
1

Node Injection Attack Based on Label Propagation
Against Graph Neural Network

Peican Zhu, Member, IEEE, Zechen Pan, Keke Tang, Member, IEEE, Xiaodong Cui, Jinhuan Wang, Qi
Xuan, Senior Member, IEEE

Abstract—Graph Neural Network (GNN) has achieved re-
markable success in various graph learning tasks, such as node
classification, link prediction and graph classification. The key
to the success of GNN lies in its effective structure information
representation through neighboring aggregation. However, the
attacker can easily perturb the aggregation process through
injecting fake nodes, which reveals that GNN is vulnerable to the
graph injection attack. Existing graph injection attack methods
primarily focus on damaging the classical feature aggregation
process while overlooking the neighborhood aggregation process
via label propagation. To bridge this gap, we propose the label-
propagation-based global injection attack (LPGIA) which con-
ducts the graph injection attack on the node classification task.
Specifically, we analyze the aggregation process from the perspec-
tive of label propagation and transform the graph injection attack
problem into a global injection label specificity attack problem.
To solve this problem, LPGIA utilizes a label propagation-based
strategy to optimize the combinations of the nodes connected to
the injected node. Then, LPGIA leverages the feature mapping
to generate malicious features for injected nodes. In extensive
experiments against representative GNNs, LPGIA outperforms
the previous best-performing injection attack method in various
datasets, demonstrating its superiority and transferability.

Index Terms—Graph Neural Network, Adversarial Attack,
Graph Injection Attack, Label Propagation.

I. INTRODUCTION

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

This work was supported in part by the Key R&D Program of Zhejiang
(Grant no. 2022C01018), National Natural Science Foundation of China
(Grant nos. 62073263, U21B2001, 62102105), Fundamental Research Funds
for the Central Universities (Grant no. D5000230112), Open Research Subject
of State Key Laboratory of Intelligent Game (Grant no. ZBKF-24-02).
(Corresponding author: Xiaodong Cui and Qi Xuan.)

P. Zhu is with the School of Artificial Intelligence, Optics and Electronics
(iOPEN), Northwestern Polytechnical University (NWPU), Xi’an 710072,
Shaanxi, China (e-mail: ericcan@nwpu.edu.cn).

Z. Pan is with the School of Computer Science, NWPU, Xi’an 710072,
Shaanxi, China (e-mail: 928598047@mail.nwpu.edu.cn).

K. Tang is with the Cyberspace Institute of Advanced Technology,
Guangzhou University, Guangzhou 510006, Guangdong, China (e-mail: tang-
bohutbh@gmail.com).

X. Cui is with the School of Marine Science and Technology, NWPU, Xi’an
710072, Shannxi, China (e-mail: xiaodong.cui@nwpu.edu.cn).

J. Wang is with the Institute of Cyberspace Security, College of Information
Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang,
China (e-mail: jhwang@zjut.edu.cn).

Q. Xuan is with the Institute of Cyberspace Security, College of Infor-
mation Engineering, Zhejiang University of Technology, Hangzhou 310023,
Zhejiang, China, and also with the Binjiang Institute of Artificial Intelligence,
Zhejiang University of Technology, Hangzhou 310056, Zhejiang, China (e-
mail: xuanqi@zjut.edu.cn).

W ITH the adoption of the message passing scheme,
Graph Neural Network (GNN) is capable of handling

graph data through aggregating the structure information. Due
to this special scheme, GNN has achieved remarkable success
in various fields including node classification [1]–[5], link
prediction [6]–[8], graph classification [9], [10], recommender
system [11] and emotion-cause pair extraction [12]. However,
recent studies have revealed that deep learning models can
be easily fooled by adversarial inputs [13]–[16]. In this case,
the message passing scheme in GNN fails to identify the fake
message propagating in the graph, leading to concerns about
the robustness of GNNs [17], [18].

Following pioneering research, many scholars have devoted
their efforts to developing adversarial attack methods in order
to analyze the robustness of GNN. In [19]–[24], the authors
proposed to pass wrong messages through modifying the
original graph structure, which are referred to as Graph Mod-
ification Attack (GMA). Nevertheless, it is usually unrealistic
for the attacker to possess the authority to modify the original
links or features of nodes. For instance, in social networks, it
is difficult for attackers to modify the personal information of
the target user. However, it is relatively easy for the attacker
to create a new account that conducts interaction with the
target user. Thus, to address the drawback of GMA, Sun et
al. [25] proposed Graph Injection Attack (GIA) which is a
new category of adversarial attack.

For GIA, the attack is performed through injecting fake
nodes which carry malicious features into the original graph.
Hence, wrong messages can successfully propagate without
modifying the existing links and features. In contrast to GMA,
GIA encounters unique and essential challenges, among which
is the key problem of connecting the injected nodes with
the original nodes to disrupt the message passing process of
GNN. Wang et al. [26] used approximate gradients of the
loss function to guide the connection process. However, such
approximation fails to explicitly explore the graph structure
information. Thus, through investigating the feature aggrega-
tion process of GNN, Zou et al. [27] proposed to connect the
injected nodes with the node possessing higher topological
vulnerability which is related to the degree of the node.
Additionally, to flexibly model the feature aggregation process,
Tao et al. [28] optimized the connections through training
a neural network. From a different perspective, Wang et al.
[29] successfully transformed the GIA into a graph clustering
problem. They defined an adversarial feature for each vic-
tim node respectively and then clustered nodes accordingly.
Overall, existing GIA methods primarily design connection

ar
X

iv
:2

40
5.

18
82

4v
1

 [
cs

.C
R

]
 2

9
M

ay
 2

02
4

2

strategies based on destroying the feature aggregation process
of GNN. The key to those attacks is that the injected node
propagates malicious features to the original nodes through the
classical feature aggregation process of GNN. However, those
GIA methods overlook the neighborhood aggregation process
via label propagation in GNN. Compared with classical feature
aggregation, neighborhood aggregation via label propagation
can better leverage the node prediction information and the
graph structure information [30]–[33]. As existing GIA meth-
ods mainly consider the feature aggregation process, they
fail to enhance their attack performance through effectively
leveraging node prediction information. To better utilize node
prediction information instead of solely relying on the infor-
mation from the feature aggregation process, efforts still need
to be spared to design a GIA method considering the message
passing scheme via node prediction.

To bridge this gap, inspired by the idea of label propaga-
tion [33]–[36], we propose the label-propagation-based global
injection attack (LPGIA). In order to apply label propagation
into GIA scenarios, we reinterpret the objective of the GIA
and transform the GIA problem into a label specificity attack
issue [37], [38]. Compared with the original label specificity
attack problem, LPGIA mainly focuses on the global injection
attack scenario instead of attacking a single node. Specifically,
the target label is defined for each node in the original graph
respectively. Accordingly, we aim to increase the probability of
all nodes being classified as their target label, thereby inducing
erroneous prediction. To solve the problem, LPGIA consists of
two parts, i.e., cluster derivation and feature generation. In the
cluster derivation procedure, we design a label propagation-
based method to select the optimal combination of the victim
nodes for each injected node. Then, in the feature generation
procedure, our method generates the malicious features for
injected nodes based on feature mapping. The performance
of LPGIA is evaluated on representative datasets against five
well-known GNNs on the node classification task. Through
utilizing the idea of label propagation, LPGIA exhibits excel-
lent performance, demonstrating its feasibility.

Overall, the contributions of this manuscript are listed as:
(1) We analyze GIA from the perspective of label propagation

and transform the GIA problem into a global injection
label specificity attack problem. Specifically, we define a
target label for each node in the original graph respec-
tively. With this knowledge, we reinterpret the objective
of GIA to adapt label propagation to our scenarios.

(2) We propose LPGIA, a global graph injection attack
method based on label propagation, which aims to mislead
GNN to generate erroneous predictions and thereby reduce
its performance on the node classification task. To achieve
the objective, LPGIA finds the optimal connection strategy
from the perspective of label propagation and designs the
malicious features according to the feature mapping.

(3) We conduct extensive experiments against different kinds
of GNN to evaluate the performance of our method.
Compared with other baselines, the experimental results
show that our proposed approach significantly deteriorates
the prediction accuracy of GNN. Further, we also analyze
the contribution of each module in our method and explore

alternative strategies.
The rest of this paper is organized as follows. In Section

II, the related works are provided in detail. Then, Section III
clarifies the definitions of GNN and GIA. In Section IV, we
introduce our motivation and propose our attack method. Later,
sufficient experimental results are presented in Section V.
Finally, we conclude our work and discuss the future directions
in Section VI.

II. RELATED WORKS

In this section, we briefly review some recent works related
to the adversarial attack on GNNs, which could be generally
categorized into two primary types, i.e., GMA and GIA.
During the early stage, works on adversarial attacks against
GNN focused on modifying the original graph, i.e., edges or
node features. Dai et al. [18] introduced the reinforcement
learning technique to the targeted attack which aims to change
the prediction of the target node. However, their method
solely focused on edge modifying, which can not be used
to modify features. Zügner et al. [17] conducted the targeted
attack by greedy searching which took into account both
edge perturbations and feature perturbations to identify the
optimal perturbation. In addition to the targeted attack, Zügner
and Günnemann [19] conducted the global attack in order to
worsen the accuracy of GNN. They proposed a meta gradient-
based strategy for the iterative selection of the most influential
edge for the attack. Following such pioneering works, a
number of improved methods based on gradient information
emerged [20], [22], [39], [40].

The above methods belonging to the GMA category could
not efficiently address the attacker’s capability to modify the
original data, due to the expensive cost [41]. To address
this concern, Wang et al. [26] extended the gradient-based
method to the GIA scenario which only injected fake nodes
into the graph. To fully leverage the advantages of GIA,
Zou et al. [27] proposed a novel framework that adopted a
heuristic strategy to select the defective nodes for the injection
based on their analysis of the feature aggregation process of
GNN. However, the proposed weight highly relied on the
node’s degree which limited the ability to further explore
graph structure information. Then, Tao et al. [28] developed
a flexible injection attack approach through training a neural
network to adaptively model the influence of node injection.
To deceive the pruning mechanism in GNN, Chen et al. [42]
proposed a method to increase the feature similarity between
the injected node and its neighbors. Furthermore, they argued
that the destructive power of GIA might come from the
damage to the homophily of the original graph. Along with
this idea, Fang et al. [43] proposed an evolutionary algorithm-
based method to find the optimal combination of nodes and
used the decrease of node homophily as a sorting index.
From a different perspective that the GIA problem could be
reformulated as the graph clustering problem, Wang et al. [29]
solved this problem based on Euclid’s distance between victim
nodes’ adversarial feature vectors. Ju et al. [44] formulate
GIA as a Markov decision process and leverage the rewards
calculated from the model feedback to guide their attacks.

3

In summary, those GIA methods mainly consider the effect
of the attack on the feature aggregation process and rely on
the gradient information from the surrogate model. Since the
importance of node features varies among different GNNs,
the transferability of those methods will decrease when the
attacker has no knowledge about the defense model. Unlike
most previous works [26], [27], [29], we leverage the node pre-
diction information to conduct the attack, which is inherently
related to the attacker’s goal. Similarly, Tao et al. [28] use node
prediction as input to guide the direction of prediction change.
However, they still focus on the feature aggregation process
and ignore the latent association between the node label and
graph structure. Hence, we analyze the label propagation
process to better utilize the node prediction information and
graph structure information, resulting in remarkable attack
performance improvements.

III. PRELIMINARIES

In this section, we first introduce some fundamentals related
to GNN which serves as the surrogate model. Then, the details
of GIA are clarified.

A. Graph Neural Network

Let G = (V, E) denote an undirected and unweighted graph,
where V indicates the node set with a size of n and E denotes
the edge set. We assume that A ∈ {0, 1}n×n represents the
symmetric adjacency matrix, where Auv = 1 if (u, v) ∈ E ,
otherwise Auv = 0. Let X ∈ Rn×m represent the correspond-
ing feature matrix, where m indicates the dimension of the
feature vector.

For the node classification task, each node has a ground-
truth label c ∈ l = {l1, . . . , lL}, where L is the number of
the categories in the label set l. Then GNN aims to derive the
prediction of unlabeled nodes leveraging A and X . As in [1],
a classical structure of the GNN can be described as:

Z = fθ(A,X) = softmax(Ãσ(ÃXW1)W2), (1)

where Ã = D̃− 1
2 (A + I)D̃− 1

2 , D̃ represents the diagonal
degree matrix after adding self-loop, I indicates the identity
matrix and W denotes a trainable weight matrix. Here, σ(·)
is the activation function.

To obtain remarkable performance, GNN optimizes the
parameters θ by minimizing a cross-entropy loss function on
the output of the training set Vtrain. The corresponding cross-
entropy loss function is provided as:

L(θ;A,X) = −
∑

v∈Vtrain

ln zv,cv , (2)

where θ = {W0, . . . ,Wk} denotes the set of trainable weight
matrices, cv denotes the ground truth label of node v, and zv,c
is the probability of node v belonging to class c.

B. Graph Injection Attack

For GIA, the original input is replaced with a perturbed
graph G′ = (A′, X ′) to degenerate the performance of GNN.
Then, the optimization function of GIA is provided as:

min
∑

v∈Vtest

I(argmax ln fθ∗(A′, X ′)v = cv),

s.t. θ∗ = argmax
θ

∑
v∈Vtrain

ln fθ(A,X)v,cv ,
(3)

where θ∗ are the optimal parameters of the GNN to be attacked
and I(·) is the indicator function. To minimize Eq. (3), the
adversarial adjacency matrix A′ is given as:

A′ =

[
A B
BT Q

]
, (4)

where A indicates the original adjacency matrix. Instead of
modifying A, GIA focuses on modifying B ∈ {0, 1}n×nfake

which indicates the connections among fake nodes and the
nodes in V , nfake indicates the number of fake nodes. Par-
ticularly, we assume Q = O which indicates that there exists
no link in any fake node pairs. As to the adversarial feature
matrix X ′, the corresponding formula is given as:

X ′ =

[
X

Xfake

]
, (5)

where X denotes the original feature matrix. Instead of
modifying X , GIA focuses on modifying Xfake ∈ Rnfake×m

which represents the feature matrix of fake nodes. For ease of
future representation, Table I provides some utilized notations
and their interpretations.

TABLE I
THE DESCRIPTIONS OF NOTATIONS

Notations Descriptions

G Original input graph
V Node set of G
E Edge set of G
A Adjacency matrix of G
X Feature matrix of nodes in G
D Degree matrix of G
di Degree for node i
G′ = (A′, X′) Perturbed graph
c Set of the ground truth labels for nodes in G
cb Set of target labels for nodes in G
fθ Graph neural network
Ms Surrogate model
W Weight matrix
nfake Number of fake nodes to be injected
yi Predicted label for node i
Z Predicted probability matrix
hi Target label similarity for node i
sh Propagation scores for nodes in G
sp Cluster scores for potential clusters
sx Feature scores for feature elements

IV. PROPOSED METHOD

In this section, we first discuss our motivation and observa-
tion from the perspective of label propagation. Based on those
analyses, we derive the objective of our proposed method.
Then, the details of our method are followed.

4

A. Rethinking GIA from the perspective of label propagation

Existing studies suggest that GNN and label propagation
are related with a learnable feature mapping [30]–[32]. Hence,
GNN can be seen as a scheme that obtains the initial prediction
from the mapping and then propagates the prediction in the
graph using label propagation algorithms [33]. Following this
scheme, we attempt to estimate the probability distribution
changes for nodes before and after the GIA using the label
propagation algorithm. Specifically, inspired by [33], [35],
the adopted label propagation process for analyzing GIA is
expressed as:

Zt+1 = α ·D− 1
2AD− 1

2Zt + (1− α)Z0, (6)

where Z ∈ Rn×c denotes a matrix in which each row
represents a probability distribution resulting from the softmax
and α denotes the hyper-parameter.

Then, to conduct GIA, we suppose that fake node u with a
one-hot probability distribution is connected to node i in the
original graph aiming to change the probability distribution of
node i. Thus, for the victim node i, its probability distribution
after the attack is given as:

zt+1
i = α·

∑
j∈Vi

1√
di + 1

√
dj

ztj+α· 1√
di + 1

√
du

ztu+(1−α)z0i ,

(7)
where Vi is the original neighbor set of i and di indicates the
original degree of the victim node i. In particular, according to
Eq. (7), we reveal that the above injection operation increases
the probability of predicting the victim nodes as the injected
node’s label rather than other categories. Thus, to misclassify
node i, the objective of injection can be expressed as:

max(zt+1
i,cu
− zt+1

i,yi
), (8)

where yi = argmax z0i denotes the initially predicted label
of node i. If zti,cu − zti,yi

> 0, we suppose that node i is
classified as the injected node’s label cu. For the ease of
altering the probability ranking of categories, we choose cu =
argmaxc̸=yi

z0i,c as the optimal pseudo label for the injected
node u which is the second largest probability category for
node i. Along this line, we also define cb,i = argmaxc̸=yi

z0i,c
as the target label of the victim node i. Since the target label
has been determined for each node in the original graph, we
can transform the global GIA problem into a global injection
label specificity attack problem.

Definition 1 (Global Injection Label Specificity Attack
Problem). Given a graph G = (A,X), the global injection
label specificity attack problem is to find a perturbed graph
G′ = (A′, X ′) through injecting fake nodes so that nodes in
the original graph could be classified as their target labels after
applying GNN fθ on G′. Therefore, the objective in Eq. (3)
can be reinterpreted as:

max
∑

v∈Vtest

I(argmax ln fθ∗(A′, X ′)v = cb,v),

s.t. θ∗ = argmax
θ

∑
v∈Vtrain

ln fθ(A,X)v,cv ,
(9)

where cb,v is the target label for a victim node v.

To solve this problem, our attack needs to increase the
probability of the victim nodes belonging to the corresponding
target label through propagating the probability distribution.
When the probability distribution further propagates from the
victim node to its neighbors, a crucial question is whether
there exists a similarity among target labels of the neighbor-
ing nodes. The presence of target label similarity between
neighboring nodes facilitates the reuse of malicious features
to attack the neighboring nodes of the victim node through
propagation. On the contrary, the dissimilarity will turn our
global attack into an inefficient single-node attack. Inspired
by [43], [45], [46], for node i, the target label similarity can
be calculated as:

hi =

∑
j∈Vi

I(cb,j = cb,i)

di
, (10)

where Vi is the neighbor set of i and di denotes the degree
of node i. As shown in Table II, the target labels derived
from various GNNs demonstrate a similarity similar to the
homophily assumption. This property indicates that our attack
on one node can also help achieve attacks on its neighboring
nodes, enhancing the feasibility of problem transformation.

TABLE II
SIMILARITY BASED ON THE TARGET LABEL IN THE HOMOPHILY GRAPH.

Similarity Cora Cora ML Citeseer Pubmed

GCN Target Label 0.69 0.66 0.76 0.81
SGC Target Label 0.64 0.60 0.71 0.75
GAT Target Label 0.69 0.69 0.77 0.84

To address the global injection label specificity attack prob-
lem, we propose the label-propagation-based global injection
attack (LPGIA), leveraging the similarity of the target label be-
tween neighboring nodes. Our proposed method is composed
of two parts, i.e., cluster derivation and feature generation. In
the cluster derivation procedure, for each fake node, LPGIA
heuristically determines the optimal victim cluster connected
to it. In the feature generation procedure, LPGIA generates
malicious features in order to increase the probability of the
target label. An illustration of the proposed LPGIA is shown
in Fig. 1.

B. Cluster Derivation

First and foremost, we obtain the target label for each node
in the original graph. Specifically, a GNN-based surrogate
model Ms is trained to obtain the target label from the
prediction Z = Ms(G). Inspired by [33], to reduce the
uncertainty of the prediction from GNN, Eq. (6) is applied
to the original prediction Z to get the smooth probability
distribution Z̃ until convergence. Thus, we derive the stable
target label cb,v = argmaxc ̸=yv

z̃v,c for the node v. Later,
we classify all the potential victim nodes into a number of
groups according to the target label. The next step is to find
an optimal combination of victim nodes in the group for the
injected nodes. Specifically, we propose a heuristic strategy
that involves the identification of vulnerable and critical nodes
in the graph, followed by clustering these nodes.

5

Fig. 1. The illustration of LPGIA. We obtain the target label for each node and group the nodes accordingly. Then, for an injected node, the node with
the largest score sh is selected as the initial node to be attacked. Iteratively, the top-k nodes are retained according to the target label’s probability in the
aggregated smooth distribution, and then the one with the largest score sh is selected. Finally, we leverage the feature mapping and the statistics to generate
the malicious feature for the injected node.

Identifying Valuable Nodes. During the node identification
stage, the neighborhood and the feature of the injected node
are not yet determined. Thus, it is hard to estimate the
probability distribution propagating to the victim node from
the injected node. However, we assume that the pseudo-label
of the injected node is the target label of the connected victim
node. Based on this situation, we use the idea of hard-label
propagation to identify valuable nodes to be attacked. In hard-
label propagation, the label of a node depends on the label
occurring with the highest frequency among its neighboring
nodes [36]. This propagation process is depicted as:

yti = argmax
c

(

∑
j∈Vi

I(ytj = l1)

di
, . . . ,

∑
j∈Vi

I(ytj = lL)

di
),

(11)
where l1 is the first category in the label set l, yj is the
predicted label of node j and t represents the number of
iterations for the propagation process.

For a victim node i, injecting a node can change the fre-
quency of its original label among its neighboring nodes, i.e.,∑

j∈Vi
I(yj=yi)

di+1 . Intuitively, a node that exhibits a significant
decrease in the proportion of its original label among its
neighbors’ labels when subjected to an attack is relatively more
susceptible to perturbation. Therefore, the vulnerability weight
of the node i can be defined as:

s1i =

∑
j∈Vi

I(yj = yi)

d2i + di
, (12)

where Vi is the neighbor set of node i. s1i measures the
decreasing extent of the proportion of its initially predicted
label among its neighbors’ labels under an attack. A larger
value of s1i indicates that node i is more susceptible to
adversarial perturbation.

Then, suppose we successfully classify node i with its target
label cb,i. In that case, its neighboring nodes will tend to be
misled to the same label, i.e., cb,i. To utilize the propagation
process to achieve our goal in Eq. (9), we shall attack the node
i with a higher similarity of the target label between neighbors,
i.e.,

∑
j∈Vi

I(cb,j=cb,i)

di
. Therefore, the topological weight of the

node i can be defined as:

s2i =

∑
j∈Vi

I(cb,j = cb,i)−
∑

j∈Vi
I(yj = cb,i)

di
, (13)

where cb,i indicates the target label of the victim node i.
Based on the above analyses, for the victim node i, the

propagation score is defined to comprehensively evaluate the
impact of the node injection, which combines s1i and s2i . The
formula is provided as:

shi
= β · s1i + (1− β) · s2i , (14)

where β is the hyper-parameter.
Clustering Nodes. According to the propagation score, we

can propose a simple clustering strategy. We rank the nodes
in each target label group respectively and select the top-k
nodes from one of the groups to form a cluster, where k is
the connection budget for a given injected node u. Then, we
assign the target label to the injected node u as its pseudo label
cu and connect it to the nodes in the cluster. However, this
strategy has a drawback. There may exist a category imbalance
phenomenon, where the majority of the nodes in a target label
group belong to the same original label, as shown in Fig. 2.
Thus, there is a high probability of selecting several nodes
with the same original label into a cluster. In this case, the
injected node will aggregate probability distribution having a
high probability of the non-target label according to Eq. (6),

6

and then propagate it back to its neighbors. Obviously, it is
contrary to our objective mentioned in Eq. (8).

0 1 2 3 4 5 6
Category

0
1

2
3

4
5

6
G

ro
up

0.00 0.17 0.32 0.00 0.08 0.14 0.29

0.39 0.00 0.50 0.02 0.07 0.01 0.02

0.08 0.32 0.00 0.26 0.13 0.00 0.21

0.00 0.01 0.93 0.00 0.02 0.00 0.04

0.06 0.17 0.66 0.07 0.00 0.02 0.02

0.13 0.08 0.14 0.01 0.02 0.00 0.61

0.10 0.02 0.57 0.03 0.02 0.25 0.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Frequency of categories in each target label group. The example is
derived from the prediction of GCN on the Cora dataset. This phenomenon
also exists in the predictions of other GNNs applied to homophily graphs.

To alleviate this issue, we attempt to cluster nodes in a
way that maximizes the probability of the target label in
the aggregated probability distribution of the corresponding
injected node while considering the propagation score of the
node. Then, according to Eq. (6), the aggregated probability
distribution can be calculated as:

zt+1
u =

∑
i∈Vu

1√
di + 1

√
du

zti , (15)

where Vu is the neighbor set of injected node u. Later,
the objective is expressed as max zt+1

u,cu . To avoid excessive
computation, we simplify the above propagation process and
obtain an approximate result through performing propagation
once. In particular, we propagate the smooth probability dis-
tribution Z̃ instead of the original distribution to reduce the
loss of information. Thus, the objective can be reformulated
as max z̃1u,cu .

To achieve the above goal, we construct the cluster p
through a greedy algorithm. Specifically, the node with the
largest propagation score is selected as the initial node of
the victim cluster p, and then nodes with the same target
label become potential options for the following selections.
Iteratively, we add a new victim node into the cluster p.
As our goal is to maximize the target label’s probability in
the aggregated smooth distribution, we define a cluster score
sp to measure the difference between the probability of the
target label and the maximum probability among other labels
after adding each potential node to the cluster. First, for node
j, according to Eq. (15), the aggregated smooth probability
distribution after adding is calculated as:

z̃′pj
=

1√
du

(
∑
i∈Vp

1√
di + 1

z̃i +
1√

dj + 1
z̃j), (16)

where Vp is composed of nodes that are selected to form the
cluster, z̃i indicates the smooth probability distribution of node

i and u represents the injected node being assigned to this
cluster p. Then, the corresponding cluster score is defined as:

spj
= z̃′pj ,cu − z̃′pj ,c∗ ,

s.t. c∗ = argmax
c ̸=cu

z̃′pj
,

(17)

where z̃′pj ,cu is the probability of the target label in the
distribution. After computing the cluster scores, the potential
nodes can be ranked accordingly; then, we retain the top-nk

nodes, which alleviates the aforementioned imbalance prob-
lem. Nevertheless, a large cluster score does not necessarily
mean that corresponding node is valuable to attack. To better
leverage the similarity of the target label between neighboring
nodes, we finally add the node with the largest propagation
score sh among the retained nodes into the victim cluster.

Finally, we remove the selected node from the correspond-
ing group aiming to ensure that each selected node will only
be connected to one injected node during the attack. The above
process is repeated until the link budget of a single injected
node ∆e,u has been exhausted. Similar to [26], [43], we adopt
a degree sampling operation to assign the link budget ∆e,u to
each fake node u. They argue that the sampling operation can
reduce the damage to the degree distribution of the original
graph during the attack process, leading to a more unnoticeable
attack. Furthermore, we let the total number of the sampling
degree

∑
∆e,u = ⌊nfake ×

∑
v∈V dv

n ⌋. This step is conducted
aiming to reduce the randomness and achieve fair comparison.

C. Feature Generation

In the feature generation procedure, we are anticipated to
generate the malicious feature for each injected node. To
achieve our goal, for an injected node u, the key point of
designing the malicious feature is to increase the probability
of the target label in its probability distribution. Similar to
[28], [33], we can estimate the probability distribution before
propagation using the feature mapping. Thus, the objective of
designing the malicious feature can be expressed as:

max

m∑
k=0

xu,kWk,cu , (18)

where Wk,cu is the weight of the k-th feature element for
target label cu and m is the dimension of the node feature xu.

Notably, it is unrealistic to arbitrarily set the values of
feature elements. Inspired by [43], we apply a statistical
method to meet the unnoticeable requirement. Hence, for an
injected node u, the possible value of the feature element is
provided as:

x′
u,k =

∑
i∈Vcu

|xi,k|∑
i∈Vcu

I(xi,k ̸= 0)
, (19)

where Vcu denotes the set of nodes possessing the label same
as the injected node label cu and xi,k denotes the k-th element
of node feature xi. Accordingly, we can generate features that
are in the same range as the original ones. Furthermore, this
operation is applicable to graphs with binary or continuous
feature spaces.

7

Then, to obtain the weight of feature elements, following
previous works [22], [26], [28], we perform a linearization
of the surrogate model, i.e., W = W0 . . .Wk, where k is
the number of the weight matrix. To alleviate the overfitting
problem in the mapping, we train the surrogate model for
several times and then derive the average of those linearization
weights which is regarded as the final weight matrix W .

Once we have obtained the possible value and weight of the
feature elements, we can determine their values to achieve the
goal in Eq. (18). Additionally, we also restrict the probability
of other labels. Hence, for a feature element xu,k of the
injected node u, the corresponding feature element score is
computed as:

sxk
= (W k,cu −W k,cz) · x′

u,k,

s.t. cz = argmax
c ̸=cu

∑
i∈Vu

1√
di + 1

z̃i,
(20)

where W k,cu is the average weight of the k-th feature element
for target label cu and the set Vu is composed of connected
victim nodes. Simply, a feature element xu,k can be selected
if sxk

> 0. Then, the values of the unselected feature elements
are set to 0. Nevertheless, the feature space might be sparse in
some graphs. Similar to [26], [28], [43], there is a constraint
on the number of non-zero elements of each malicious feature.
Then, the budget for a new feature vector is given as:

∆x = ⌊
∑

v∈V
∑m

k=0 I(xv,k ̸= 0)

n
⌋. (21)

Aiming to increase the diversity of malicious features,
we perform a random selection operation instead of directly
selecting the top-∆x feature elements according to the score
being calculated in Eq. (20). Specifically, considering the
limitation of allocated budgets, we randomly select ∆x feature
elements from the top-min(2∆x,m) elements to generate the
malicious feature. Eventually, the malicious feature of the
injected node u can be depicted as:

xu,k =

{
x′
u,k , if xu,k is selected,

0 , if xu,k is not selected.
(22)

D. Overall Attack Process

Overall, the framework of our proposed LPGIA is summa-
rized in Algorithm 1. Based on our analysis, we transform the
GIA problem into a global injection label specificity attack
problem. Then, we conduct sequential injection for the graph.
For each fake node, we select a victim node to determine
the pseudo label of the fake node and the potential nodes
for selection. Iteratively, we rank the nodes according to the
cluster score; and then the one with the largest propagation
score in the top-nk nodes is connected to the fake node. After
the budget for a fake node is exhausted, we leverage the feature
mapping and the statistic to generate malicious features for the
fake node. The above processes are repeated until all the fake
nodes are injected.

Algorithm 1 Label-propagation-based Global Injection Attack
Input: Original graph G = (A,X); surrogate model Ms;

the victim node set Va; the number of fake nodes nfake;
hyper-parameters β for calculating propagation score; the
coefficient of label propagation α.

Output: Adversarial graph G′ = (A′, X ′)
1: Get average linearized weight W and original prediction

Z0 using Ms(G).
2: ∆e ← Generate the link budget of each fake node based

on degree sampling operation.
3: ∆x ← ⌊

∑
v∈V

∑m
k=0 I(xv,k ̸=0)

n ⌋.
4: x′

c,k ← Obtain the possible value of feature elements
according to Eq. (19).

5: Z̃ ← Iterate Zt+1 = α ·D− 1
2AD− 1

2Zt +(1−α)Z0 until
convergence to Z̃.

6: for i = 0 to n do
7: cb,i ← argmaxc̸=yi z

0
i .

8: end for
9: Group victim nodes by the target label cb.

10: sh ← Compute propagation scores for each node in Va
according to Eq. (14).

11: for u = 0 to nfake do
12: Initialize the cluster pu via the ranking of the propaga-

tion score sh.
13: for j = 1 to ∆e,u do
14: Calculate the cluster score sp for all potential nodes

according to Eq. (17).
15: Rank the nodes according to score sp and retain the

top-nk nodes.
16: Add the node with the largest propagation score sh

in the retained nodes into the cluster and remove it
from potential nodes.

17: end for
18: xu ← Generate the adversarial feature vector according

to Eq. (22).
19: Update A′, X ′ according to pu, xu.
20: Z ′ ← Ms(G

′)
21: Z̃ ′ ← Iterate Zt+1 = α ·D− 1

2A′D− 1
2Zt + (1 − α)Z ′

until convergence to Z̃ ′.
22: end for
23: return Adversarial graph G′ = (A′, X ′)

V. EXPERIMENTS

In this section, the superiority of our proposed LPGIA is
verified through comparing the corresponding performance
with that of four GIA baselines. The experiments are con-
ducted on five representative datasets against five GNNs on
the node classification task. Furthermore, ablation studies
are also performed for discussions. Our code is available at
https://github.com/NPU-Netsci/LPGIA.

A. Experimental Settings

The considered five representative datasets are listed as
Cora, Citeseer, Pubmed [47], Cora-ML [48], and OGB-Arxiv
[49]. For OGB-Arxiv, we use the official data loader to split
it. For other datasets, we randomly split the node set into

8

TABLE III
STATISTICS OF THE CONSIDERED DATASETS. HERE, ANF REPRESENTS

THE AVERAGE NUMBER OF NON-ZERO FEATURE ELEMENTS IN A FEATURE
VECTOR AND IFR REPRESENTS THE FEATURE ELEMENT RANGE OF THE

INJECTED NODES.

Dataset Nodes Edges Labels Features ANF IFR Avg. Degree

Cora 2485 5069 7 1433 18.3 {0, 1} 4.1
Cora ML 2810 7981 7 2879 50.6 [0, 0.42] 5.7
Citeseer 2110 3668 6 3703 32.1 {0, 1} 3.5
Pubmed 19717 44324 3 500 50.1 [0, 0.22] 4.5

OGB-Arxiv 169343 1157799 40 128 128.0 [-0.48, 0.80] 13.7

three parts, including the training set (10%), validation set
(10%), and testing set (80%). Accordingly, we applied some
limitations for node injection. For each dataset, we set up the
budget on the number of total new connections which equals to
the product of the average node degree and the number of fake
nodes. Besides, we also limit the number of non-zero feature
elements of the fake nodes to avoid generating abnormal
features. For Cora ML, Pubmed, and OGB-Arxiv, their non-
zero feature elements obey a skewed distribution and we use
the 99th percentile as a limitation of the value range. Following
[28], [43], we only retain the largest connected component for
subsequent experiments, with the corresponding statistics and
injection constraints being presented in Table III.

In order to evaluate the attacking performance and transfer-
ability of our method, we consider five well-known GNNs to
be attacked, which represent different types of neighborhood
aggregation, including GCN [1], GAT [2], SGC [50], GNN-
Guard [51] and SimPGCN [52]. To illustrate the superiority,
the performance of our LPGIA is compared with those of four
GIA methods including AFGSM, G-NIA, ClusterAttack and
GANI. Among these methods, AFGSM and G-NIA are two
targeted attack methods. To extend them to conduct global
attack, we randomly select a target node, then optimize the
edge and feature using the original method respectively. The
above process is repeated until all fake nodes are injected.
Details of the considered baselines are provided:

(1) AFGSM [26]: AFGSM is a gradient-based targeted attack
method. It perturbs the edges or features according to
the approximate closed-form solution. Nevertheless, the
operation only satisfies the binary feature space. For
continuous feature space, we replace 1 with the maximum
value of the range mentioned in Table III.

(2) G-NIA [28]: Similar to AFGSM, G-NIA is also a gradient-
based method focusing on the targeted attack. It trains
multilayer perceptrons in order to learn the attack strategy.
As the multilayer perceptron generates continuous output,
G-NIA extends the Gumbel-Softmax approach to obtain
the discrete features and edges.

(3) ClusterAttack [29]: ClusterAttack transforms the GIA
problem into a graph clustering problem. It clusters the
victim nodes according to Euclid’s distance between their
adversarial feature vectors. Subsequently, it uses zeroth-
order optimization to optimize the injected node feature
for the graph with binary features. For continuous features,
it utilizes natural evolution strategies instead.

(4) GANI [43]: GANI introduces the genetic algorithm to

TABLE IV
ACCURACY (%) OF THE GNNS UNDER EVASION ATTACK ON SMALL
DATASETS. HERE, A SMALLER VALUE USUALLY INDICATES GREATER

DAMAGE INCURRED BY THE ATTACK. AVG. IS THE AVERAGE ACCURACY
OF FIVE VICTIM MODELS ON ONE DATASET. THE BEST RESULTS ARE

BOLDFACED.

Dataset Victim Model Clean AFGSM G-NIA CA GANI LPGIA

Cora

GCN 83.93 79.94 81.77 81.34 77.77 75.35
SGC 83.83 78.49 81.26 81.79 78.18 75.16
GAT 83.30 80.38 81.53 82.10 78.27 75.80

GNNGuard 83.65 79.91 81.52 81.99 78.57 74.55
SimPGCN 82.35 79.92 80.97 80.23 78.83 74.44

Avg. 83.41 79.73 81.41 81.49 78.32 75.06

Cora ML

GCN 85.99 83.23 83.85 84.16 79.80 73.11
SGC 84.09 82.74 83.54 83.63 80.96 73.09
GAT 85.39 83.25 83.70 84.34 81.14 73.28

GNNGuard 85.76 83.96 83.51 83.85 81.03 73.39
SimPGCN 86.19 84.63 83.44 84.21 81.20 73.46

Avg. 85.48 83.56 83.61 84.04 80.83 73.27

Citeseer

GCN 72.63 69.98 69.73 70.63 69.69 66.23
SGC 72.49 70.67 70.50 70.77 69.61 66.00
GAT 72.46 71.72 70.32 70.76 71.19 67.66

GNNGuard 72.75 71.54 71.37 70.74 70.56 66.17
SimPGCN 74.50 71.92 71.56 70.91 70.54 69.12

Avg. 72.96 71.17 70.70 70.76 70.32 67.04

Pubmed

GCN 86.26 84.92 85.52 82.65 82.57 75.43
SGC 82.21 80.09 79.99 79.36 80.41 73.82
GAT 85.57 84.13 84.77 81.70 82.16 74.61

GNNGuard 86.73 85.48 86.05 83.30 82.81 75.74
SimPGCN 87.91 87.11 86.72 85.83 86.90 79.64

Avg. 85.73 84.35 84.61 82.57 82.97 75.85

optimize potential edge combinations and uses the total
decrease of node homophily to sort the combinations fur-
ther. Moreover, it employs statistical operations to generate
malicious features.

In this manuscript, the experiments are conducted for 50
times and the average results will be reported to reduce the
randomness. The experiments follow the black-box settings
in previous works [26], [28], [43], where the attacker has
no information about the defense model. Thus, the attacker
needs to utilize a common GNN as a surrogate model. For
our proposed method, we train a GCN with 2 layers as our
surrogate model and this is performed for 20 times to derive
the average of linearization weights. In the label propagation-
based smooth operation, coefficient α is 0.9, and the maximum
number of iterations T is 50. The coefficient of propagation
score β in Eq. (14) is set as 0.5 by default. Furthermore, the
number of retained potential nodes nk equals to 10.

B. Performance of Attack Methods on Small Datasets

Similar to [42], [43], we evaluate the attacking performance
of LPGIA by comparing it with other baselines under a 5%
injected ratio. According to the attack occurring stages, adver-
sarial attacks can be categorized into two types, i.e., poisoning
attack and evasion attack, for which the attack occurs during
the training and testing stages of GNN respectively. Thus,
we investigate the corresponding performance of our LPGIA
under the different attacks.

1) Evasion Attack: Table IV shows the classification accu-
racy of the victim GNNs on node classification tasks under
evasion attack. Here, Clean indicates the result obtained from
the GNN before attacks and CA is short for ClusterAttack. As
revealed, for all the datasets, our LPGIA is of superior attack
performance (being indicated by the smallest GNN Accuracy)

9

TABLE V
ACCURACY (%) OF THE GNNS UNDER POISONING ATTACK ON SMALL

DATASETS.

Dataset Victim Model Clean AFGSM G-NIA CA GANI LPGIA

Cora

GCN 83.93 80.88 82.71 81.14 77.51 76.51
SGC 83.83 80.03 82.28 81.29 77.54 76.57
GAT 83.30 81.92 82.75 82.39 80.56 77.59

GNNGuard 83.65 80.72 82.63 81.64 78.31 76.41
SimPGCN 82.35 79.90 81.88 80.84 78.02 77.26

Avg. 83.41 80.69 82.45 81.46 78.39 76.87

Cora ML

GCN 85.99 82.92 84.56 84.14 80.20 76.42
SGC 84.09 82.90 83.59 82.78 80.65 76.42
GAT 85.39 83.32 85.01 84.83 82.21 78.16

GNNGuard 85.76 83.19 84.79 84.61 81.25 75.85
SimPGCN 86.19 83.74 84.83 84.30 80.74 75.18

Avg. 85.48 83.21 84.56 84.13 81.01 76.41

Citeseer

GCN 72.63 70.91 71.70 70.82 70.27 66.48
SGC 72.48 70.73 71.90 70.58 69.81 66.77
GAT 72.46 71.09 72.24 70.57 71.57 67.09

GNNGuard 72.75 71.03 71.47 71.52 70.36 67.12
SimPGCN 74.50 73.02 72.97 72.11 70.21 69.97

Avg. 72.96 71.36 72.06 71.12 70.44 67.49

Pubmed

GCN 86.26 84.70 85.34 82.81 82.99 77.24
SGC 82.21 79.49 79.99 78.69 79.51 74.20
GAT 85.57 83.90 84.60 83.19 82.80 77.83

GNNGuard 86.73 85.43 85.72 83.21 83.52 77.18
SimPGCN 87.91 87.23 87.24 85.95 86.69 80.72

Avg. 85.73 84.15 84.58 82.77 83.10 77.43

compared with considered attack methods. As to the binary
feature datasets, i.e., Cora and Citeseer, LPGIA can improve
the performance by 3% compared with the best baseline.
Whereas for the continuous feature datasets, i.e., Cora ML and
Pubmed, the improved amount is approximately 7%. Thus, we
can conclude that in the continuous feature space, LPGIA is of
superior capability to boost the attack performance. This might
be incurred by the fact that we consider the feature element
values during feature generation.

Similar to other baselines [26], [28], [29], [43], LPGIA
adopts GCN as the surrogate model and generates perturba-
tions based on it. The perturbations will be used to attack
other GNNs. Upon this setting, the results also indicate
that the perturbations generated by LPGIA exhibit excellent
transferability. Although GCN is adopted as the surrogate
model, we observed that SGC performs worse compared
with GCN when LPGIA is conducted. The absence of a
nonlinear activation layer in SGC may decrease its robustness.
SimPGCN exhibits the highest level of robustness among the
tested GNN models in most cases, especially in Citeseer and
Pubmed. As GIA methods avoid modifying the original graph,
it is hard for them to perturb the process of constructing new
graphs in SimPGCN. The new graphs could help SimPGCN
learn more reliable node representations compared with other
GNN models.

2) Poisoning Attack: Then, to investigate the performance
of GNNs on node classification tasks under poisoning attack,
extensive experiments are conducted with the corresponding
results being provided in Table V. LPGIA can improve the per-
formance by approximately 1.5% and 3% compared with the
best baseline in Cora and Citeseer, respectively. Furthermore,
in Cora ML and Pubmed, the improved amount is nearly
5%. For the poisoning attack, the injection will change the
feature mapping learned by GNN [53]. This poses a challenge
for LPGIA, as our analysis assumes a fixed feature mapping.
As expected, LPGIA achieves a smaller improvement in the

GCN SGC GAT GNNGuard
60

62

64

66

68

70

72

74

Av
er

ag
e A

cc
ur

ac
y

71.20

69.07

72.24

70.04

68.53

66.18

71.57

70.02

67.12

63.98

68.75
69.27

67.37

64.12

69.53 69.68

65.19

63.30

68.96
68.45

Clean
AFGSM
G-NIA
CA
LPGIA

Fig. 3. Accuracy (%) of the GNNs under evasion attack on OGB-Arxiv.
Clean indicates the result obtained from the GNN before attacks and CA is
short for ClusterAttack.

poisoning attack compared with the evasion attack. However,
LPGIA still outperforms all other methods, demonstrating the
effectiveness of leveraging the node prediction information.

C. Performance of Attack Methods on Large Datasets

To evaluate the scalability of LPGIA, we extend our exper-
iments to OGB-Arxiv, a dataset that is significantly larger in
scale compared to others. Particularly, OGB-Arxiv stands out
as a relatively dense graph, with average node degrees reaching
up to 13.7. This implies that the number of potential combina-
tions is larger compared to other datasets in our experimental
settings, thereby naturally posing more challenges in terms
of time and memory usage. Due to SimPGCN’s high space
complexity, it is challenging to apply to OGB-Arxiv and will
not be included in this experiment. Similarly, due to GANI’s
high time complexity, our method will be compared with other
attack approaches excluding GANI. The evasion attack results
on four GNNs by injecting 0.5% nodes are depicted in Fig. 3.
As the scale of the data increases, a decline in performance
is observed across most of the target models, especially SGC,
even with a small attack budget. Notably, LPGIA stands out
with the best attack performance compared to other baselines
in most cases, illustrating its strong scalability to attack GNNs
in large-scale graphs.

D. Performance with Different Magnitudes of Injection

To reveal the effect of different injection ratios on attack
performance, we vary the corresponding value from 1% to
5% with the results being illustrated in Fig. 4. As indicated,
with the increase of injection ratio, the classification accuracy
of victim model reduces rapidly. Furthermore, for scenarios
with different injection ratios, LPGIA is always of the best
attack performance compared with the other considered ones.
In the scenario with a 1% injection ratio, LPGIA shows
limited superior attack performance, which is due to the small
number of injected nodes. As the injection ratio increases, the
superiority of LPGIA becomes more pronounced, suggesting
that with a larger number of injected nodes, our method can
effectively leverage the similarity of target labels between
nodes to perturb the graph, leading to more accuracy reduction
of GNN.

10

0 1 2 3 4 5
Injection ratio

76

78

80

82

Av
er

ag
e

ac
cu

ra
cy

(a) Cora

0 1 2 3 4 5
Injection ratio

74

76

78

80

82

84

86

Av
er

ag
e

ac
cu

ra
cy

(b) Cora_ML

AFGSM G-NIA CA GANI LPGIA

0 1 2 3 4 5
Injection ratio

67

68

69

70

71

72

73

Av
er

ag
e

ac
cu

ra
cy

(c) Citeseer

0 1 2 3 4 5
Injection ratio

76

78

80

82

84

86

Av
er

ag
e

ac
cu

ra
cy

(d) Pubmed

Fig. 4. Average accuracy of victim models under evasion attack with injection ratio varying between 1% and 5%.

0.0 0.2 0.4 0.6 0.8 1.0
74.5

75.0

75.5

76.0

76.5

77.0

A
cc

ur
ac

y

(a) Cora

0.0 0.2 0.4 0.6 0.8 1.0

71.5

72.0

72.5

73.0

73.5

74.0

A
cc

ur
ac

y

(b) Cora_ML

GCN SGC GAT GNNGuard SimPGCN

0.0 0.2 0.4 0.6 0.8 1.0

66

67

68

69

70

A
cc

ur
ac

y
(c) Citeseer

0.0 0.2 0.4 0.6 0.8 1.0

74

75

76

77

78

79

80

A
cc

ur
ac

y

(d) Pubmed

Fig. 5. Accuracy of victim models under evasion attack with different β in LPGIA. β = 1 means that LPGIA only considers the decreasing extent calculated
in Eq. (12). In contrast, β = 0 means that LPGIA only considers the difference calculated in Eq. (13).

E. Performance with Different Hyper-parameters

According to Eq. (14), the propagation score involves a
trade-off between two factors, which can be adjusted through
the hyper-parameter β. To investigate the effect of varying β
on the attack performance, experiments are performed with
the results depicted in Fig. 5. Note that the other experimental
settings remain as those employed in evasion attacks.

As in Fig. 5, on Cora ML and Pubmed, the optimal β is 0.4.
Nevertheless, for Cora and Citeseer, the optimal β is obtained
as 0.5 and 0.2, respectively. It suggests that considering both
factors in Eq. (14) comprehensively is an effective approach,
as LPGIA achieves a smaller improvement when relying solely
on a single factor for the attack strategy. Furthermore, we
observe that LPGIA is sensitive to β in most cases. As β
increases, the obtained accuracy of GNN fluctuates. However,
we notice that, in Pubmed, the corresponding accuracy is not
sensitive to the varying of hyper-parameter β. An explanation
is that there is not a significant difference between the rankings
of nodes based on either of these two factors.

F. Ablation Study

To better understand the impact of adopting different attack
strategies on the performance of LPGIA, we conduct detailed
ablation studies. The remaining experimental settings are con-
sistent with those employed in our evasion attack.

1) Node Selection Strategy: First, we conduct experiments
to investigate different node selection strategies, and the results
are provided in Table VI. Among them, the “Random” strat-
egy indicates that we uniformly assign node scores between
[0, 1] at random; the “Degree” strategy gives the preference
of selecting nodes with low degrees [27]. As to the “HD”

TABLE VI
AVERAGE ACCURACY (%) OF GNN UNDER ADVERSARIAL ATTACK USING
DIFFERENT NODE SELECTION STRATEGIES IN LPGIA. THE BEST RESULTS

ARE BOLDFACED.

Strategies Cora Cora ML Citeseer Pubmed

Clean 83.41 85.48 72.96 85.73
Random 77.22 76.38 70.40 77.72
Degree 76.18 73.10 67.96 76.95

HD 76.02 72.59 68.24 76.42
Ours 75.06 73.27 67.04 75.85

strategy, it only considers the decrease of homophily [43].
As revealed, for the considered binary datasets, i.e., Cora and
Citeseer, our node selection strategy is of the best performance.
However, our strategy exhibits poor performance than others
when considering Cora ML, due to the reason that LPGIA
selects more nodes with higher degrees than other strategies.
Those nodes are hard to attack in Cora ML and make our
strategy perform worse. Generally speaking, our method is of
better capability to identify the valuable target nodes compared
with the others as both factors in Eq. (14) are considered
comprehensively.

2) Cluster Generation Strategy: As discussed above, the
presence of category imbalance within the target label group
hinders our ability to mislead the label prediction. Hence,
we assess the efficacy of our proposed strategy in mitigating
this issue and enhancing attack performance. For comparison,
the “Random” strategy indicates that we randomly select
several nodes in the target label group to form a cluster;
The “TopNodes” strategy selects the top-k nodes in the target
label group with the largest propagation scores to form a
cluster. Compared with the “TopNodes” strategy, the results

11

TABLE VII
AVERAGE ACCURACY (%) OF GNN UNDER ADVERSARIAL ATTACK USING

DIFFERENT CLUSTER GENERATION STRATEGIES IN LPGIA. THE BEST
RESULTS ARE BOLDFACED.

Strategies Cora Cora ML Citeseer Pubmed

Clean 83.41 85.48 72.96 85.73
Random 78.16 76.97 70.28 77.91

TopNodes 76.55 73.66 68.24 76.78
Ours 75.06 73.27 67.04 75.85

TABLE VIII
AVERAGE ACCURACY (%) OF GNN UNDER ADVERSARIAL ATTACK USING

DIFFERENT FEATURE GENERATION STRATEGIES IN LPGIA. THE BEST
RESULTS ARE BOLDFACED.

Strategies Cora Cora ML Citeseer Pubmed

Clean 83.41 85.48 72.96 85.73
Random 80.83 82.74 71.90 84.01

MostFrequency 78.10 78.43 70.24 82.60
Ours 75.06 73.27 67.04 75.85

demonstrate the effectiveness of the proposed strategy, as
shown in Table VII. By alleviating the issue of imbalance,
LPGIA achieves improved performance in all cases.

3) Feature Generation Strategy: In Table VIII, we present
a comparison of different feature generation strategies. The
“Random” strategy indicates that we will randomly copy the
feature from the original node to the injected node. The
“MostFrequency” strategy represents a statistics-based method
that selects the most frequently occurring feature element
among nodes with a specific label. We do not compare with the
gradient-based method [27] due to the concern about feature
inconsistency. The results indicate that the malicious features
generated by LPGIA significantly impact the predictions of
nodes, compared with other strategies.

4) Single Module: Finally, Fig. 6 presents the effective-
ness of LPGIA when only one of the proposed strategies
is retained and the “Random” strategy is applied to the rest
module of LPGIA. Note that the feature generation module
plays an important role in attacking GNN. A reason for the
promising performance of the feature generation module is
that we retained the operation of grouping nodes based on
the target label. It allows the feature generation module to
focus on increasing the probability of the target label for the
victim node. However, propagating random features cannot
effectively increase the probability of the target label for the
victim node, which explains the poor attack performance when
using the connection optimization module of LPGIA alone.

Overall, the strategies employed in each module effectively
address the challenges. The feature generation module is the
most critical component in the LPGIA framework, but it does
not diminish the importance of connection modules. Proper
combinations of victim nodes can increase the success rate of
the attack and facilitate the propagation of malicious features
to a greater extent. For LPGIA, the combination of these
strategies effectively reduces the accuracy of the GNN model.

Cora Cora_ML Citeseer Pubmed
0

2

4

6

8

10

12

Av
er

ag
e A

cc
ur

ac
y

R
ed

uc
tio

n

1.48
2.07

0.89 1.16
1.95 2.15

0.74
1.31

5.27

8.64

1.91

7.57
8.35

12.21

5.92

9.88

Node
Cluster
Feature
LPGIA

Fig. 6. Average accuracy reduction (%) of GNN under adversarial attack
using a single module in LPGIA.

VI. CONCLUSION

In this paper, we study the adversarial attack on ho-
mophily graphs and provide a label-propagation-based global
injection attack method on GNNs. Specifically, neighboring
nodes exhibit significant similarity of their target labels in
the homophily graphs, thereby providing valuable insights
to us regarding potential directions for attacks. To exploit
the relationship between node prediction and graph structure,
our method clusters valuable and vulnerable nodes in the
graph according to the expected effects of label propagation.
Besides, a fake node with a malicious feature will connect to
each cluster, increasing the predicted probability of the target
label for nodes in the cluster. The extensive experiments on
representative datasets demonstrate the superior performance
of LPGIA in attacking various GNNs under multiple settings
compared to other adversarial attacks.

To improve time efficiency, our work simplifies the propaga-
tion process by propagating the smooth probability distribution
between nodes, thereby constraining a more accurate propa-
gation simulation. In future work, we intend to deeply explore
various propagation processes, especially efficient propagation
in the large-scale graph.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representations,
2017.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. 6th Int. Conf. Learn.
Representations, 2018.

[3] J. Liu, J. Zheng, J. Wu, and Z. Zheng, “Fa-gnn: Filter and augment
graph neural networks for account classification in ethereum,” IEEE
Trans. Network Sci. Eng., vol. 9, no. 4, pp. 2579–2588, 2022.

[4] L. Cheng, P. Zhu, K. Tang, C. Gao, and Z. Wang, “Gin-sd: Source
detection in graphs with incomplete nodes via positional encoding and
attentive fusion,” in Proc. 38th AAAI Conf. Artif. Intell., 2024, pp. 55–63.

[5] D. Lin, J. Wu, T. Huang, K. Lin, and Z. Zheng, “Who is who
on ethereum? account labeling using heterophilic graph convolutional
network,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 54, no. 5, pp.
1541–1553, 2024.

[6] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 30th Adv. Neural Inf. Process. Syst.,
2017, pp. 1025–1035.

[7] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based
multi-relational graph convolutional networks,” in Proc. 8th Int. Conf.
Learn. Representations, 2020.

[8] C. Gao, J. Zhu, F. Zhang, Z. Wang, and X. Li, “A novel representation
learning for dynamic graphs based on graph convolutional networks,”
IEEE Trans. Cybern., vol. 53, no. 6, pp. 3599–3612, 2023.

12

[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proc. 7th Int. Conf. Learn. Representations, 2019.

[10] J. Wang, P. Chen, B. Ma, J. Zhou, Z. Ruan, G. Chen, and Q. Xuan,
“Sampling subgraph network with application to graph classification,”
IEEE Trans. Network Sci. Eng., vol. 8, no. 4, pp. 3478–3490, 2021.

[11] L. Sang, M. Xu, S. Qian, and X. Wu, “Adversarial heterogeneous graph
neural network for robust recommendation,” IEEE Trans. Comput. Social
Syst., vol. 10, no. 5, pp. 2660–2671, 2023.

[12] P. Zhu, B. Wang, K. Tang, H. Zhang, X. Cui, and Z. Wang, “A
knowledge-guided graph attention network for emotion-cause pair ex-
traction,” Knowledge-Based Syst., vol. 286, 2024, Art. no. 111342.

[13] J. Tian, B. Wang, R. Guo, Z. Wang, K. Cao, and X. Wang, “Adversarial
attacks and defenses for deep-learning-based unmanned aerial vehicles,”
IEEE Internet Things J., vol. 9, no. 22, pp. 22 399–22 409, 2022.

[14] P. Zhu, Z. Fan, S. Guo, K. Tang, and X. Li, “Improving adversarial
transferability through hybrid augmentation,” Comput. Secur., vol. 139,
2024, Art. no. 103674.

[15] J. Tian, C. Shen, B. Wang, X. Xia, M. Zhang, C. Lin, and Q. Li,
“Lesson: Multi-label adversarial false data injection attack for deep
learning locational detection,” IEEE Trans. Dependable Secure Comput.,
early access, pp. 1–15, 2024.

[16] P. Zhu, Z. Pan, Y. Liu, J. Tian, K. Tang, and Z. Wang, “A general
black-box adversarial attack on graph-based fake news detectors,” 2024,
arXiv:2404.15744.

[17] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2018, pp. 2847–2856.

[18] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 1115–1124.

[19] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural net-
works via meta learning,” in Proc. 7th Int. Conf. Learn. Representations,
2019.

[20] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and
X. Lin, “Topology attack and defense for graph neural networks: An
optimization perspective,” in Proc. 28th Int. Joint Conf. Artif. Intell.,
2019, pp. 3961–3967.

[21] J. Chen, X. Lin, Z. Shi, and Y. Liu, “Link prediction adversarial attack
via iterative gradient attack,” IEEE Trans. Comput. Social Syst., vol. 7,
no. 4, pp. 1081–1094, 2020.

[22] J. Li, T. Xie, L. Chen, F. Xie, X. He, and Z. Zheng, “Adversarial attack
on large scale graph,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1,
pp. 82–95, 2023.

[23] J. Chen, D. Zhang, Z. Ming, K. Huang, W. Jiang, and C. Cui,
“Graphattacker: A general multi-task graph attack framework,” IEEE
Trans. Network Sci. Eng., vol. 9, no. 2, pp. 577–595, 2022.

[24] J. Chen, G. Huang, H. Zheng, S. Yu, W. Jiang, and C. Cui, “Graph-
fraudster: Adversarial attacks on graph neural network-based vertical
federated learning,” IEEE Trans. Comput. Social Syst., vol. 10, no. 2,
pp. 492–506, 2023.

[25] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial
attacks on graph neural networks via node injections: A hierarchical
reinforcement learning approach,” in Proc. ACM World Wide Web Conf.,
2020, pp. 673–683.

[26] J. Wang, M. Luo, F. Suya, J. Li, Z. Yang, and Q. Zheng, “Scalable attack
on graph data by injecting vicious nodes,” Data Min. Knowl. Discovery,
vol. 34, no. 5, pp. 1363–1389, 2020.

[27] X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang,
“Tdgia: Effective injection attacks on graph neural networks,” in Proc.
27th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2021, pp.
2461–2471.

[28] S. Tao, Q. Cao, H. Shen, J. Huang, Y. Wu, and X. Cheng, “Single node
injection attack against graph neural networks,” in Proc. 30th ACM Int.
Conf. Knowl. Manage., 2021, pp. 1794–1803.

[29] Z. Wang, Z. Hao, Z. Wang, H. Su, and J. Zhu, “Cluster attack: Query-
based adversarial attacks on graph with graph-dependent priors,” in Proc.
31st Int. Joint Conf. Artif. Intell., 2022, pp. 768–775.

[30] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Combining neural
networks with personalized pagerank for classification on graphs,” in
Proc. 7th Int. Conf. Learn. Representations, 2019.

[31] H. Wang and J. Leskovec, “Combining graph convolutional neural
networks and label propagation,” ACM Trans. Inf. Syst., vol. 40, no. 4,
pp. 1–27, 2021.

[32] H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui, “On
the equivalence of decoupled graph convolution network and label
propagation,” in Proc. ACM World Wide Web Conf., 2021, pp. 3651–
3662.

[33] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. Benson, “Combining label
propagation and simple models out-performs graph neural networks,” in
Proc. 9th Int. Conf. Learn. Representations, 2021.

[34] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” Technical Report, Carnegie Mellon University,
2002.

[35] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Proc. 16th Adv. Neural Inf.
Process. Syst., 2003, pp. 321–328.

[36] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Phys. Rev. E,
vol. 76, no. 3, 2007, Art. no. 036106.

[37] H. Wang, Y. Liu, P. Yin, H. Zhang, X. Xu, and Q. Wen, “Label specificity
attack: Change your label as i want,” Int. J. Intell. Syst., vol. 37, no. 10,
pp. 7767–7786, 2022.

[38] D. Chen, J. Zhang, Y. Lv, J. Wang, H. Ni, S. Yu, Z. Wang, and Q. Xuan,
“Single node injection label specificity attack on graph neural networks
via reinforcement learning,” 2023, arXiv:2305.02901.

[39] J. Chen, Y. Chen, H. Zheng, S. Shen, S. Yu, D. Zhang, and Q. Xuan,
“Mga: Momentum gradient attack on network,” IEEE Trans. Comput.
Social Syst., vol. 8, no. 1, pp. 99–109, 2021.

[40] X. Lin, C. Zhou, J. Wu, H. Yang, H. Wang, Y. Cao, and B. Wang,
“Exploratory adversarial attacks on graph neural networks for semi-
supervised node classification,” Pattern Recognit., vol. 133, 2023, Art.
no. 109042.

[41] S. Tao, Q. Cao, H. Shen, Y. Wu, L. Hou, F. Sun, and X. Cheng, “Ad-
versarial camouflage for node injection attack on graphs,” Information
Sciences, vol. 649, 2023, Art. no. 119611.

[42] Y. Chen, H. Yang, Y. Zhang, M. KAILI, T. Liu, B. Han, and J. Cheng,
“Understanding and improving graph injection attack by promoting
unnoticeability,” in Proc. 10th Int. Conf. Learn. Representations, 2022.

[43] J. Fang, H. Wen, J. Wu, Q. Xuan, Z. Zheng, and C. K. Tse, “Gani: Global
attacks on graph neural networks via imperceptible node injections,”
IEEE Trans. Comput. Social Syst., early access, pp. 1–14, 2024.

[44] M. Ju, Y. Fan, C. Zhang, and Y. Ye, “Let graph be the go board: gradient-
free node injection attack for graph neural networks via reinforcement
learning,” in Proc. 37th AAAI Conf. Artif. Intell., 2023, pp. 4383–4390.

[45] P. Hongbin, W. Bingzhe, C. Kevin Chen-Chuan, L. Yu, and Y. Bo,
“Geom-gcn: Geometric graph convolutional networks,” in Proc. 8th Int.
Conf. Learn. Representations, 2020.

[46] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” in Proc. 33th Adv. Neural Inf. Process. Syst., 2020,
pp. 7793–7804.

[47] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in Proc. 33rd Int. Conf. Mach. Learn.,
2016, pp. 40–48.

[48] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking,” in Proc. 6th Int. Conf.
Learn. Representations, 2018.

[49] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” in Proc. 33th Adv. Neural Inf. Process. Syst., 2020, pp. 22 118–
22 133.

[50] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in Proc. 36th Int. Conf.
Mach. Learn., vol. 97, 2019, pp. 6861–6871.

[51] X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural networks
against adversarial attacks,” in Proc. 33rd Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 9263–9275.

[52] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks,” in Proc. 14th ACM Int. Conf.
Web Search Data Mining, 2021, pp. 148–156.

[53] K. Li, Y. Liu, X. Ao, and Q. He, “Revisiting graph adversarial attack and
defense from a data distribution perspective,” in Proc. 11th Int. Conf.
Learn. Representations, 2023.

13

Peican Zhu (Member, IEEE) received the Ph.D.
degree from the University of Alberta, Edmonton,
AB, Canada, in 2015. He is currently an Associate
Professor with the School of Artificial Intelligence,
Optics and Electronics (iOPEN), Northwestern Poly-
technical University, Xi’an, China. His research in-
terests include data-driven complex systems model-
ing, complex social network analysis, and AI secu-
rity.

Zechen Pan received the bachelor’s degree
from Northwestern Polytechnical University, Xi’an,
China, in 2022. He is currently working toward the
M.S. degree in the School of Computer Science,
Northwestern Polytechnical University. His research
interests include complex social network analysis
and AI security.

Keke Tang (Member, IEEE) received the Ph.D. de-
gree from the University of Science and Technology
of China, Hefei, China, in 2017. He is currently
an Associate Professor with Guangzhou University,
Guangzhou, China. Prior to joining Guangzhou Uni-
versity in 2019, he was a Postdoctoral Fellow with
the University of Hong Kong, Hong Kong, China.
His research interests fall into the areas of robotics,
computer vision, computer graphics, and cyberspace
security.

Xiaodong Cui received the Ph.D. degree in elec-
trical engineering from the University of Texas at
San Antonio in 2015. Currently, he is an Associate
Professor at the College of Marine Science and
Technology in Northwestern Polytechnical Univer-
sity, Xi’an, China. His research interests include un-
derwater acoustic target recognition, object detection
and dereverberation, AI security.

Jinhuan Wang received the B.S. in automation and
M.S. degrees in control science and engineering with
the College of Information Engineering, Zhejiang
University of Technology, Hangzhou, China, in 2017
and 2020, respectively, where she is currently work-
ing toward the Ph.D. degree in control science and
engineering. Her research interests include social
network data mining and machine learning.

Qi Xuan (Senior Member, IEEE) received the B.S.
and Ph.D. degrees in control theory and engineering
from Zhejiang University, Hangzhou, China, in 2003
and 2008, respectively. He was a Post-Doctoral Re-
searcher with the Department of Information Science
and Electronic Engineering, Zhejiang University,
from 2008 to 2010, respectively, and a Research
Assistant with the Department of Electronic Engi-
neering, City University of Hong Kong, Hong Kong,
in 2010 and 2017. From 2012 to 2014, he was a Post-
Doctoral Fellow with the Department of Computer

Science, University of California at Davis, CA, USA. He is a senior member of
the IEEE and is currently a Professor with the Institute of Cyberspace Security,
College of Information Engineering, Zhejiang University of Technology,
Hangzhou, China. His current research interests include network science,
graph data mining, cyberspace security, machine learning, and computer
vision.

	Introduction
	Related Works
	Preliminaries
	Graph Neural Network
	Graph Injection Attack

	Proposed Method
	Rethinking GIA from the perspective of label propagation
	Cluster Derivation
	Feature Generation
	Overall Attack Process

	Experiments
	Experimental Settings
	Performance of Attack Methods on Small Datasets
	Evasion Attack
	Poisoning Attack

	Performance of Attack Methods on Large Datasets
	Performance with Different Magnitudes of Injection
	Performance with Different Hyper-parameters
	Ablation Study
	Node Selection Strategy
	Cluster Generation Strategy
	Feature Generation Strategy
	Single Module

	Conclusion
	References
	Biographies
	Peican Zhu
	Zechen Pan
	Keke Tang
	Xiaodong Cui
	Jinhuan Wang
	Qi Xuan

