGAN 95.74 95.74 8.51 81.21 72.26 79.17 72.02 64.58 7.61 7.85 18.85 9.41 11.08 11.55 12.04 12.26

Average 95.91 95.97 8.52 84.47 77.54 79.02 74.31 62.51 6.66 6.92 18.82 9.48 10.73 10.66 11.42 13.06

5.2 Evaluation results
In this section, we evaluate our Graphfool method on three real-
world datasets. The techniques are tested with untargeted label
attack, targeted label attack, single-edge attack, and disturbance-
limited attack.

5.2.1 Untargeted label attack
First, we randomly select 20 vertices in each category to form
the set of attacked vertices. To analyze the relationship between
modified edges and attacked vertices, we consider direct, indirect,
and unlimited attacks, respectively [53].

• Direct attack: This attack method only attacks the edges
directly connected to the attacked vertex.

• Indirect attack: This attack method attacks the edges not
directly connected to the attacked vertex.

• Unlimited attack: This attack method can remove or add
edges between any pair of vertices.

Without loss of generality, we assume the number of modified
edges less than 20 for each attack. The attack results are shown in
TABLE 3. For the unlimited attack case, Graphfool outperforms
the other attack methods in most of the cases, in terms of higher
ASR and lower AML. In Cora and Citeseer, for the unlimited case,
both Graphfool and FGA achieve 100% ASR. However, Graphfool
has significantly smaller AME, which implies that the adversarial
graph generated by Graphfool has much less perturbation. For
Pol.blogs, our technique can get 96.03% ASR and 6.48 AME.
The performance deteriorates a bit because of the denseness of
the network (with average degree close to 25.6). However, our
techinique still outperform other any other comparing techniques.

For our Graphfool technique, the unlimited and direct attacks
have relatively close performance. However, the indirect attack has
relatively worse performance. This demonstrates that direct attacks
are typically more effective than indirect ones. In graphfool,
we generate a adversarial graph through the GCN model. The
generated adversarial graph is then used as input to attack other
node classification algorithms. TABLE 3 shows the attacking
results. Although the adversarial graph is generated based on
GCN model, it can also achieve excellent attack performance for
other node classification algorithms. This demonstrated the strong
transferability of our technique. Moreover, our adversarial graph
achieves less AME on GCN model. This phenomenon indicates
that the adversarial graph can capture the vulnerability of GCN
model more accurately.

Moreover, for the datasets of Cora and Citeseer, where the
graphs are relatively sparse, indirect attacks can achieve relatively
high attack performance, which is similar to DICE of direct attack.
This implies that we may be able to change the edges far away
from the target nodes to perform the attack. In other words,
the local structure of these vertices is not necessarily destroyed,
making the attack harder to detect. For the dataset of Pol.Blogs,
since it is very dense, the performance of graphfool is limited,
especially for indirect attack.

5.2.2 Targeted label attack

In this section, we perform targeted label attack for the Cora and
Citeseer dataset, which have more than 2 labels. For each dataset,
we also randomly select 20 vertices in each category to form the
set of attacked vertices. The specific attack strategy of Graphfool
is the unlimited attack.

The results of the targeted label attack are shown in TABLE 4
and TABLE 5. Compared with untargeted label attack, the ASR of
targeted label attack has a significant decline, while its AME also
increases. It implies that the targeted label attack is not as effective
as untargeted label attack. The reason is that due to the explicit
directionality of targeted label attack, its generated disturbance has
more conditional constraints. These constraints can increase the
cost of ASR and AME. ***(what does these sentences mean? Your
method has random performance on different labels?? Why??)In
addition, in the Cora dataset, when the targeted label is 3, the
method of targeted label attack could achieve higher ASR and
lower AME, which means that other vertices are more likely to
disguise as the vertices with label 3. And the same phenomenon
also appears on Citeseer dataset. We can conclude that the vertices
with different labels have different properties, which leads to
different ASR and AML under different targeted labels on targeted
label attack.

5.2.3 Single-edge attack

In computer vision area, other than the success rate of adversarial
attack, minimizing its disturbance is also an important goal [21].
Similarly, in graph based attacks, if an attack method could get
close performance with fewer modified edges, it has a better
attack concealment. In this section, to evaluate the concealment
of Graphfool, we design a single-edge attack experiment for these
three datasets. In this experiment, each attack method could only
change one edge of the original graph to generate adversarial
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TABLE 4: Targeted label attack on Cora.

Metris Model Targeted Label
0 1 2 3 4 5 6

ASR(%)

GCN 73.96 70.79 66.67 98.86 84.27 79.12 66.30
GraRep 72.92 68.54 67.82 96.59 82.02 79.12 65.22

DeepWalk 73.96 67.42 66.67 95.45 84.27 78.02 65.22
Node2vec 72.92 70.79 65.52 94.32 83.15 76.92 61.53

LINE 70.83 68.54 65.52 96.59 85.39 76.92 64.13
GraphGAN 72.92 71.91 66.67 94.32 85.39 79.12 61.53

Average 72.92 69.67 66.48 96.02 84.08 78.20 63.99

AME

GCN 6.28 6.91 7.56 2.00 4.57 5.47 8.03
GraRep 7.03 7.41 7.58 3.25 5.03 6.31 8.46

DeepWalk 6.95 7.28 7.69 3.14 5.08 6.16 8.53
Node2vec 7.03 7.37 7.63 3.26 5.11 6.28 8.23

LINE 7.26 7.37 7.73 3.23 4.93 6.34 8.37
GraphGAN 6.96 7.45 7.60 2.99 4.72 6.42 8.23

Average 6.75 7.30 7.63 2.98 4.91 6.16 8.31

TABLE 5: Targeted label attack on Citeseer.

Metris Model Targeted Label
0 1 2 3 4 5

ASR(%)

GCN 83.78 78.46 74.19 92.19 85.16 88.52
GraRep 85.14 78.46 79.03 90.63 83.33 90.16

DeepWalk 82.43 78.46 80.65 90.63 87.04 86.89
Node2vec 85.14 76.92 77.41 89.06 81.48 85.25

LINE 82.43 80.00 75.81 93.75 87.04 86.89
GraphGAN 81.08 76.92 72.58 89.06 81.48 83.60

Average 83.33 78.20 76.61 90.89 84.26 86.89

AME

GCN 4.55 5.72 5.56 3.11 4.39 3.77
GraRep 6.44 7.13 6.92 4.78 5.59 4.33

DeepWalk 6.64 6.92 6.69 4.63 5.61 4.30
Node2vec 6.70 7.02 6.95 4.46 5.76 4.33

LINE 6.64 6.88 6.71 4.48 5.63 4.18
GraphGAN 6.53 7.12 6.92 4.28 5.69 4.26

Average 6.25 6.80 6.62 4.29 5.45 4.20

graph. In other words, we set the AME of all attack methods to 1.
The set of attacked vertices is the same as the one in the untargeted
label attack experiment. We also experiment with direct, indirect,
and unlimited attacks, respectively.

The results of single-edge attack are shown in TABLE 6. In
general, single-edge attack is a special case of untargeted label
attack. Therefore, the results in TABLE 6 are consistent with those
in TABLE 3. For the unlimited and direct cases, Graphfool still
outperforms most of the other attack methods. FGA is the closest
algorithm, with 2% to 5% lower ASR on average. Moreover, for
Cora and Citeseer, both unlimited Graphfool and direct Graphfool
achieve approximately 50% ASR, but in Pol.blogs, which is much
denser than the other two graphs, these two methods only get
18.16% ASR.

In addition, the ASRs of Graphfool, FGA, and NETTECK
in GCN model are higher than those in other node classifica-
tion algorithms. This is because of the following reasons. First,
Graphfool, FGA, and NETTECK are GCN-based graph attack
methods. Second, for other node classification algorithms, they
all have certain randomness. Single-edge attack only changes one
edge in original graph. It may affect more significantly during
random process, thus reducing the ASR for these algorithms.

5.2.4 Disturbance-limited attack
To improve the attack concealment, one may want to limit the
perturbation to a certain range. This is called disturbance-limited
attack. In disturbance-limited attack, attackers only change the
edges of the subgraph which is composed by the attacked vertex
and its neighbors. For each attacked vertex, we first calculate its
k-order neighbors (vertices whose link distance to the attacked
vertex are less than k) and construct the subgraph accordingly.
Then we perform graph attack in this subgraph using unlimited

Graphfool attack method. In this experiment, we set the range
of k from 1 to 5. The value k is corresponding to the size of the
modifiable subgraph. To quantify the size of these subgraphs in the
original graph, for each dataset, we calculate the average ratio of
the number of vertices in the k-th order subgraph of each attacked
vertex to the corresponding number of vertices in original graph.
The results are shown in TABLE 7.

TABLE 8, TABLE 9, and TABLE 10 show the results of
disturbance-limited attack on three datasets. With the increase
of neighbor order, ASR in every node classification algorithm
increase significantly, while AME is monotonously decreasing.
This is consistent with the general idea that when the size of the
constructed subgraph gets larger, the Graphfool attack is more
likely to succeed. Moreover, for the sparse dataset Cora and
Citeseer, when the neighbor order of each attacked vertex is 5, the
average sizes of subgraphs are only 14.22% and 2.87%. However,
Graphfool attack also could get 67.69% and 49.18% average ASR,
6.61 and 9.04 average AME, respectively. This implies that even if
we limit the disturbance to a small local subgraph of the attacked
vertex, we can still perform effective attacks. However, For the
dense graph Pol.blogs, when the neighbor order reaches 5, the
average size of subgraphs becomes 81.88%. It covers most of the
original graph and the results are close to the unlimited case in
TABLE 3.

6 CONCLUSION

In this paper, we propose Graphfool, a graph attack technique
to mislead the node classification algorithms. This method uses
two-layer GCN model as the attack model, constructs the decision
boundary according to the classification results, and implements
attack by modifying edge relationship of adjacency matrix. The
experiments suggest that Graphfool can generate smaller pertur-
bation and obtain the higher attack success rate simultaneously,
which demonstrate the vulnerability of current graph embedding
algorithms.
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