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Temporal-Spatial Mapping for Action Recognition
Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jingyu Yang, and Xiaoyan Sun

Abstract—Deep learning models have enjoyed great success
for image related computer vision tasks like image classification
and object detection. For video related tasks like human action
recognition, however, the advancements are not as significant
yet. The main challenge is the lack of effective and efficient
models in modeling the rich temporal spatial information in
a video. We introduce a simple yet effective operation, termed
Temporal-Spatial Mapping (TSM), for capturing the temporal
evolution of the frames by jointly analyzing all the frames of
a video. We propose a video level 2D feature representation
by transforming the convolutional features of all frames to a
2D feature map, referred to as VideoMap. With each row being
the vectorized feature representation of a frame, the temporal-
spatial features are compactly represented, while the temporal
dynamic evolution is also well embedded. Based on the VideoMap
representation, we further propose a temporal attention model
within a shallow convolutional neural network to efficiently
exploit the temporal-spatial dynamics. The experiment results
show that the proposed scheme achieves the state-of-the-art
performance, with 4.2% accuracy gain over Temporal Segment
Network (TSN), a competing baseline method, on the challenging
human action benchmark dataset HMDB51.

Index Terms—Temporal-Spatial Mapping (TSM), action recog-
nition, deep learning

I. INTRODUCTION

ACTION recognition is an important yet challenging prob-
lem in computer vision, with many practical applications

such as visual surveillance, human computer interaction, and
video analyses [1]. Recently, deep learning models like Convo-
lutional Neural Networks (CNN) [2]–[5] and Recurrent Neural
Networks (RNN) [6]–[11] have been extensively employed to
recognize actions in videos. Despite great efforts and rapid
developments, the advancements are not as significant as
those achieved in image related computer vision tasks such
as image classification [12]–[14] and object detection [15]–
[17]. The main reason is that actions in a video involve
not only the spatial information of each frame, but also
its temporal evolution. Exploring this rich temporal-spatial
information requires the deep learning model to be equipped
with more parameters, trained with more video samples, and
most importantly formulated with more effective architecture.

Previous attempts to address action recognition include the
two-stream ConvNets [2], [3], [5], [18], 2D ConvNets followed
by Long Short-Term Memory (LSTM) networks [6], [7], [9]–
[11], 3D ConvNets [19], [20], and many others [8], [21], [22].
These models are continually pushing forward the state-of-the-
art performances of action recognition. Most of these models,
however, suffer from limitations such as lack of joint temporal-
spatial learning [2], [3], [5], [18], difficulties in model training
[6], [7], [9], [19], [20]. Moreover, limited by the designs,
most of those approaches cannot leverage more dense frames
for obtaining further gains even though more frames can
provide more temporal-spatial information [3], [23], [24]. That
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Fig. 1. Overview of our network structure. The Temporal-Spatial Mapping
operation enables the effective joint temporal-spatial modeling by representing
the temporal spatial features of an entire video by a 2D VideoMap. A temporal
attention model in a head ConvNet further transforms the VideoMap to a
compact video-level feature embedding for classification.

is because the statistics of the features/scores of frames are
utilized to get the final prediction [3], [23]. Frames above a
certain number (e.g., 25 frames) help very little once they
are enough to estimate the statistics. To overcome these
limitations, we need a network architecture which jointly and
effectively learns the temporal-spatial feature representations
and is capable of exploring the information of dense frames.

To this end, we present a simple yet effective operation, i.e.,
Temporal-Spatial Mapping (TSM), for joint temporal-spatial
feature modeling. We represent the temporal-spatial features
of an entire video compactly by a VideoMap, which is a row-
wise layout of the per-frame vectorized ConvNet features as
illustrated in the middle of Figure 1. This enables the “seeing”
of dense frames at a glance and thus performing effective
joint temporal-spatial analyses. The proposed TSM operation
is general and can be used after any convolutional features for
video-level temporal-spatial feature learning.

To deploy this TSM operation for action recognition, we
first train a backbone 2D ConvNet model to extract con-
vlutional features for each frame of a video sequence, then
the TSM operation is performed on the features to generate
the temporal-spatial VideoMap, which naturally encodes the
temporal-spatial information in 2D feature map. Based on
the compact VideoMap representation, we further propose a
temporal attention model within a head ConvNet to extract
effective video-level feature embeddings to predict the final
action categories. Experiment results on two large benchmarks,
HMDB51 and UCF101, demonstrate the effectiveness of the
proposed network architecture and its state-of-the-art perfor-
mances.

To summarize, the main contributions of this work are three-
fold:

• We propose a simple yet effective operation, Temporal-
Spatial Mapping, for jointly embedding the temporal-
spatial information of a video from per-frame features
into a compact feature map, i.e., VideoMap. The pro-
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posed operation is general and can be applied to any
CNN features to explore temporal dynamics. VideoMap
representation provides a way to leverage dense frames
for enhancing the performance.

• We propose a temporal attention model within a
head ConvNet to further transform the temporal-spatial
VideoMap to a more compact and effective video-level
feature representation for classification, which can better
exploit the temporal-spatial dynamics.

• We present a deep architecture for action recognition
which achieves significant performance improvement on
the HMDB51 dataset. The source code and trained model
will be released to facilitate the research in action recog-
nition.

II. RELATED WORK

Motivated by the outstanding performance of deep neural
networks on image classification and detection, more and
more works have extended CNN-based or CNN-LSTM-based
architectures for video analysis.

The two-stream ConvNets approaches [2], [3] train two
separate 2D ConvNets for both appearance in still images
and stacks of optical flow, from several sparsely sampled
frames. The temporal stream takes the short-term temporal
information into account by means of optical flow and achieves
superior performance than the spatial stream (still images).
The Temporal Segment Networks (TSN) [3] combine a sparse
temporal sampling strategy and video-level supervision in
training to explore temporal structure. Three frames which
are randomly selected from three equally divided segments
are jointly trained with frames combined by average pooling.
However, these approaches involve temporal information by
simply averaging/multiplying the scores across frames for the
video level prediction. Such approaches still cannot accurately
model the temporal dynamics [2], [3], [23]. Some aggregation
techniques like VLAD [25], Fisher Vector [26] and dictionary
learning [27] have been used in action recognition for ag-
gregating features of frames [28]–[30]. VLAD-based methods
like ActionVLAD [28] provide solutions to perform spatio-
temporal aggregation of a set of action primitives. However,
they do not model the time order of frames.

To extend convolution operations from 2D image to 3D
video, the 3D ConvNets [20] directly operates on the video
for spatio-temporal feature learning by replacing 2D filters
with 3D ones. So far, such approach however has shown
limited benefit, probably due to the lack of training data,
high complexity of training 3D convolution kernels, and not
exploiting the optical flow stream explicitly. To reduce the
number of parameters of 3D ConvNets, Sun et al. [31] propose
to factorize the original 3D convolution kernel learning as
a sequential process of learning 2D spatial kernels followed
by learning 1D temporal kernels. However, both approaches
model the temporal dynamics by averaging the activations of
the sub-clips of a video. There is still a lack of a global
modeling of the action among the video sub-clips. To capture
the relationships among the video sub-clips, the temporal
linear encoding (TLE) [23] encodes the aggregated informa-
tion of K (i.e.,K = 3) clips/frames into a video feature

representation by performing element-wise multiplication of
the features of the clips/frames. However, for a long video, the
sampling of K clips/frames and the aggregation of them by
multiplication results in information loss. Since the statistics
of clips/frames are explored rather than their details, like TSN
[3], the performance increases little when more frames are
used.

In [6]–[9], LSTM is utilized to explore the temporal evo-
lution of the per-frame CNN features across a video. Shi
et al. [32] propose a sequential Deep Trajectory Descriptor
(sDTD) to model long-term motion information in video and
employe a three-stream CNN-LSTM architecture for action
recognition. Wang et al. [33] propose two-stream 3D Con-
vNets Fusion to recognize actions of arbitrary size and length
by using spatial temporal pyramid pooling (STPP) with a
LSTM or CNN model to extract multi-size descriptions and
learn global representation for each input video. Li et al.
[34] propose a unified Spatio-Temporal Attention Networks
(STAN) using attention neural cell (AttCell) based on CNN-
LSTM architecture to estimate attention on both spatial and
temporal locations in a video. Compared with image-based
approaches [2], [3], LSTM-based approaches go one step
further which can model the temporal dynamics of a video.
However, applying the LSTM models to video based action
recognition has so far only achieved similar performance as
temporal pooling [6], likely attributed to the rigid structure of
LSTM and the difficulties in training.

In this paper, we propose a general approach of temporal-
spatial mapping to facilitate the joint analysis of the dense
frames/clips of a video, with the time order information
embedded in the mapped VideoMap. Our approach provides an
efficient way to explore the details of dense frames, enabling
performance improvement.

III. TEMPORAL-SPATIAL MAPPING OPERATION

In a video, besides the spatial information in each image, the
temporal evolution provides vital information for identifying
an action. It is not trivial to find a video representation
that encodes the dense frames together to facilitate the joint
analysis of the entire video. The traditional powerful approach
iDTs [24] densely samples feature points in video frames
and uses optical flow to track them to yield a good video
representation. For action recognition from video, most deep
learning based approaches which have good performance [2],
[3], [18] are still image based where they infer the final results
by averaging/multiplying the scores/features of frames. The
proposed Temporal-Spatial Mapping provides a way to jointly
consider the dense sequential frames for inferencing the video
label.

Figure III shows the process. For each frame of a video se-
quence, ConvNet generates feature maps at each convolutional
layer, where features of higher abstraction are captured by
higher layers [35]. Consider the output features of 2D ConvNet
for T frames from a video. The features of the kth frame can
be a feature vector of L−dimension, i.e., fk ∈ RL, e.g., the
output of the global pooling layer of the TSN [3]. They can be
feature maps with high dimensions, i.e., Sk ∈ Rh×w×c, where
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Fig. 2. The overall framework with our Temporal-Spatial Mapping operation followed by a head ConvNet for action recognition. Two-stream ConvNets
extract features on each frame for the spatial stream (RGB) and temporal stream (Optical flow), respectively. The vectorized feature vectors of the sequential
frames form a VideoMap for temporal-spatial representation. A head ConvNet with temporal attention makes action classification based on the VideoMap.
Finally the class scores of the VideoMaps from two streams are fused to produce the video-level prediction.

Feature Maps

…

𝑆1

𝑆2

𝑆𝑇

𝑓1 = 𝑉(𝑆1)

𝑓2 = 𝑉(𝑆2)

𝑓𝑇 = 𝑉(𝑆𝑇)

𝑓1

𝑓2

𝑓𝑇

Feature Vector

M= [𝑓1
T; 𝑓2

T; … ; 𝑓𝑇
T]

VideoMap

…V
id

e
o

 F
ra

m
e

s

Vectorization

Fig. 3. Illustration of the proposed Temporal-Spatial Mapping operation,
which transforms a sequence of feature maps into a compact VideoMap.

h, w and c denote the height, width, and number of channels
of the feature maps, e.g., the inception layer output of TSN [3].
The high dimensionality of feature maps makes it challenging
to jointly analyze the dense frames of a video. Thus, in that
case, a spatial vectorization function V : Sk → fk, is used to
encode the feature maps to a low dimension vector of fixed
length, i.e., fk = V (Sk), where fk ∈ RL. Then, we layout the
feature vector of each frame as a row with the row identity
corresponding to the time order of the frames to create a two-
dimensional temporal-spatial map, i.e., VideoMap as

M = [f>1 ; f>2 ; · · · ; f>T ] ∈ RT×L. (1)

The width of the map is equal to the total number of frames
while the height is equal to the dimension of the feature vector.
The map has embedded both the temporal and spatial informa-
tion. This makes it possible to have a global observation of a
video sequence and facilitates the exploration of the temporal
dynamics.

This TSM operation has the following characteristics and
advantages.
• This TSM operation is a general operation which can be

applied to the feature maps/features from ConvNets for
encoding the temporal-spatial dynamics from a sequence
of frames.

• This TSM operation for obtaining a VideoMap can main-
tain the time order information of the dense frames,
which helps distinguishing action categories related with
occurrence order, e.g., “stand up” versus “sit down”.

• This TSM operation is simple yet effective. It does not
involve complicated operations.

Discussions. Here, we discuss the relation and differences of
our method with several classical methods. We aim to explore
the temporal dynamics from the dense frames of a video and
jointly make a decision from them.

Two-stream based ConvNets: Our framework is compatible
with the two-stream ConvNet based approaches [2], [3]. TSN
[3] uses three temporal segmented frames to explore the long-
range temporal structure in training. During testing, the scores
from N(N = 25) frames are averaged to finally predict
the action. However, the temporal dynamics are only weakly
explored by the simple averaging of a few frames without
considering the time order. In contrast, our temporal-spatial
mapping to a VideoMap enables the joint exploration of many
frames with time order retained.

3D Convolution: 3D convolution provides an elegant frame-
work for exploring the spatial and temporal dynamics [19],
[20]. Without the practical constraints, such as on memory,
labeled data, computational resource, it is expected to achieve
excellent performance. However, such approaches so far have
not demonstrated satisfactory performance in practice due to
the difficult to train. In practice, 3D Convolution only covers a
short range of the sequence for each input video sub-clip (e.g.,
5-7 frames in [19], 16 frames in C3D [20]). The scores of sub-
clips are averaged to get the final prediction. The temporal
dynamics among clips are not well explored by the simple
averaging and the time order information among the sub-clips
is lost.

CNN+LSTM: To tackle the not well solved temporal dy-
namic modeling problem, some works [6]–[9] use the Recur-
rent Neural Network with Long-short Term Memory (LSTM)
to model the temporal evolution. The RNN structure facilitates
the exploration of temporal dynamics from the dense frames
with time order considered. However, it has only achieved
similar performance as temporal pooling [6]. This might
be attributed to the difficulty in training with the gradient
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Fig. 4. Temporal attention model within a head ConvNet for action recogni-
tion from VideoMap.

vanishing for the long videos.
In contrast, we leverage the temporal-spatial mapping to

obtain a VideoMap which embeds the information of temporal
dynamics and time order. It facilitates the joint exploration of
the dense frames of a video for a global decision.

IV. TEMPORAL ATTENTION WITHIN HEAD CONVNET

Motivated by the success of using ConvNet for feature
extraction in image classification, which jointly explores cross-
pixel correlations, we leverage a convolution neural network
to jointly explore the cross-frame dynamics.

With the VideoMap as input, we design a temporal attention
model within a head ConvNet for video level feature extraction
and action recognition. Figure IV shows this network structure,
which consists of a shallow ConvNet and a temporal attention
module. Note that we refer to this shallow ConvNet as head
ConvNet since it is the last sub-network specific to the task
[36]. The responses from the temporal attention module are
incorporated into the head ConvNet to adjust the importance
level of temporal features. Cross-entropy as used in [3] is taken
as the video level loss function.

To recognize the action class in a video, the importance
level of different frames differs. Some frames are more likely
to be irrelevant or less relevant to the action category and
may hurt the final performance by introducing noise. Some
other frames are more relevant to the action category. Take
the action of handshake as an example, the frames with two
people approaching are less relevant to the action, which
could be shared by other action types, while the frames with
two people’s hands holding together give more discriminative
information. Therefore, we introduce a temporal attention
model for learning and determining the importance levels.

As illustrated in Figure IV, the feature maps F̃i of the
ith layer of the head ConvNet after enforcing the temporal
attention are described as:

F̃i = Ai(M) ◦ Fi(M), (2)

where Fi(M) denotes the output feature maps of the ith layer
of the head ConvNet, Ai(M) is the attention map from the
attention model, ◦ denotes entrywise product. Here Ai(M) =
ai(M)⊗ 1, where ⊗ is the Kronecker product and 1 denotes
the all-ones vector, ai(M) is the learned attention vector with
the dimension being related with the total number of frames.

In other words, Ai(M) is the column-wise repeat of ai(M).
Note that for the 0th layer, F0(M) = M, a0(M) ∈ R>.
ai(M) is the max pooling result of ai−1(M) with a stride of
2. The detailed network designs will be described in Section
VI.

V. OVERALL FRAMEWORK

We take the two-stream based ConvNets as our backbone
ConvNets and embed the proposed TSM operation followed by
a head ConvNet with temporal attention model, for the video-
level classification. Figure 2 shows the overall flowchart of our
final framework.

Temporal Segment Networks (TSN) [3] with BN-Inception
structure [37] provides superior performance on both the spa-
tial and temporal streams. We take the TSN as our backbone
ConvNets for frame feature extraction. The network contains
two streams: spatial stream with RGB image as input, and
temporal stream with optical flow as input. The results from
the two streams are fused to predict the video label.

Without loss of generality, we take the spatial stream
as example to describe our overall network structure. The
temporal stream acts similarly. For successive of frames in a
video, the backbone spatial ConvNet outputs feature maps for
each frame. With the feature maps of each frame vectorized to
a feature vector, the feature vectors of the successive frames
are arranged row-by-row to form a VideoMap. The VideoMap
goes through the head ConvNet with temporal attention and
the class scores are generated. The Temporal-Spatial Mapping
operation permits the end to end training of the entire network.
Due to memory constraints, in practice, we train the networks
in two stages. In the first stage, we train the backbone
ConvNets. Then we train the the head ConvNet for VideoMap
classification.

VI. EXPERIMENTS

We validate the effectiveness of the proposed framework
on two benchmark datasets. We first describe the datasets and
implementation details. Then we study the effects of different
factors in our network. Finally, we compare our approach with
many state-of-the-art approaches.

A. Datasets

We conduct experiments on two popular human action
recognition datasets, namely HMDB51 [38] and UCF101 [39].
The HMDB51 dataset is a very challenging dataset with higher
intra-class variations and smaller inter-class variations. The
videos are collected from movies and a variety of YouTube
consumer videos. This dataset consists of 6,766 video clips
from 51 action categories, with each category containing at
least 100 clips. In each split, each action class has around
70 clips for training and 30 clips for testing. The UCF101
dataset consists of 13320 video clips in 101 categories. This
dataset provides large diversity in terms of actions, variations
in background, illumination, camera motion and viewpoints,
as well as object appearance, scale and pose.



5

B. Implementation Details

Two-stream Backbone ConvNets. We pre-train our backbone
network of the TSN the same way as reported in [3]. The size
of input images or optical flow stacks is fixed at 256 × 340.
In order to avoid over-fitting, we perform data augmentation,
by cropping images with the width and height chosen from
four different sizes, 256, 224, 192 and 168, from five spatial
locations of the full image, i.e., one center and four corners.
These cropped regions will be resized to 224×224 for feature
extraction. Note that, to maintain spatial consistency across
a video, the cropped size and location are the same across a
video sample.
Temporal-Spatial Mapping and head ConvNet. For the kth

frame, the top inception module of the TSN outputs feature
maps Sk of size h×w×c, where h = 7,w = 7, and c = 1024.
An average pooling on each channel vectorizes them to a 1024-
dimension vector fk. For T sequential frames, a VideoMap
M = [f>1 ; f>2 ; · · · ; f>T ] is obtained.

Video level feature learning and classification based on the
VideoMap is performed using our head ConvNet with temporal
attention. We build the head ConvNet by stacking three convo-
lution blocks. In each block, it consists of a convolutional layer
with 5×5 kernels, a ReLU layer, followed by a pooling layer
of 3×3 sized kernel of stride 2. We construct the temporal
attention module by two such convolution blocks followed by
a fully connected layer which outputs a T dimensional vector,
representing the frame-wise attention responses for a video.
Since the GPU memory is limited, we set the mini-batch to
have 128 VideoMaps. We set the initial base learning rate to
0.01 and decrease it by a factor of 10 every 10,000 iterations.
We stop the training process after 100 epochs.
Vectorization of Feature Maps. For the high level convolu-
tion feature maps, the average pooling (e.g., BN-Inception [3])
or full connection (e.g., AlexNet [2]) of the feature maps has
been done in the ConvNets structure, to convert them to a low
dimensional feature vector. Therefore, we directly utilize such
feature vectors from the sequential frames to form a VideoMap.

Given the feature maps of high dimension from a ConvNet
layer, if the feature maps are not already transformed to a
feature vector, a module for vectorization of the feature maps
is needed to convert the feature maps to a low dimensional
feature vector representation. There are many ways to perform
to perform the vectorization, e.g., leveraging a ConvNet to
encode the feature maps to a feature vector.

C. Ablation Study

In this subsection, we will analyze the effectiveness of
the proposed Temporal-Spatial Mapping component, discuss
the design of the head ConvNet, analyze the effectiveness
of the temporal attention module, and the influence of the
height of the VideoMap (i.e., density of temporal sampling),
respectively.
Effectiveness of Temporal-Spatial Mapping. Aggregation
of single-frame features of dense frames to a VideoMap
provides the opportunity to jointly explore the temporal-spatial
dynamics at the video level. We show the performance of

TABLE I
COMPARISON WITH TWO-STREAM BASED NETWORKS IN ACCURACY (%)
ON THE HMDB51 DATASET (SPLIT 1). HERE “TWO-STREAM” [2] USES

VGG-16 AS THE NETWORK STRUCTURE, AND “TSN [3]” USES
BN-INCEPTION. “TSN+TSM(OURS)” IS OUR SCHEME WITH THE

TEMPORAL-SPATIAL MAPPING (TSM) FOLLOWED BY A HEAD CONVNET.

Method RGB Optical Flow Fusion
Two-stream [5] 42.2 55.0 58.5
Two-stream+TSM (Ours) 43.1 56.2 60.3
TSN [3] 54.6 62.6 70.8
TSN+TSM (Ours) 55.0 63.1 72.4

our scheme in comparison with the baseline scheme on the
HMDB51 dataset (Split 1) in Table I.

In Table I, “TSN [3]” denotes the results of the TSN
approach [3] with the BN-Inception structure, serving as our
baseline scheme. We take its ConvNets as our backbone
network to extract frame level features. “TSN+TSM (Ours)”
denotes our scheme with the Temporal-Spatial Mapping op-
eration and a head ConvNet for the joint temporal dynamics
exploration from densely sampled frames. We can see that our
scheme achieves 1.6% after the two-stream fusion. Note that
in Table I and Table II, TSN results are obtained from the
original TSN model but ran based on a new Caffe version on
Windows. 1

We also evaluate the performance when using another back-
bone network, which takes two-stream ConvNets with VGG-
16 network structure [5] as the frame-level feature extractor.
Similarly, TSM brings 1.8% improvement in accuracy.
Comparisons on Network Designs. We have designed a head
ConvNet for encoding the VideoMap for action recognition.
The purpose of this network is to explore temporal dynamics
among frames to learn efficient video feature representation.
For the head ConvNet with VideoMap as input, we have
tried three network structures: AlexNet, our designed 3-layer
ConvNet, and 1-layer ConvNet. In addition, one alternative
way for temporal modeling of the feature vectors is to use the
Recurrent Neuron Network with LSTM. However, RNN suf-
fers from the gradient vanishing problem even though LSTM
suffers less than RNN. We show the results of these designs in
Table II with experiments conducted on the HMDB51 dataset
(Split 1). We can see that our 3-layer ConvNet (TSN+TSM (3-
layer ConvNet)) achieves much superior performance than the
LSTM based network. The performance of AlexNet is inferior
to the 3-layer ConvNet since a deeper network with more
parameters is prone to over-fitting. The 1-layer ConvNet does
not converge in modeling the temporal-spatial dynamics.
Effectiveness of Temporal Attention. Different frames gen-
erally have different importance levels for recognizing the
action. The less relevant frames or irrelevant frames could be
noise which hurts the final performance. We have designed
a temporal attention module with hierarchical attentions as
shown in Figure IV (which is Figure 3 in the paper) and found
that the hierarchical structure provides superior performance.

1The results reported in website (http://yjxiong.me/others/tsn/#exp, spatial
stream, temporal stream and the final fusion are 54.4%, 62.4% and 69.5%,
respectively) of the original TSN are a little different from our ran results due
to the difference of Caffe version on Windows.

http://yjxiong.me/others/tsn/#exp
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TABLE II
COMPARISON ON THE NETWORK DESIGNS FOR EXPLORING TEMPORAL

DYNAMICS FROM FEATURE VECTORS OF DENSELY SAMPLED FRAMES (IN
ACCURACY %) ON THE HMDB51 DATASET (SPLIT 1). WE TAKE TSN [3]

AS OUR BACKBONE FOR EXTRACTING FRAME LEVEL FEATURES.

Architecture RGB Optical Flow
TSN [3] 54.6 62.6
TSN+3-layer LSTM 51.1 59.6
TSN+TSM (AlexNet) 51.7 58.0
TSN+TSM (3-layerConvNet) 55.0 63.1

Table III shows the comparisons with the designs having
fewer attention branches. “w Attn. (A0)” denotes that only
the attention A0 is applied in the input (see Figure IV). “w
Attn. (A1 & A2)” denotes the attentions A1 and A2 are applied
after the first layer and the second layer of the shallow CNN.
“w Attn. (A0 & A1 & A2)” denotes our final scheme with
all the three branches of attentions included. We can that the
hierarchical attention structure provides superior performance,
and when our attention model is enabled (w/ Attn.) with

experiments conducted on the HMDB51 dataset (Split 1), the
performance can be improved by 0.8%, demonstrating the
effectiveness of the attention mechanism.
Influence of the Density of Temporal Sampling. Videos of
different lengths will generate VideoMaps of different height.
We can aggregate the feature vectors of dense frames of a
video to form a VideoMap. In practice, for the convenience of
learning, we densely sample the video frames to have a fixed
number of frames to form the VideoMap of fixed height. In the
training, we set the number of frames as 256 in considering
the average length of videos. In order to measure the influence
of temporal frame sampling density during testing, we have
compared the performance under different temporal sampling
densities, i.e., 25, 32, 64, 128, and 256 frames per video
on the HMDB51 dataset (Split 1) and show the results in
Figure 5 (a). We can see that the performance increases as the
sampling density increases. This is consistent with the human
perception. Our method provides a way to jointly explore the
inter-frame dynamics.

In contrast, for the TSN model [3], the increase of the
number of frames in the test will not increase the performance,
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Fig. 7. Examples that our scheme succeeds in recognizing the action while TSN [3] fails. Our scheme perform well mainly due to the Temporal-Spatial
Mapping operation enables the joint exploration of temporal frames and the consideration of time order.

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

Time Time

Fig. 8. Visualizations on a video of action “stand” ((a1)–(c1)) and “kick ball” ((a2)–(c2)). (a1)(a2) Video frames over time (only some frames are shown).
(b1)(b2) VideoMap. (c1)(c2) Visualization from our ConvNet of the Conv-3 layer using approach Grad-CAM [40]. Note that images in (b1)(c1)(b2)(c2) are
resized and horizontal axis denotes the time here. We can see that Grad-CAM map presents higher responses over temporal segments corresponding to the
frames when the persons are doing the corresponding actions.

TABLE III
ACCURACY (%) OF TWO-STREAM BASED NETWORK TSN+TSM WITHOUT (W/O ATTN.) AND WITH (W/O ATTN.) TEMPORAL ATTENTION ON THE

HMDB51 DATASET (SPLIT 1).

Model RGB Optical Flow Fusion
w/o Attn. 55.0 63.1 72.4
w Attn. (A0) 54.6 63.3 72.4
w Attn. (A1 & A2) 55.0 63.3 72.7
w Attn. (A0 & A1 & A2) 55.2 63.3 73.2

and the performance saturates at 25 frames as shown in Figure
5 (b). This is because the TSN-like approaches (e.g., TSN
[3], TLE [18]) explore the temporal dynamics by simply
averaging/multiplying the scores/features of the frames. The
statistical information rather than the per-frame detailed infor-
mation is explored for recognition. Then, more frames above a
certain number of frames help little when they are enough to
represent the statistical information. While, the performance
of our model increases with the increase of frame density (see
Figure 5 (a)).

D. Comparison with the State-of-the-art

We compare our proposed scheme with the state-of-the-
art approaches for video action recognition in Table IV. We
evaluate the performance on the HMDB51 and the UCF101
dataset. For both datasets, we use the provided evaluation
protocol and report the mean average accuracy over the three
splits. We can see our scheme achieves the best performance,
with 72.7% on the HMDB51 dataset and 94.3%, on the
UCF101 dataset. In comparison with the TSN, we achieve
4.2% improvement on the HMDB51 dataset.

Compared with the HMDB51 dataset, the accuracy improve-
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TABLE IV
PERFORMANCE COMPARISONS (IN ACCURACY %) OF OUR METHOD WITH
THE OTHER STATE-OF-THE-ART METHODS OVER ALL THE THREE SPLITS.

Method HMDB51 UCF101
Slow Fusion CNN [41] — 65.4
Two-Stream CNN (VGG16) [5] 58.5 91.4
Two-Stream CNN (AlexNet) [2] 59.4 88.0
Key Volume Mining [4] 63.3 93.1
Two-Stream CNN Fusion [5] 65.4 92.5
Spatiotemporal ResNets [42] 66.4 93.4
TSN (BN-Inception) [3] 68.5 94.0
Spatiotemporal Multiplier Nets [43] 68.9 94.2
Spatiotemporal Pyramid Net [22] 68.9 94.6
Fusion+iDT [5] 69.2 93.5
ActionVLAD (VGG16)+iDT [28] 69.8 93.6
TLE:Bilinear [23] 71.1 95.6
LRCN [7] — 82.9
C3D [20] — 85.2
C3D+iDT [20] — 90.4
C3D+LSTM [44] 55.2 85.4
VideoLSTM+iDT(FV) [9] 63.0 91.5
Multi-Granular Nets [21] 63.6 90.8
Multi-Stream Fusion [10] — 92.6
Hierarchical Attention Nets [11] 64.3 92.7
TSN+TSM (Ours w/o Attn.) 72.2 94.1
TSN+TSM (Ours w/ Attn.) 72.7 94.3

ment on the UCF101 dataset is smaller. The performance of
the UCF101 dataset is approaching saturation (>94%) and
it becomes difficult to demonstrate the effectiveness of an
approach. We will perform further study on more challenging
datasets in the future.

E. Visualization

We make performance comparison for all the categories on
the HMDB51 dataset to get better insights. Figure 6 shows the
top-25 classes that our approach outperforms TSN. For some
action classes such as “Draw sword” and “Eat”, our scheme
outperforms TSN even by 20%. In TSN, “Draw sword” is easy
to be mistaken as “Sword” and “Wave” since these actions
usually share some common states like waving. Figure 7 shows
such an example. With our scheme capable of looking at dense
frames with time order embedded rather than several sparse
frames, the accuracy is improved by 23% for the class of
“Draw sword”. Similarly, “Eat” and “Drink” are prone to be
confused and we find the video samples of the two classes
usually have frames of similar states once the cup is away
from the mouth. For the classes with time order, e.g., “Stand”
versus “Sit” as shown in Figure 7, our scheme can capture the
time order well thanks to the VideoMap representation and
outperforms TSN.

In addition, Figure 9 and Figure 10 show partial of the
confusion matrix corresponding to some easily confused cat-
egories, as referred in Section 6.4. In Figure 9, for the
approach of Temporal Segment Networks (TSN) [3], “Draw
sword” is easy to be mistaken as “Sword” and “Wave” where
these actions usually share some common states like waving.
Our proposed scheme performs much better than TSN since
it is capable of looking at all frames and jointly making
decision. In Figure 10, the proposed TSN+TSM method can
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Fig. 9. Comparison of partial confusion matrix with related categories of
“Draw sword”, “Fencing”, “Sword”, and “Wave”. (a) TSN [1]; (b) Ours.
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Fig. 10. Comparison of partial confusion matrix with related categories of
“Sit”, “Stand”, “Turn”, and “Walk”. (a) TSN [1]; (b) Ours.

distinguish “Sit”, and “Stand” much better since the time order
information is embedded in the VideoMap representation.

There are some failure cases of our TSM, For instance, one
of action “Climb” is mistaken as “Jump”, and one of “Smoke”
is mistaken as “Eat”. The video appearances in the confused
classes are similar. And we show two examples in Figure 11.
For instance, “Climb” is mistaken as “Jump”, and “Smoke”
is mistaken as “Eat”. The appearances in the confused classes
are similar.

Jump 0.6080

Climb stairs 0.1034

Climb 0.0881

Throw 0.0409

Dive 0.0319

Climb (Groundtruth)

Eat 0.9239

Drink 0.0516

Smoke 0.0184

Talk 0.0029

Chew 0.0013

Smoke (Groundtruth)

Fig. 11. Examples on the failure cases of the proposed model on the HMDB51
dataset (Split 1). The main reason for these failures comes from the similar
appearances in the confusing classes.

Furthermore, we adopt Grad-CAM visualization technique
[40] to analyze our head ConvNet. Grad-CAM is a class-
discriminative localization technique, which can provide vi-
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sual explanations from the learned ConvNet model without
requiring architectural changes or re-training. In Figure 8, we
can see that Grad-CAM map presents higher responses over
temporal segments corresponding to the frames that persons
are doing the corresponding actions. For instance, in Figure
8 (a1)–(c1), For the action of “stand up”, there are some
unrelated frames before the acting of standing up. In Figure 8
(a2)–(c2), for the action “kick ball”, there are high responses at
the first 2/3 of the temporal duration and lower responses at the
remaining time duration. The temporal response characteristics
are similar to that for object detection/classification, where the
regions being highly correlated with the actions/objects/classes
having higher responses.

VII. CONCLUSION

To model the temporal-spatial evolution in video for action
recognition, we propose a simple yet effective operation,
Temporal-Spatial Mapping (TSM), to enable the joint analysis
of the dense frames of a video. We propose a video level
2D feature representation by transforming the convolutional
features of a sequence to a VideoMap, where the temporal
dynamic evolution is well embedded. We leverage a head
ConvNet with temporal attention model to further explore the
temporal-spatial dynamics in the VideoMap and learn effec-
tive video-level feature representation for classification. The
experiment results show that the proposed scheme achieves
the state-of-the-art performance, 72.7% and 94.3% on the
HMDB51 and UCF101 dataset, respectively.
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