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 

Abstract— The number of road accident related fatalities and 

damages are reduced substantially by improving road 

infrastructure and enacting and imposing laws. Further reduction 

is possible through embedding intelligence on to the vehicles for 

safe decision making.  Road boundary information plays a major 

role in developing such intelligent vehicles. A prominent feature 

of roads in urban, semi-urban and similar environments is curbs 

on either side defining the road’s boundary. In this paper a novel 

methodology of tracking curbs is proposed. The problem of 

tracking a curb from a moving vehicle is formulated as tracking 

of a maneuvering target in clutter from a mobile platform using 

on board sensors. A curb segment is presumed to be the 

maneuvering target, and is modeled as a nonlinear Markov 

switching process. The target’s (curb’s) orientation and location 

measurements are simultaneously obtained using a 2D scanning 

LADAR and a CCD monocular camera and are modeled as 

traditional base state observations. Camera images are also used 

to estimate the target’s mode which is modeled as a discrete-time 

point process. An effective curb tracking algorithm, known as 

CuTE (Curb Tracking and Estimation) using multiple modal 

sensor information is thus synthesized in an image enhanced 

interactive multiple model filtering framework. The use and 

fusion of camera vision and LADAR within this frame provide for 

efficient, effective and robust tracking of curbs. Extensive 

experiments conducted in a campus road network demonstrate 

the viability, effectiveness and robustness of the proposed method. 

 
Index Terms— laser radar, multi sensor systems, road 

transportation, robot sensing systems, robot vision system  

 

I. INTRODUCTION 

N the literature, several methodologies based on single 

exteroceptive sensors including camera [1]-[2], millimeter 

wave radar (MMWR) [3]-[4], and laser-radar (LADAR) [5]-

[6] have been applied to the problem of road boundary 

tracking. However, using a single mode of sensing for road 

boundary tracking has its limitations [16]. In the recent years 

we have witnessed a growing interest in the use of multiple 

sensors applied to this problem. An important contribution is 

due to [7]. The methodology is based on active structured 

lighting techniques used to construct 3D object geometry, 
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which is very popular in computer vision. The sensors used are 

a laser line stripper and a camera. The main drawbacks of the 

methodology are the limited range of operation (up to 3m from 

the vehicle), and its susceptibility to bright sunlight.  

In this paper an effective, reliable and robust methodology 

is proposed for curb tracking using LADAR and vision 

sensing. The approach is based on tracking a maneuvering 

target in clutter using sensors on a moving platform. A 

multiple model approach, as implemented by the Interacting 

Multiple Model (IMM) method, provides one of the most 

effective frameworks for tracking maneuvering targets [8]. 

However, with the complexity of the maneuver and presence 

of clutter, IMM can fail mainly due to the significant time lag 

between the time of the target’s actual change of maneuver and 

the time that maneuver is detected unambiguously, which 

causes inadequate timely adjustments to the tracking filter. To 

minimize the detection time of target mode (maneuver) an 

image based approach is proposed in [9]. The target’s mode is 

inferred by an image processing system based on orientation 

information provided by a 2D imaging sensor. The output of 

the image processor is modeled as a sequence of classifications 

of the target into one of the known modes of operation. The 

discrete-time counterpart of [9] is developed in [10]. In [10] 

history of modal observations is used to optimally estimate the 

target’s modes using point process filtering theory [11]. 

Further enhancements are made in [12] and [13] by fusing 

those estimated target modes (obtained using the image 

observations) with traditional point mass state observations 

obtained using radar measurements. The main idea is to use 

conditional mode probabilities calculated in [9] and [10] to 

select the most appropriate model to be used in the extended 

Kalman filter (EKF) for target state estimation.  These 

methods do not utilize all the information available, and rely 

on ad hoc methods of incorporating uncertainty about the 

mode estimates. In [14] a filter framework known as Image 

Enhanced Interactive Multiple Model Filter (IEIMM) is 

proposed which incorporates all the information from point 

mass sensors and image sensors in a unified manner to more 

accurately estimate target state and its mode simultaneously. 

This method has provided the inspiration and basis of the 

proposed CuTE algorithm for curb tracking using multiple 

sensors. In this paper, the curb tracking problem is first 

formulated as tracking a maneuvering target and is solved by 

adapting IEIMM [14] framework. The key differences with 

[14] are the utilization of a moving observer, nonlinear 

measurement and process models and extensive experimental 

evaluations. Target or curb measurements are made using a 

monocular CCD camera and a 2D scanning LADAR. The use 

and fusion of CCD vision and LADAR in an IEIMM 
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framework provides for efficient, effective and robust tracking 

of curbs over a longer operating region ahead of the vehicle.   

In Section II curb tracking problem is formulated and solved 

within an IEIMM framework. Section III describes the use of 

LADAR and vision sensing for extracting road features. 

Results of extensive experiments carried out in a campus site 

are presented in Section IV followed by the concluding 

remarks given in Section V.  

II. CURB TRACKING AND ESTIMATION (CUTE) 

A. Problem Formulation 

The targets, in our case are the line segments corresponding 

to vertical curb surfaces as observed by the 2D scanning 

LADAR and the CCD camera. When the vehicle is in motion, 

the line segments or targets move along the curbs (left/right). 

Thus on a straight segment of a road the targets (curbs) can be 

considered in a non-maneuvering state, whilst at a bend in a 

maneuvering state. 

B. Hybrid Vehicle and Target Model 

Suppose  ( 1) : 0tm k k   represents the target (curb) mode 

at time k+1 and assume that 
tm  evolves as a homogeneous, 

discrete-time Markov process in the state space  1,....,d  with 

transition probability matrix  ( 1) | ( )ij t tP m k i m k j   T  

with initial conditions,   0(0) ( )tP m i i  π . The composite 

nonlinear vehicle (with state  v ks ) and target dynamics (with 

state  t ks ) can be represented as, 

     

        

1 1 1

             , 1 1 1
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        (1) 

where,   ( ),k ks v  are n dimensional vectors. ( )ks  is assumed 

to be a Gaussian random vector with covariance matrix  0C . 

[.]f  is the nonlinear process model.   1tm k B  is a mode 

dependent matrix. Noise term,  kv  is a sequence of 

independent zero mean Gaussian random vectors with 

covariance matrix, Q . The noise,  kv  and  0s  are assumed 

to be uncorrelated.  

Vehicle process model 
T

v v v v

w w wx y    s  can be derived 

using Fig. 1 as, 
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where,  ,v v

w wx y are the coordinates of the center of the rear axel 

of the vehicle and v

w  is the orientation of the vehicle axis with 

respect to a world coordinate system,  ,W WX Y  in Fig. 1. 

, ,V T   and L   are speed, steer angle, sampling time and 

wheel base length respectively.  v kv  is the noise related to 

the vehicle model.  
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Fig. 1. Vehicle kinematics 

 

The road boundary or curb is assumed locally straight and 

hence approximated by a straight line segment and represented 

by its mid point t t

w w
x y( , )  and orientation ( t

w ). Therefore, the 

target (curb) model corresponding to a straight curb scenario, 

i.e the non-maneuvering mode of target, can be assumed to be 

the usual constant speed model [15] with 
T

t t t t t t

w w w w wx x y y    s .  
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where, ( , )t t

w wx y are the position coordinates of the center of the 

target (mid point of the line segment) and t

w  is the orientation 

of the target (line segment) with respect to the world 

coordinate system.  t kv  is the noise related to the target 

model. 

The usual turn rate model [15] is used for left-bend and 

right-bend curb scenarios, which are equivalent to the distinct 

modes or states of the maneuvering target.  
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where,   is the turn rate of the target.  

C. Hybrid Vehicle and Target Sensor Model 

The composite moving observation model for the vehicle 

and sensor hybrid is, 
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     k k k    z h s w                         (5) 

where,     ,k kz w  are m dimensional vectors.  kw  is a 

sequence of zero mean Gaussian random vectors with 

covariance matrix R . The process  kv  is uncorrelated 

with  kw  and  0s . The observation model can be derived 

from Fig. 1 as, 
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(6) 

( , , )w w wx y  are the measurements of vehicle position using 

Differential Global Positioning System (DGPS) along x-axis, 

y-axis and vehicle orientation measured using gyroscope with 

respect to the world coordinate system respectively. 

( , , )t t t

L L Lx y   are the curb data extracted by the laser scanner [5] 

in laser coordinate system. ( , , )t t t

C C Cx y   denotes the line 

segments describing the road boundaries in vehicle coordinate 

frame as determined by the vision system [16]. The error 

covariance matrix R  can be determined by the covariance 

matrices of DGPS, gyroscope data, pose parameters through 

LADAR and vision sensing. 

D. Image Sensor Model for Mode Estimation 

The mode of target (curb) as detected by the CCD camera 

(section III) is denoted by    0,1,2...,n k d : where d  is the 

number of modes the target could possibly exist in and 

  0,n k   represents no useful information. Lets introduce an 

indicator vector  1k   describing the binary mode 

observations of image sensor output,  1n k  , with the i
th

 

element defined as,  

1     ( 1)
( 1)

0         otherwise

i

i

n k i
k

 
  


                   (7) 

Similarly ( 1)i k  , the i
th

 element of the indicator vector of 

the target mode,  ( 1) 1,....,tm k d  is defined. Due to fast 

sampling, slow processing or complicated scene 

interpretations, image sensor may not yield an output at all 

sampling times. This is handled using a parameter   as 

follows;  

 
1   an image output is generated

1
0   no image output is generated

k


  


                (8) 

Probability that an image output is generated given the target 

is in mode i is given by 

   ( 1) 1| ( 1) 1 ( 1) | ( 1) 1i i iP k k E k k             . The 

discernibility matrix v

ijd   D is defined as the probability of 

mode j is reported given the actual mode is i at the reporting 

time, where  ( 1) 1| ( 1) 1, ( 1) 1ij j id P k k k         with 

1

1
d

ij

j

d


 . This discernibility matrix provides a measure of the 

quality of the sensor, for example, large diagonal elements 

represent a sensor, which can distinguish different modes 

unambiguously. A rate matrix, vΛ , is defined as 

   
T

v v diag Λ D  [10]. The notation  diag   is used to 

denote the matrix whose diagonal elements are the components 

of the vector  .  It is assumed that  1n k   is conditionally 

independent of all other random variables. Given ( 1) 1k    

and ( 1) 1i k   , vΛ  fully describes the image-based 

observation process.  

E. Image Enhanced Curb Tracking 

Tracking of line segments corresponding to the curbs is non 

trivial due the significant orientation changes of the curbs and 

their detection in the presence of clutter. This requires mode 

adaptive estimation techniques. One of the ways is to use the 

Interacting Multiple Model (IMM) [15] technique. If mode 

observations can be obtained, an image-enhanced IMM 

algorithm (IEIMM) can provide better tracking performance 

[14]. The IEIMM in [14] utilizes a linear process model and a 

static observer. As shown in section II, the process model (1) 

and the observation model (5) are nonlinear and the 

observations are made from a mobile vehicle. Thus IEIMM in 

[14] is suitably adapted by utilizing an extended Kalman filter 

(EKF) with a modified observation model (6) to accommodate 

for the nonlinearity and effects of moving observer. Therefore, 

the optimal vehicle and target hybrid state estimate, 
1ks , given 

the image based mode observations up to and including time 

k+1, i.e.     1 1 ,...., 1k n n k  N  and the base state 

laser/vision measurements up to and including time k+1, i.e. 

    1 1 ,...., 1k z z k  Z  can be derived as [14], 
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                             (9)  

where,  1 1 1, | ,k k k k kp n z    N Z  is a normalization constant. 

The optimal filter (9) is computationally prohibitive to 

implement. Therefore, we utilize an EKF based 

implementation. Fig. 2 shows the detailed functional block 

diagram of the Curb Tracking and Estimation (CuTE) 

algorithm. Firstly the laser data is processed to extract the road 

boundaries (Section III). Secondly, the image sequences are 

analyzed to extract the road boundaries using an Unscented 

Kalman Filter (UKF). Then the images are further processed to 

determine the type of road or target mode by analyzing the 

road curvature (Section III). To minimize the effects of noisy 

images on mode estimation, a Discrete Time Point Process 
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Filter (DTPPF) [10], which uses mode observation history, is 

utilized. Now the extracted image and laser based observations 

together with encoder, DGPS and gyroscope data are used in a 

bank of Kalman filters for target and mode estimation as 

shown in Fig. 2. 
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 Fig. 2. Block diagram of the CuTE algorithm 

III. FEATURE EXTRACTION AND MODE ESTIMATION  

The 2D scanning LADAR is mounted on the front of the 

vehicle with a tilt angle of 
L  to the flat horizontal road 

surface [5]. When the laser sweeps and intercepts a surface it 

will generate data point sets which are co-linear. A UKF is 

used for filtering, segmentation and line parameter estimation 

of these collinear point sets corresponding to the road surface, 

curb surface and pavements [5]. The line parameters estimated 

are used to represent the curbs described in section II. Painted 

lane markings are common on most roads and are highly 

correlated with curbs as they are mostly parallel to the curbs. 

The lane markings imaged from a CCD camera are extracted 

and transformed onto the vehicle coordinates [16]. These 

estimates together with a priori information of road widths are 

used for road boundary estimation.  

Target maneuver, and hence its mode of operation, is slowly 

reflected in position measurements. In the case of curbs this 

corresponds to the observations from the LADAR (possibly 

complemented by vision) as described above. However, target 

(curb) maneuver can be quickly detected by observing the 

sudden variations of overall curb orientation in a single CCD 

camera image. Many modes of operation of the target may be 

observed depending on the complexity of the road. Here, only 

three frequent modes of operation of target or curb are 

considered; straight (mode 1), left-bend (mode 2) and right-

bend (mode 3). These modes are determined by analyzing the 

curvature of road. The predicted curb positions in Cartesian 

coordinates of the vehicle frame are transformed on to the 

image plane of camera to aid in defining Regions of Interest 

(ROIs) for the fast detection and extraction of possible lane 

markings. These lane markings extracted are analyzed for 

curvature. Obviously these curvature based mode detections 

are noisy. Hence a “quality measure” defined as the number of 

pixels with good curvature information to total number of 

pixels in a given ROI is utilized to quantify quality of image 

observations. Curvature estimates resulting from poor quality 

measures are discarded and yields no output from the image 

processing system. However, the outputs of the image 

processing system may still produce inconsistent outputs. In 

order to improve on the quality of the mode output estimates 

of the image processing system, they are further filtered using 

a discrete time point process filter (DTPPF) [10]. The DTPPF 

uses all the mode outputs of image processing system up to 

time k+1 to estimate the current mode. 

IV. EXPERIMENTAL RESULTS 

Using a test bed vehicle known as GenOME [5], extensive 

experiments were carried out on roads in a campus 

environment over a stretch of 4km. A front mounted SICK© 

2D scanning LADAR and a monocular CCD camera were used 

to obtain curb and lane marking measurements. A high 

accuracy Hitachi© Fiber Optic Gyroscope with a bias stability 

of 0.005deg/s was used for vehicle orientation measurements. 

However for greater accuracy, its bias was estimated off-line, 

and used to compensate the online measurements. Further, the 

orientation was estimated by fusing the Gyro measurements 

with the steering angle measurements obtained through a 

steering encoder and vehicle kinematics using a Kalman filter. 

The speed of the vehicle was estimated using odometers 

mounted on the wheels of the vehicle. All the sensor data 

acquisition including camera, LADAR, encoders and 

gyroscope were synchronized to 100 ms sampling time.  

Target maneuvers or in this case curb mode (also the road 

type) were classified into three modes empirically based on the 

curvature, : 0.01 0.01    : straight (mode 1), 0.01   : 

left-bend (mode 2),  0.01    : right-bend (mode 3).  In each 

case, 
i  (probability that a valid output is generated given the 

mode “i”), associated with i
th

 mode is chosen to be equal to the 

quality measure of    at that instant. For the multi-

dimensional DTPPF, the transition probability matrix T  and 

the discernibility matrix vD  were empirically chosen as 

follows; 
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Since the sampling rate is high, the likelihood of the target 

being in the same state in the next sampling instant is high and 

hence larger values of the diagonal terms of T. Transition 

probabilities from mode 1 (straight curb ahead) to 2 (left-bend 

ahead) and 3 (right-bend ahead) and vice versa have been 

chosen to be equal and smaller than the diagonal elements. 

Further, transition from mode 2 (left-bend ahead) to 3 (right-

bend ahead) and 3 to 2 have been chosen to be even smaller to 

reflect the fact that these scenarios are less likely. The values 

in vD  suggest that the modes 2 and 3 are relatively easier to 

distinguish from each other. Extensive experiments were 

conducted over a 4km run with the test-bed vehicle driven at 

an approximate speed of 4m/s. The track covers all four 

possible observation scenarios: (i) simultaneous availability of 

image and LADAR observations, (ii) unavailability of LADAR 

observations, (iii) unavailability of vision based observations, 

and (iv) intermittent unavailability of both image and LADAR 

observations. Fig. 3 shows the tracking performance for the 
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entire 4km run. It may be noted that the tracked curbs 

corresponds very closely to the road boundaries as shown on 

the map. Following discusses in detail the performance of the 

algorithm in different sections of the road network under 

different observation scenarios. 
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 Fig. 3 Curb tracking results in a campus environment: a 4 km drive (dotted 

line – vehicle path, solid lines – curbs 

 

Both image and LADAR based observations are available in 

most of the road scenarios. For example, the curbs extracted 

on a straight section (F-G in Fig. 4) and a left bend (H-I) based 

on LADAR [5] and vision [16] are shown in Fig. 6(a) and 7(a) 

respectively. It is seen that road feature extraction is quite 

robust to the interfering white strips, letters and complex 

shadows. The mode output of the image processing system and 

the output of DTPPF for 100 consecutive frames of 

measurements on the straight road and left turn are shown in 

Fig 6(b) and 7(b) respectively. Although the mode outputs 

(vertical lines) of the image processor are noisy, the DTPPF 

correctly classifies the mode of curb in each case. 
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Fig. 4 Part of the map of the experimental test site 

 

 
Fig. 5. Curb tracking results (axes are in meters): dashed line – vehicle path, 

solid line – curbs 

 

At or near y-intersections (A-B in Fig. 4) and x-intersections 

(C-D in Fig. 4), it is noted that only vision information is 

available. For example, Fig. 8 (a) shows an x-intersection (C-

D in Fig. 4). Although there is visual information, there are no 

returns from the LADAR due to the absence of curbs on either 

side. However, the painted lane markings extracted from 

camera images still provides information of the road 

boundaries. The output modes as determined by the image 

processing system and its filtered output via the DTPPF when 

driving in the section C-D in Fig. 4 are as shown in Fig. 8 (b). 

It can be seen that the DTPPF correctly estimates the mode of 

curb despite the fluctuations in the output of the image 

processor output. 

 

 
(a) lines – vision based method, dots – laser based method, crosses – raw 

laser data 
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(b) Mode and point-process filter outputs 

Fig. 6. Road boundary detection in a straight road 
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(a) lines – vision based method, dots – laser based method, crosses – raw 

laser data 
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(b) Mode and point-process filter outputs 

Fig. 7. Road boundary detection in a left turn 

 

 
(a) lines – vision based method, crosses – raw laser data 
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(b) Mode and point-process filter outputs 

Fig. 8. Road boundary detection in an X-intersection 

 

Although, CuTE is effective in most situations, its 

performance can be compromised by the failure of the image 

processing system. This is mainly due to noisy image 

observations resulting from bright or poor lighting, occlusions 

or complex road markings. In these circumstances the quality 

measure for estimation of road curvature is below the 

threshold and thus image observations are discarded in mode 

estimation. In these cases the IEIMM filter collapses to an 

IMM as there is no additional information from vision sensing. 

The occurrences of these image failure modes at certain road 

sections (eg. J-K in Fig. 4) are shown in Fig. 9. Despite the 

absence of vision in these circumstances, LADAR can still be 

effective in providing information for curb extraction and 

tracking in an IMM framework. 

 

 
(a) Over illumination (sun’s glare) 

 

 
(b) Ill illumination (rainy) 

 

 
(c) Road with zebra crossings 

 

 
(d) Overtaking vehicles 

Fig. 9 Failure modes of image based road boundary detection: dots – laser 

based detected curbs,  crosses – raw laser data 

 

Another challenging scenario is the intermittent unavailability 

of both image and LADAR measurements. Two such examples 

are shown in Fig. 10. In Fig. 10 (a), views of the laser and 

camera are partially blocked by another vehicle, where as Fig. 

10 (b) corresponds to a situation where the front wheels of the 

vehicle are traveling on top of a road hump causing the 

LADAR and camera to tilt up. In latter case, the laser beams 

do not intersect with curbs and hence no laser based curb 

observations. Image observations obtained are noisy and 

cannot be utilized. Since these instances are intermittent and 

the fact that image based road boundaries carry much more 

information ahead of the vehicle, the CuTE algorithm, 

however, is still capable of tracking curbs. In the case of no 

observations for a long time, the CuTE algorithm keeps 
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predicting curbs using the most probable target model without 

updating until measurements are available. The quality of 

estimates depends on correctness of the target model and how 

quickly valid observations are available. 

 

 
(a) Road view blocked by front vehicle 

 

 
(b) Traveling on top of a road hump 

Fig. 10. Failure modes of image/ laser road boundary detection : crosses – 

raw laser data 

V. CONCLUSIONS 

Tracking of road curbs using on board 2D LADAR and 

camera can be formulated as tracking of maneuvering targets 

in clutter. The curb is perceived and modeled as a 

maneuvering target. The curb’s maneuvers correspond to 

different road scenarios or modes such as straight, left-bend, 

right- bend, etc. The maneuvering target or curb and the 

vehicle composite are thus modeled as a nonlinear Markov 

switching system. The principal difficulty of tracking a 

maneuvering target is due to the significant time lag between 

the instant a target’s actual change of maneuver occurs and the 

instant that change of maneuver is detected unambiguously. In 

this particular curb tracking application, curvature of curbs is 

used as an indicator of type of maneuver (mode) and is 

determined indirectly through analysis of camera images of 

lane markings using an image processing system. The mode 

output of the image processing system is susceptible to 

poor/bright ambient illumination, complex shadows, and 

occlusions. Those effects are minimized using a discrete-time 

point process filter. Extensive experiments carried out on an 

actual 4 km run on a campus road environment demonstrated 

the effectiveness and robustness of the CuTE algorithm for 

curb tracking. The performance was evaluated for different 

road scenarios under different conditions including, presence 

of both image and LADAR based observations, image only 

observations, LADAR only observations and intermittent 

unavailability of both image and LADAR observations. 

Overall, it was shown that the CuTE algorithm performs well 

in all cases except when the LADAR and image observations 

are unavailable over a long period. Although, only three 

commonly occurring types of curb and road scenarios were 

considered, viz. straight curb ahead, left- bend ahead, right-

bend ahead, it is straightforward to incorporate other cases 

within CuTE. This would, however, mean complex image and 

laser data processing for detecting the different scenarios. 
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