
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/121049/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Yang, Jingyu, Guo, Xin, Li, Kun, Wang, Meiyuan, Lai, Yukun and Wu, Feng 2020. Spatio-temporal
reconstruction for 3D motion recovery. IEEE Transactions on Circuits and Systems for Video Technology 30

(6) , 1583 -1596. 10.1109/TCSVT.2019.2907324 

Publishers page: http://dx.doi.org/10.1109/TCSVT.2019.2907324 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

Spatio-Temporal Reconstruction for
3D Motion Recovery

Jingyu Yang, Senior Member, IEEE, Xin Guo, Kun Li, Member, IEEE, Meiyuan Wang,
Yu-Kun Lai, Member, IEEE, and Feng Wu, Fellow, IEEE

Abstract—This paper addresses the challenge of 3D motion
recovery by exploiting the spatio-temporal correlations of cor-
rupted 3D skeleton sequences. We propose a new 3D motion re-
covery method using spatio-temporal reconstruction, which uses
joint low-rank and sparse priors to exploit temporal correlation
and an isometric constraint for spatial correlation. The proposed
model is formulated as a constrained optimization problem,
which is efficiently solved by the augmented Lagrangian method
with a Gauss-Newton solver for the subproblem of isometric
optimization. Experimental results on the CMU motion capture
dataset, Edinburgh dataset and two Kinect datasets demonstrate
that the proposed approach achieves better motion recovery
than state-of-the-art methods. The proposed method is applicable
to Kinect-like skeleton tracking devices and pose estimation
methods that cannot provide accurate estimation of complex
motions, especially in the presence of occlusion.

Index Terms—3D skeleton, motion recovery, spatio-temporal,
sparse, occlusion.

I. INTRODUCTION

OBSERVATION of human activities has always been an
active research topic in computer vision and computer

graphics, which includes many research fields, e.g., pose esti-
mation [1], [2], gesture recognition [3], [4], motion prediction
[5], [6], and 3D reconstruction [7], [8]. One of the key
technologies in these fields is the accurate estimation of human
motion. However, few motion capture devices could seize
accurate human motion. Traditional motion capture systems
have increased the research cost of these specific fields with
their numerous shortcomings: inconvenient implementation,
expensive prices, difficulty to maintain, and requirement of
many manual operations. Microsoft Kinect for Xbox 360
(“Kinect”) has shed a light on human motion capture. With
the advent of Microsoft Kinect and similar devices, significant
effort and advances [9], [10] have been made in recent years
for low-cost, accessible human motion tracking systems. This
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however is achieved at the cost of sacrificing capture accuracy,
so skeletons captured by these low-cost and portable devices
such as the Kinect often suffer from severe joint drifting and
motion jitter, especially in the presence of self-occlusion or
object occlusion [11]. The accuracy of skeleton estimation is
more satisfactory for controlled non-occluded simple motions,
such as standing upright and walking forward, which has
apparent limitations in real-world circumstances.

This paper addresses the challenge of recovering accurate
and smooth human motions from corrupted 3D skeleton se-
quences which is a fundamental problem in human motion
estimation. Our method is based on the observation of both
spatial and temporal inner correlation in skeleton sequences,
and thus is able to accurately recover clean and smooth
skeleton motions. In our model, the skeleton sequence is
regularized by joint low-rank and sparse priors to exploit
temporal correlation between frames and simultaneously by
an isometric prior to exploit spatial correlation of skeleton
structure. To efficiently solve this model, we derive an al-
ternating direction method under the augmented Lagrangian
multiplier (ADM ALM) framework. The effectiveness of our
method is demonstrated by experiments on the CMU dataset
[12], Edinburgh dataset [13] [14] and two real captured Kinect
datasets [15], obtaining better recovery accuracy than state-of-
the-art methods.

The contributions of this paper are summarized as follows:

• We propose a novel spatio-temporal reconstruction model
to recover accurate and smooth motions from corrupt-
ed 3D skeleton sequences. The sparse and low-rank
constraints guarantee the plausibility of human motions
to ensure smooth recovery of motion sequences, while
the isometric constraint promotes the isometry of bone
lengths to ensure accurate recovery of joint positions. The
proposed method significantly extends 3D motion recon-
struction methods for direct recovery of 3D skeletons,
unlike most previous methods relying on 2D images or
1D motion trajectories;

• We derive an ADM ALM algorithm to decouple non-
differentiable terms into simpler subproblems, and inte-
grate the Gauss-Newton method to solve the non-liner
subproblem.

As the extended version of our previous conference papers
[16], [17], this paper exploits both spatial and temporal con-
straints in a uniform framework and adds a sparse prior with
wavelet transform to improve the smoothness of recovery. The
comparison of these three methods are summed up in Table I.
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TABLE I
METHOD COMPARISON OF THIS WORK AND OUR PREVIOUS WORK.

Method Priors Benefits
Wang [16] low rank robust to noise and outliers

Li [17] low rank + isometry robust to noise and outliers and exploring spatial correlation
Ours low rank + isometry + sparse smoothness robust to noise and outliers and exploring spatio-temporal correlation

We also perform thorough evaluation and include in-depth dis-
cussion. Related work is summarized in Section II. Section III
describes the proposed 3D motion recovery method, including
motivation and a novel recovery model. Section IV provides
the experimental results, and the conclusions are finally drawn
in Section V.

II. RELATED WORK

Motion recover is a challenging problem in computer
graphics and computer vision, and thus has attracted more
and more attentions. Various models and algorithms have
been developed across different fields such as pose estimation
and trajectory reconstruction. We review related work of two
categories: model-based methods and learning-based methods.

A. Model-based Methods

To recover 3D motion information from 2D images is a
highly ill-posed problem due to many factors such as inac-
curate joint detection and motion occlusion. In model-based
methods, motion/pose information is recovered by solving
optimization models that incorporate priors for regularization.
Menier et al. [18] developed a generative model on a skele-
tal articulated structure to estimate 3D motion information
from multiple views, which is solved via the expectation-
maximization (EM) approach. This method is robust to several
types of perturbations in the model or data, but the require-
ment of multi-view input limits its application to the more
common single-view scenarios. For motion recovery from
a monocular camera, Park et al. [19] reconstructed a 3D
smooth articulated trajectory from a 2-D trajectory extracted
from a monocular image sequence by using the spherical
coordinate representation of a relative trajectory. To tackle
the NP-hard binary quadratic programming, a branch-and-
bound routine with binary relaxation is used to approximate
the solution. To overcome the inefficiency of branch-and-
bound searching, Valmadre et al. [20] proposed a dynam-
ic programming approach combining articulation constraints
with temporal smoothness. Leonardos et al. [21] introduced
spherical tangent bundles and a Riemannian Extended Kalman
Filter (REKF) model into the human motion reconstruction,
achieving accurate reconstruction from image sequences with
corrupted skeletons. Many methods, such as skeleton-driven
skinning [22], [23] and character animation [24], rely on the
foreknown accurate skeleton structure obtained from capture
systems or skeleton estimation methods.

Various motion recovery models have been also designed for
the recovery of degraded motion data from motion capture sys-
tems or body sensing devices. Due to the physical constraints
of human bodies such as articulated structure of skeletons and

speed-limited motion, motion trajectories of skeletons only lie
in the manifold/subspace of their ambient signal space. Some
works [16], [25], [26] used low-rank matrix completion to
exploit such low-dimensional structure so that missing mea-
surements could be recovered from captured data. However,
these models did not consider the spatial correlation due to
the skeleton structure, which would result in large joint errors
in challenging cases. To address this limitation, Li et al. [17]
explored the spatial correlation between skeleton sequences by
introducing an isometry constraint, which encourages the bone
length to be consistent. Despite the prominent performance for
most cases, their results still contain slight jittering due to the
lack of temporal regularization.

The reviewed works show that model-based methods have
achieved promising performance in various motion recovery
tasks. The key for accurate recovery is to fully take advantages
of various correlation by imposing powerful priors. Along this
avenue, our method exploits temporal correlation via joint low-
rank and sparse priors, and exploits spatial correlation via an
isometric constraint. As a result, the proposed method achieves
accurate recovery for real motion data, and is robust to various
types of degradation such as noise and occlusion.

B. Learning-based Methods

In contrast to model-based methods, another category of
approaches recover 3D motion signals via learning techniques.
Toshev et al. [27] formulated the estimation of human poses
from RGB images as a joint regression problem solved by a
Deep Neural Network. Ouyang et al. [28] fused three types of
features, including appearance score [29], mixture type [30]
and deformation [31], into a deep model to learn human
poses. However, as an image-based method, the performance
could be affected by image quality. Since the prevalence of
depth sensors [32], [33], pose estimation benefits a lot from
depth information. Wei et al. [34] developed an automatic
motion capture system by integrating depth data, full-body
geometry, silhouette information, and temporal pose priors
into a Maximum A Posteriori (MAP) framework, achieving
state-of-the-art capture accuracy. However, it is difficult to give
accurate pose hypothesis when the body part is invisible due
to occlusion.

There are also data-driven approaches to recover 3D motion
from incomplete and/or corrupted observations. Shotton et
al. [35] synthesized full-body motion from sparse control
signals by learning a series of local models from a database
of human motion. To automatically detect and repair cor-
rupted/wrong joints, Chai et al. [36] adopted local PCA
(Principal Component Analysis) to produce a manifold that
includes various types of human motion data, and applied
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it for synthesizing movements from low dimensional signals.
Aristidou et al. [37] proposed to automatically analyze and
fix motion capture sequences by using self-similarity analysis,
but they focused on the suppression of joint rotation errors and
did not consider motion dynamics or bone-length violations.
Saito et al. [38] recovered corrupted skeletons by finding a
subspace of valid motions, namely the motion manifold. After
learning the motion manifold with convolutional autoencoders,
corrupted skeletons are projected onto the motion manifold,
and valid motions are finally rebuilt through inverse projection.

Learning-based methods are able to learn highly non-linear
mappings such as the image-to-joint regression. However,
huge amount of ground-truth motion data is difficult to ac-
quire, particularly for the dataset scale required by the deep
learning paradigm. It would be interesting to investigate mo-
tion recovery with learning techniques requiring less labeled
data, such as few-shot learning, semi-supervised learning, or
unsupervised learning.

III. THE PROPOSED METHOD

In this section, we first present the motivation of the
proposed model, and then detail the proposed 3D skeleton
recovery model which explores spatio-temporal correlation
with joint low-rank and sparse priors and an isometric prior.
Finally, we derive an efficient algorithm under the ALM
framework.

A. Motivation

Human skeleton sequences captured by devices like the
Kinect are often polluted by severe noise or outliers, espe-
cially in the presence of self-occlusion or object occlusion,
which makes the skeleton recovery problem challenging yet
important for practical applications. Most skeleton recovery
approaches [21], [19], [18] require either RGB-D images or
silhouettes as auxiliary input which are not always available.
We observe that a skeleton sequence is a set of time series
that lies in a low-dimensional subspace, and is possible to
be recovered from a partially-observed and/or noisy version.
Specifically, we observe the following priors for skeleton
signals:

1) Isometric Prior: As shown in Fig. 1(b), the motion
trajectories of a parent joint and its child joint, e.g., joint 3 and
joint 4, are often nearly parallel as the length of the rigid bone
is constant over the time. We also note that such an isometry
property only occurs between the parent joint and child joint,
corresponding to the ends of a bone. As shown in Fig. 1(b),
there is no obvious correlation between the trajectories of joint
3 and joint 19. Therefore, we impose an isometric constraint
Eiso (A) to encourage isometry during the recovery.

2) Low-Rank Prior: Human motions lie in a low-
dimensional subspace [36]. Low-rank approximation is a re-
cent advance in low-dimensional representation of signals.
To investigate the potential of a low-rank prior in modeling
skeleton signals, we form a motion matrix D by concatenating
the skeleton positions over time (see the definition in Eq. (1)),
and evaluate low-rank approximation accuracy in terms of
relative error RE := ‖D − D̄‖F /‖D‖F , where D denotes

the input motion matrix and D̄ is the approximated matrix
with a small rank, and ‖.‖F represents the Frobenius-norm of
a matrix. As shown in Fig. 1(c), the approximation errors for
all the five skeleton matrices decay dramatically and approach
to zero as the rank of the reconstructed matrix increases, which
suggests the low-rankness of the skeleton matrix [39].

3) Sparse prior: The types of human motion are limited
due to physical structure. We observe that skeleton trajec-
tories, as shown in Fig. 1(b), are piece-wise smooth with
discontinuities at turning points of the motion, and x, y and
z components of motion trajectories can also be considered
as 1-D temporal piece-wise smooth signals with a number of
singularities, which are able to be efficiently represented by
wavelet transforms [40]–[42].

To verify this, Fig. 1(d) shows the energy compaction
efficiency in terms of normalized energy with respect to the
percentage of retained largest wavelet coefficients of motion
signals. The curves in Fig. 1(d) indicate that the wavelet
transform is able to approximate joint trajectories with only
a small fraction of non-zero coefficients, and hence has a s-
parse representation. Reliable approximation of motion signals
would require about 10% of wavelet coefficients, including
not only the DC component but also many other meaningful
components. We also evaluate the approximation performances
of four well-known (bi-)orthogonal wavelet transforms with
similar filter lengths and vanishing moments, e.g., Coiflets
(coif3), Symlets (sym5), Biorthogonal wavelets (bior4.4), and
Daubechies wavelets (db5) on a sequence in Fig. 1(d). The four
wavelets are equally powerful in representing the 3D motion
data of skeleton with only a small fraction of coefficients. In
our implementation, we use the Daubechies wavelet transform
for its slightly better performance although others yield similar
results. This motivates us to use a wavelet sparsity prior
to model the temporal correlation of joint motions, comple-
menting the low-rank prior that emphasizes both spatial and
temporal correlation.

Based on the key observations above, we propose a skeleton
recovery model from partially-observed and noisy data with
the isometric prior and joint low-rank and sparse priors.

B. The Proposed Model

Let ni = (nix, niy, niz)
> be the i-th joint of the skeleton,

where nix, niy and niz represent the joint’s x, y and z
coordinates, respectively, i ∈ {1, 2, · · · , S}, and S is the
number of skeletal joints. Denote by nti the coordinates of
the i-th joint at frame t, and by T the number of frames. The
corrupted motion matrix D ∈ R3T×S is denoted by:

D =

 n1
1 . . . n1

S
...

. . .
...

nT1 · · · nTS

 , (1)

where each group of three rows corresponds to a skeleton
at one frame, and each column corresponds to the temporal
trajectory of one joint. We assume an additive observation
model:

D = A + E, (2)
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Fig. 1. Motivation for the proposed priors: (a) skeleton structure, (b) motion trajectories of skeletal joints No. 3, 4, 19 and 20 of subject 05 sequence 02
in the CMU dataset [12], (c) relative error w.r.t. matrix rank, and (d) energy compaction efficiency for four wavelets (left y-axis) on a sequence and for five
sequences with the same Daubechies wavelet (right y-axis) w.r.t. the percentage of retained largest wavelet coefficients.

where A is the latent clean skeleton matrix, and E repre-
sents the error matrix. Skeleton corruption often happens in
challenging scenarios such as occlusion, so the error matrix E
should be sparse. Base on the three observations in Sec. III-A,
the 3D motion recovery problem can be formulated as

min
A,E

rank(A) + λ ‖E‖0 +
γ

2
Eiso (A) + µEsmooth (A)

s.t. D = A + E,
(3)

where rank(A) is the rank of matrix A, ‖E‖0 is the `0−norm
of matrix E which represents the number of non-zero entries
in the matrix, Eiso (A) is the isometry term encouraging bone-
length isometry, Esmooth (A) is the smoothness term to ensure
smooth motion recovery, and λ > 0, γ > 0, µ > 0 are
weighting parameters to balance these terms.

The problem in Eq. (3) is NP-hard due to rank(A) and
‖E‖0. This is made tractable by replacing rank(A) with its
convex substitute known as the nuclear norm ‖A‖∗ :=

∑
i σi,

where σi is a singular value of matrix A, and by replacing `0
norm of matrix E with the `1 norm ‖E‖1 :=

∑
ij |Eij | [43].

So, we obtain the following optimization problem:

min
A,E
‖A‖∗ + λ ‖E‖1 +

γ

2
Eiso (A) + µEsmooth (A)

s.t. D = A + E,
(4)

where the isometry term Eiso (A) and smoothness term
Esmooth (A) are detailed in Section III-B1 and Section III-B2,
respectively. Low-rankness measured by the nuclear norm
regularizes that the rows of the motion matrix A are highly
linearly dependent as the motion patterns of human skeleton
lie in a low-dimensional subspace in the ambient signal space,
which implies that the motion matrix A can be expressed
as linear combinations of some basis poses. Proper selection
of the parameter λ is crucial to recovery accuracy [44]: λ
should be small enough to remove noise (by keeping the
variance low to obtain high stability), and large enough not
to overshrink the original matrix (by keeping the bias low
for flexible motion). γ and µ are set to balance the energy
of corresponding terms. Since the error of the isometry term
could be extremely small due to the bone-length error to
the fourth order (details will be provided later), γ should
be large enough to maintain the importance of the isometry

term while µ should be small enough to provide sufficient
flexibility in formulating the wavelet term. See Section IV for
the parameters used in our experiments.

1) Exploring Spatial Correlation with Isometry: The isom-
etry term Eiso is designed to model the spatial correlation of
motions on the skeleton structure, usually known as an articu-
lation skeleton, so that the recovered motions are reasonable.
An articulated skeleton is usually described by a tree structure,
where each node represents a skeletal joint and each edge
between nodes represents a bone. The body size is fixed for a
particular actor and the bones have constant lengths over time.

Therefore, we exploit spatial coherence of skeletons by
promoting isometry (i.e. length preservation) of bones [17].
Let G := (V, E) be a skeleton, where V is the set of skeletal
joints, and E is the set of bones. eij represents the bone of the
skeleton connecting the i-th and the j-th joints. We introduce
an energy term that penalizes non-isometric deformation:

Eiso (A) =

T∑
t=1

∑
eij∈E

(
d2
(
nti,n

t
j

)
− l2ij

)2
, (5)

where lij is the bone length between two joints. d
(
nti,n

t
j

)
de-

notes the distance between joints nti and ntj , and d
(
nti,n

t
j

)
:=∥∥nti − ntj

∥∥
2

is the Euclidean distance between nti and ntj at
time instance t.

The isometry term aims at preserving the bone lengths of the
skeleton. Such a constraint helps to avoid inaccurate recovery
in which relative positions of joints are beyond a reasonable
range.

2) Exploring Temporal Correlation with Wavelet Transfor-
m: The types of human motion are limited due to physical
structure. Motion trajectories are mainly smooth signals with
singularities, which can be well modeled by wavelet transform.
Let W be the wavelet basis matrix with J-level decompositions
(J = 2 in our experiments). The wavelet coefficients of
skeleton motion should be sparse. Therefore, the sparseness of
the smoothness term Esmooth (A) is measured by the `1−norm
:

Esmooth (A) = ‖WA‖1 . (6)

Substituting the smoothness term (6) and the isometry term
(5) into Eq. (4), the 3D motion recovery model is rewritten
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as:

min
A,E
‖A‖∗ + λ ‖E‖1 +

γ

2
Eiso (A) + µ ‖WA‖1 . (7)

The isometry term exploits the spatial correlation of a
skeleton sequence by suppressing positional errors of skeletal
joints, while the smoothness term with sparse prior exploits
the temporal correlation of skeleton sequence by ensuring the
piece-wise smoothness of the recovered motion. In this way,
the proposed model is able to fully exploit the characteristics
of skeleton motions.

C. Augmented Lagrangian Algorithm

The proposed model (7) contains a low-rank term, a non-
differentiable term (wavelet term), and a nonlinear term (i-
sometry term), which are difficult to optimize simultaneously.
Therefore, we introduce two auxiliary variables C and N to
decouple these terms, resulting in the following formulation.

min
A,E,C,N

‖A‖∗ + λ ‖E‖1 + µ ‖C‖1 +
γ

2
Eiso (N)

s.t. D = A + E, N = A, C = WA.
(8)

To convert Problem (8) with equality constraints into un-
constrained optimization, we utilize the augmented Lagrangian
method [45]. For compact notation, denote the variable set by
Θ , {A,E,C,N}, the multiplier set by Z , {Z1,Z2,Z3},
and the penalty parameter set by ρ , {ρ1, ρ2, ρ3}. The
augmented Lagrangian function of (8) is defined as follows.

L(Θ,Z,ρ) = ‖A‖∗ + λ ‖E‖1 +
γ

2
Eiso (N) + µ ‖C‖1

+ 〈Z1,E−D + A〉+
ρ1
2
‖E−D + A‖2F

+ 〈Z2,N−A〉+
ρ2
2
‖N−A‖2F

+ 〈Z3,C−WA〉+
ρ3
2
‖C−WA‖2F , (9)

where 〈·, ·〉 denotes the inner product of two matrices consid-
ered as long vectors.

Under the ALM framework, the original Problem (8) is
solved by iteratively minimizing the unconstrained augmented
Lagrangian function [45].{

Θk+1 = minΘ L
(
Θ,Zk,ρk

)
,

Update Zk+1 and ρk+1,
(10)

where the update of multipliers and penalty parameters are
detailed in Algorithm 1.

However, jointly optimizing variables in Θ in (10) is still
difficult since the three regularizer terms in terms of A, E,
and C, respectively, are non-differentiable. Note that, under
mild conditions, the alternating optimization converges to the
solution of the original joint optimization [46]. We resort to the
alternating direction method (ADM) to solve variables in Θ
separately as subproblems instead of directly solving Problem
(10). In each subproblem, only one variable is optimized
while other variables are fixed at their up-to-date values. As a
result, each subproblem becomes simpler and easier to solve as
many terms in (8) are irrelevant as constants. The alternating
optimization of subproblems are detailed as follows:

1) C-subproblem: Those terms irrelevant to C are con-
sidered as constants. Then, we obtain the following `1-norm
minimization:

Ck+1 = arg min
Ck

µ
∥∥Ck

∥∥
1

+
〈
Zk3,C

k−WAk
〉

+
ρ3
2

∥∥Ck−WAk
∥∥2
F
, (11)

which has the following explicit solution:
S µ
ρ3

(
WAk − 1

ρ3
Zk3

)
. The shrinkage operator

Sδ(x) := sgn(x) max(|x| − δ, 0) is applied to the matrix
entry-wise.

2) E-subproblem: Similarly, the E-subproblem is equivalent
to the following optimization problem ignoring constant terms
with respect to E:

Ek+1 = arg min
Ek

λ
∥∥Ek

∥∥
1

+
〈
Zk1,E

k−D+Ak
〉

+
ρ1
2

∥∥Ek−D+Ak
∥∥2
F
, (12)

which has the following explicit solution:
Sλ/ρ1

(
D−Ak − 1

ρ1
Zk1
)
.

3) A-subproblem: The A-subproblem is the following nu-
clear norm minimization problem

Ak+1 = arg min
Ak

∥∥Ak
∥∥
∗

+
〈
Zk1,E

k−D+Ak
〉

+
ρ1
2

∥∥Ek−D+Ak
∥∥2
F

+
〈
Zk2,N

k−Ak
〉

+
ρ2
2

∥∥∥Nk−Ak
∥∥∥2
F

+
〈
Zk3,C

k−WAk
〉

+
ρ3
2

∥∥∥Ck−WAk
∥∥∥2
F
. (13)

Note that Eq. (13) is not a standard nuclear minimization
problem that has the closed-form solution. For easier optimiza-
tion, we choose an orthogonal wavelet basis Daubechies 10,
which implies W>W = I, where I is the identity matrix.
Then, we have

〈
Zk3,C

k−WAk
〉

=
〈
W>Zk3,W

>Ck −Ak
〉

and
∥∥∥Ck−WAk

∥∥∥
F

=
∥∥W>Ck−Ak

∥∥
F

. With substitution,
Eq. (13) is transformed into the following standard nuclear
norm minimization:

min
A
‖A‖∗ + 〈Z1,E−D + A〉+

ρ1
2
‖E−D + A‖2F

+ 〈Z2,N−A〉+
ρ2
2
‖N−A‖2F

+
〈
W>Z3,W

>C−A
〉

+
ρ3
2

∥∥W>C−A
∥∥2
F
. (14)

Suppose Hk+1
1 = D−Ek+1− 1

ρ1
Zk1, Hk+1

2 = Nk+1+ 1
ρ2

Zk2 ,
and Hk+1

3 = W>Ck+1 + 1
ρ3

W>Zk3 . Then the solution of Eq.
(14) is the closed-form singular value thresholding: Ak+1 =

USδ(Λ)V>, where (U,Λ,V) = svd
(
ρk1Hk

1+ρ
k
2Hk

2+ρ
k
3Hk

3

ρk1+ρ
k
2+ρ

k
3

)
and δ = 1/(ρk1 + ρk2 + ρk3).

4) N-subproblem: By applying the N-subproblem, the
proxy variable N is regularized to conform to the isometry
constraint, otherwise the skeleton would deform to unreason-
able shapes. Such a constraint is passed to the target variable
A by solving the A-subproblem, which involves the auxiliary
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variable Nk, in the iterative optimization procedure. The N-
subproblem is a nonlinear least squares (NLS) problem:

min
N

L (A,E,N,C,Z1,Z2,Z3) , (15)

which does not have a closed-form solution as previous three
sub-problems. We solve the NLS using the Gauss-Newton
method. Specifically, we rewrite Eq. (5) into the following
standard NLS problem:

Eiso (N) = ‖F (N)‖2 ,F (N) = [r11 (N) , · · · , rTH (N)]
>
,

(16)

where rth(·) is the energy term related to the h-th bone of the
t-th frame. Given Nk, we linearize F (N) by the first-order
Taylor expansion:

F (N) ≈ F
(
Nk
)

+ J
(
Nk
)
δ, δ = N−Nk, (17)

where J
(
Nk
)

is the Jacobian of F evaluated at Nk, and
δ is the deviation against Nk. Instead of solving Eq. (15),
we optimize the approximate objective function to obtain the
update of N to decrease the energy cost:

δk+1 = arg min
δ

∥∥F (Nk
)

+ J
(
Nk
)
δ
∥∥2 . (18)

The optimal update step δk+1 is the solution of the corre-
sponding normal equations:

J
(
Nk
)>

J
(
Nk
)
δ = −J

(
Nk
)>

F
(
Nk
)
, (19)

which can be solved using iterative solution techniques like
preconditioned conjugate gradient (PCG). Previous work-
s [47], [48] demonstrate the feasibility of this strategy in a
GPU optimization framework for dynamics simulation and
non-rigid registration, respectively. Combining Eq. (9) with
the Gauss-Newton solver, the unknown update δk+1 can be
solved by:

δk+1 =
(
γJTJ + ρk2I

)−1× (20)(
−Zk2 − ρk2

(
Nk −Ak

)
− γJ>F

)
,

where J and F refer to J
(
Nk
)

and F
(
Nk
)
, respectively. The

overall ALM algorithm is summarized in Algorithm 1.

D. Convergence Analysis

The global convergence of ALM is proven in the case of
two blocks, but it does not naturally apply to the cases of
three or more blocks [46]. However, many signal processing
tasks usually involve ALM problems of multiple blocks [26],
[49], including our model (9) with four blocks, i.e., A, E, N,
and C. Under mild conditions, the iteratively-updated variables
of the ALM algorithm with multiple blocks converge to the
Karush−Kuhn−Tucker (KKT) conditions, which are neces-
sary conditions of the first-order optimality. We refer interested
readers to dedicated literatures [46], [49]. Numerically, our
algorithm usually converges to promising results after 30
iterations and is stable for various sequences. Fig. 2 shows
three typical examples on the decreasing of the normalized
total energy in iterations.

Fig. 2. The convergence curves of random sequences in CMU dataset [12],
Edinburgh dataset [13], [14] and Kinect dataset.

Algorithm 1: ADM ALM algorithm for 3D motion recovery

1: Input: observed skeleton matrix D ∈ Rm×n

2: Initialize: A0 = 0, E0 = 0, N0 = D,

Z0
1 = 0, Z0

2 = 0,Z0
3 = 0,

ρ1, ρ2, ρ3 > 0, η1, η2, η3 > 1, maxIter = 1000

3: while not converged do

4: δk =
(
γJTJ+ ρk2I

)−1

×
[
−Zk2 − ρk2

(
Nk −Ak

)
− γJT r

(
Nk

)]
5: Nk+1 = Nk + δk

6: Ck+1 = S µ

ρk3

(
WAk − 1

ρ3
Z3

k
)

7: Ek+1 = S λ

ρk1

(
D−Ak − 1

ρk1
Zk1

)
8: Hk+1

1 = D−Ek+1 − 1
ρ1
Zk1

9: Hk+1
2 = Nk+1 + 1

ρ2
Zk2

10: Hk+1
3 = W>Ck+1 + 1

ρ3
W>Zk3

11: Ak+1 =

M 1

ρk1+ρk2+ρk3

(
ρk1H

k+1
1 +ρk2H

k+1
2 +ρk3H

k+1
3

ρk1+ρ
k
2+ρ

k
3

)
12: Zk+1

1 = Zk1 + ρk1
(
Ek+1 −D+Ak+1

)
13: Zk+1

2 = Zk2 + ρk2
(
Nk+1 −Ak+1

)
14: Zk+1

3 = Zk3 + ρk3
(
Ck+1 −WAk+1

)
15: ρk+1

1 = η1ρ
k
1 , η1 > 1

16: ρk+1
2 = η2ρ

k
2 , η2 > 1

17: ρk+1
3 = η3ρ

k
3 , η3 > 1

18: End while

19: Output: A, E

IV. EXPERIMENTAL RESULTS

In this section, we first test the influence of the parameters
on the recovery quality (Section IV-A) and then evaluate the
proposed method on the public CMU dataset [12], Edinburgh
dataset [13] [14] (Section IV-B) and two real datasets [15]
captured by Kinect v2.0 (Section IV-C). Both quantitative and
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(a)

(b)

(c)

Fig. 3. The average bone error (ABE) and the average joint error (AJE) (y-axis) comparison on four randomly selected sequences (from left to right) of the
CMU dataset [12] for 10% and 20% corrupted cases with respect to the parameters of λ (Top), γ (Middle), and µ (Bottom) (x-axis).

qualitative results are presented. For quantitative evaluation,
the metrics of recovery error, known as Average Joint Error (A-
JE) and Average Bone-length Error (ABE), are calculated as:
ω = 1

ST

∑
t

∑
p
d
(
ñtp,n

t
p

)
and ξ = 1

T (S−1)
∑
t

∑
eij∈E

∣∣∣l̃tij − ltij∣∣∣,
respectively. ñtp and ntp are the ground truth and reconstructed
joint positions. l̃tij and ltij are the ground truth and reconstruct-
ed bone lengths of the i-th bone at the t-th frame. ω and ξ
represent the average absolute difference over joints and bones
in all the frames, respectively. Finally, the running times of all
the methods are reported in Section IV-D.
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Fig. 4. Average joint errors in meters for different sequences of subject 09
using our method for motion recovery.

A. Parameter Sensitivity Experiments

In order to demonstrate the generality of our chosen values
of parameters, we test the influence of the parameters on
the recovery quality by randomly selecting four sequences
from the CMU dataset [12]. We evaluate the AJE and ABE
by tuning each parameter over the interesting part of the
parameter space while setting other parameters at the fixed
reasonable values: λ = 1/

√
T , γ = 100, µ = 0.01.

1) λ: This parameter adjusts the importance of the data
term and the sparse term. The error matrix E should be
sparse because of occlusion in the real world. According to
the principal component analysis [44], we set λ = 1/

√
T in

our implementation, where T is the number of frames. The
dashed line in the top row of Fig. 3 shows that our chosen
value consistently gives the minimum function error.

2) γ: This parameter promotes isometry of bones on the
skeleton by exploiting spatial coherence of skeletons. As this
term is typically small due to the fourth order of error, we
choose γ = 100 for balancing the importance of the data term
and the length preservation term. The middle row of Fig. 3
shows that the error curve gradually declines and then tends
to be the same after γ = 100. Therefore, we set γ = 100 in
our experiments.

3) µ: The human motion can be modeled by wavelet
transform owing to physical structure characteristics. Given
that the human movement is smooth with singularities, we
add sparse prior to the wavelet term. The strength of wavelet
approximation is controlled by the weight µ associated with
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the smoothness term. µ should be large enough to emphasize
the sparseness of the smoothness and small enough to provide
sufficient flexibility in formulating the wavelet term. The
bottom row of Fig. 3 shows the error curves, and so we set
µ = 0.01 for all our experiments which consistently gives
good results.

4) Other relevant parameter settings: There is no require-
ment for the sequence length and the number of joints in our
algorithm, as long as computer memory permits. Consider-
ing the time consumption and computational precision, it is
better to take 50 to 300 frames. In the experiment, we set
ρ1 = ρ2 = ρ3 = 0.5, η1 = η2 = η3 = 1.3.

Based on the results in Fig. 3 and the associated analysis,
we found that the performance of our model was stable with
respective to various sequences and parameters. Therefore, we
use a set of fixed parameters in the rest of the experiments (in
Section IV-B and Section IV-C) instead of tuning parameters
for each sequence.

TABLE II
AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY ON THE
CMU DATASET [12] WITH DIFFERENT CORRUPTION PERCENTAGES (M).

Sub. Method 5% 10% 15% 20% 80%

05
Wang [16] 0.066 0.070 0.073 0.075 0.093

Li [17] 0.002 0.005 0.008 0.011 0.074
Ours 0.002 0.005 0.007 0.009 0.064

09
Wang [16] 0.076 0.079 0.083 0.085 0.122

Li [17] 0.005 0.007 0.010 0.014 0.073
Ours 0.004 0.005 0.006 0.008 0.063

13
Wang [16] 0.073 0.076 0.078 0.085 0.105

Li [17] 0.008 0.011 0.012 0.016 0.072
Ours 0.006 0.010 0.012 0.017 0.073

24
Wang [16] 0.069 0.075 0.078 0.082 0.114

Li [17] 0.004 0.007 0.008 0.013 0.075
Ours 0.003 0.005 0.008 0.012 0.070

56
Wang [16] 0.068 0.073 0.077 0.080 0.118

Li [17] 0.003 0.006 0.009 0.013 0.074
Ours 0.003 0.005 0.008 0.010 0.068

86
Wang [16] 0.072 0.075 0.077 0.083 0.121

Li [17] 0.003 0.006 0.008 0.012 0.076
Ours 0.003 0.006 0.009 0.011 0.066

93
Wang [16] 0.068 0.071 0.075 0.081 0.098

Li [17] 0.003 0.008 0.010 0.011 0.081
Ours 0.001 0.005 0.008 0.010 0.069

115
Wang [16] 0.072 0.076 0.078 0.085 0.130

Li [17] 0.007 0.005 0.012 0.015 0.062
Ours 0.006 0.004 0.009 0.015 0.052

140
Wang [16] 0.061 0.063 0.070 0.080 0.108

Li [17] 0.003 0.005 0.010 0.012 0.053
Ours 0.004 0.006 0.009 0.011 0.049

Total
Wang [16] 0.068 0.073 0.079 0.081 0.104

Li [17] 0.005 0.007 0.009 0.012 0.073
Ours 0.004 0.006 0.007 0.010 0.067

B. Results on Public Datasets
In this section, we evaluate the performance of our method

on the CMU dataset [12] and the Edinburgh dataset [13] [14]

in terms of accuracy and smoothness. Each skeleton in the
CMU dataset [12] contains 25 skeletal joints (with finger joints
removed) and 24 bones (as demonstrated in Fig. 1(a)), while
the skeleton in the Edinburgh dataset and Kinect dataset has
21 joints (also without finger joints) and 20 bones. The CMU
dataset captures human motion by placing makers on every
subject and recording the markers’ positions, and thus can be
used as ground truth for evaluation. We simulate corruptions
in the skeleton data. Specifically, random noise is added to
a fraction of entities in the ground-truth skeleton matrix Ã,
obtaining the observed skeleton matrix D. The noise in the
polluted joints is uniformly distributed in the range of [-25 25]
cm in each spatial dimension. This range is selected according
to the average length of arms and legs because noisy joints
are unlikely to go beyond this range. The length of bones is
computed according to the given skeleton. As for the skeleton
captured without ground truth, the bone length is estimated
by the average of the bone lengths over the less-corrupted
sequence. Recovery errors in terms of AJE are presented in
Fig. 4. Four different percentages of polluted entities in D, i.e.,
5%, 10%, 15%, and 20% are tested, which are similar to real
captured situation. As shown in Fig. 4, our method can achieve
consistent recovery errors for different motion sequences of the
same subject with respect to the same proportion of corruption.

We also measure the average bone-length error (ABE) in
centimeters in Fig. 5, compared with our previous work [16],
[17]. It can be observed that our method and the method
in [17] recover the skeletons with more accurate bone lengths
due to the isometry constraint than the method in [16]. Our
method has the smallest error due to the sparse constraint with
wavelet transform which guarantees the smoothness of the
recovered trajectory and the robustness of the method. Fig. 6
shows the trajectories (3D positions over time) of the root
joint recovered by different methods. It can be seen that our
method can recover a more smooth and stable joint motion
trajectory thanks to the proposed temporal regularization. In a
word, our method recovers the corrupted skeleton sequences
with high accuracy and reasonable smoothness by exploiting
the temporal and spatial correlations of the skeleton matrix.

For detailed comparison, we test the recovery performance
of several skeleton sequences from different subjects with
various motions and temporal durations. Specifically, we use
sequences from subject 05 to subject 140, including a variety
of actions such as running, bending, kicking, dancing, etc.
Table II gives quantitative evaluation (average joint errors in
meters) for different subjects. One extreme case with 80%
corrupted elements is included. It can be seen that our method
and the method in [17] obviously outperform the method
in [16] due to the use of isometry constraint. Thanks to the
proposed sparse constraint that guarantees the plausibility of
human motions to ensure smooth recovery of motion sequence,
our method achieves the most accurate recovery result for
most cases. Even for the case with 80% corrupted elements,
our method can still reconstruct reasonable motion within
0.07 m in terms of AJE. In five cases, the errors of the
method in [17] are smaller than ours by 0.001 because the
proposed sparse constraint improves the smoothness at the
expense of slight drop of precision especially for complex
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Fig. 5. Average bone-length errors in centimeters for different sequences of subject 09 recovered by Wang [16], Li [17] and our method. Different corrupted
percentages are compared: (a) 5%, (b) 10%, (c) 15%, and (d) 20%.
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Fig. 6. Comparison results of trajectories (3D positions over time) of joint No.1 (the root joint) of subject 05 sequence 02: (a) ground truth, (b) 20% damaged
trajectory, (c) recovered trajectory by [16], (d) recovered trajectory by [17], and (e) recovered trajectory by our method.
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Fig. 7. Comparison results for different sequences of different subjects in the CMU dataset [12]. From top to bottom: ground-truth skeletons, corrupted
skeletons, skeletons recovered by [16], [17], and our method. The corruption rates are: (a)-(c) 5%, (d)-(f) 10%, (g)-(i) 15%, and (j)-(l) 20%.

motions. Fig. 7 gives 12 examples for different subjects with
different motions and different corruptions, compared with two

methods. The method in [16] recovers reasonable skeleton
motions by sacrificing some motion details, but the recovered
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(a) (b) (c) (d)

Fig. 8. Comparison results for different sequences of different subjects in the CMU dataset [12] (left in each subfigure) and the Edinburgh dataset [13]
[14] (right in each subfigure). From top to bottom: ground-truth skeletons, corrupted skeletons, skeletons recovered by [16], [17], [14], and our method. The
corruption rates are: (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

motions are too rigid compared with ground truth. The method
in [17] recovers more accurate skeleton motions thanks to
the isometry constraint, but the recovered motions still suffer
from jitter artifacts. Our method is able to recover accurate
motion with rich details thanks to the elegant design of spatio-
temporal constraints.

We also compare with two popular deep learning methods:
method [14] in Table III on the CMU dataset [12] and in Table
IV on the Edinburgh dataset [13] [14], and method [50] in
Table V on the CMU dataset [12]. The visual comparison is
presented in Fig. 8 and Fig. 9. Because the method in [14]
contains many pre-processing steps and handles the BVH
format data, we compare with this method in a separate
table and figure. The noise in the polluted joints is uniformly
distributed in the range of [-2.5, 2.5] inches and five different
percentages of polluted entities in D are tested: 5%, 10%,
15%, 20%, and 80%. Consistent with the method in [14],
21 joints are used. As shown in Table III and Table IV, the
method in [14] has the lowest accuracy. This is mainly due

to the pre-processing for deep learning including scaling to a
unified skeleton structure, removing global translation around
the xz plane and global rotation around the y-axis, and limiting
one foot on the floor, which ensures the smoothness of the
movement but the accuracy is lost. Therefore, the recovered
skeleton sequences by this method look visually good and
smooth without jitter during the time, but the accuracy of the
joints is not very high. Fig. 8 shows the qualitative comparison
of the four methods. Due to the constraint on the foot and
the removal of global rotation around the y axis, the method
in [14] has a serious deviation at the shoulders and the
feet. On the contrary, our method achieves the most accurate
recovery without any pre-processing. Moreover, our method
can deal with data of arbitrary format including original global
coordinates. For method [50], we set the number of joints to 25
and the other parameters to the best provided by the author.
Since the LSTM (long short term memory)-based model is
better than the time-window-based model, we only compare
with the former. Following the author, we randomly selected
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(a) (b) (c) (d)

Fig. 9. Comparison results for sequence 01 of subject 05 (left in each subfigure) and sequence 01 of subject 14 (right in each subfigure) in the CMU dataset
[12] . From top to bottom: ground-truth skeletons, corrupted skeletons, skeletons recovered by [50], and our method. The corruption rates are: (a) 5%, (b)
10%, (c) 15%, and (d) 20%.

25 different folders from the CMU dataset [12] for training,
testing and validation. We use sequence 14 01 and sequence
05 01 as test sequences, in which subject 14 is in the training
set, while subject 05 is not in the training set. The input of
the network in [50] requires a mask to indicate the missing
joint points. Because the simulated noise data is generated
randomly, we set the mask to all 1 for our input. The whole
noise matrix is input and the output of the network is taken
as the final result. As shown in Table V, method [50] has
the lowest accuracy, especially for sequence 05 01, due to the
insufficient generalization ability of the model and the need
for precise mask in denoising. Fig. 9 shows the qualitative
comparison of [50] and ours. The whole network structure
in [50] tends to recover human structure without considering
accuracy, especially in the case of subjects not included in the
training set. Moreover, method [50] requires retraining data
for different skeleton structure, which cannot be restored for
occluded Kinect data. However, our method does not have
such requirements and only need tens of frames to recover

more accurate motion.

C. Results on Kinect Data

The motions captured by most motion capture devices such
as the Kinect often suffer from severe joint drifting and motion
jitter, especially for occlusion. To validate the performance of
our method in practical applications, we experiment on two
real captured Kinect datasets collected by ourselves and [15].
The actor starts at a non-occluded pose, and the motion is
very slight in the first few frames. Therefore, we choose the
average length for each bone in the first several frames as the
reference bone length lij in Eq. (5).

Fig. 10 shows the comparison results for two frames of
two Kinect datasets. It can be seen that the method in [16]
reconstructs reasonable motions from the corrupted skeletons,
but the recovered skeletons lose many motion details, and
the motion looks rigid and unnatural. The method in [17]
and our method recover accurate motion with certain motion
details preserved. We also measure the 3D trajectory of the
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TABLE III
AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY ON
CMU DATASET [12] (BVH FORMAT) WITH DIFFERENT CORRUPTION

PERCENTAGES.

Sub. Method 5% 10% 15% 20% 80%

05 01
Wang [16] 0.058 0.125 0.185 0.251 0.904

Li [17] 0.030 0.077 0.117 0.170 0.743
Holden [14] 0.637 0.672 0.753 0.856 1.636

Ours 0.013 0.033 0.057 0.085 0.564

05 14
Wang [16] 0.077 0.156 0.229 0.312 1.028

Li [17] 0.045 0.097 0.154 0.215 0.858
Holden [14] 0.952 1.012 1.088 1.141 1.867

Ours 0.017 0.031 0.055 0.095 0.582

13 29
Wang [16] 0.044 0.094 0.145 0.190 0.733

Li [17] 0.021 0.051 0.088 0.128 0.707
Holden [14] 0.923 0.976 1.037 1.113 1.880

Ours 0.010 0.024 0.045 0.071 0.527

13 38
Wang [16] 0.047 0.094 0.140 0.185 0.700

Li [17] 0.027 0.057 0.092 0.133 0.688
Holden [14] 0.919 1.015 1.040 1.104 1.711

Ours 0.012 0.031 0.061 0.095 0.647

TABLE IV
AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY ON THE

EDINBURGH DATASET [13] [14] WITH DIFFERENT CORRUPTION
PERCENTAGES.

Sub. Method 5% 10% 15% 20% 80%

07
Wang [16] 0.126 0.181 0.240 0.308 1.160

Li [17] 0.063 0.108 0.161 0.219 0.884
Holden [14] 0.905 0.996 1.016 1.093 1.896

Ours 0.013 0.030 0.058 0.091 0.679

08
Wang [16] 0.112 0.166 0.225 0.292 1.160

Li [17] 0.058 0.103 0.152 0.210 0.894
Holden [14] 1.253 1.410 1.498 1.597 2.242

Ours 0.011 0.029 0.052 0.082 0.657

09
Wang [16] 0.134 0.193 0.252 0.323 1.178

Li [17] 0.062 0.113 0.163 0.227 0.907
Holden [14] 0.948 1.029 1.097 1.183 1.919

Ours 0.011 0.031 0.053 0.085 0.651

10
Wang [16] 0.121 0.177 0.237 0.300 1.162

Li [17] 0.061 0.110 0.162 0.217 0.886
Holden [14] 0.740 0.842 0.904 1.007 1.809

Ours 0.011 0.028 0.054 0.080 0.645

TABLE V
AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY ON
CMU DATASET [12] WITH DIFFERENT CORRUPTION PERCENTAGES.

Sub. Method 5% 10% 15% 20% 80%

05 01
Kucherenko [50] 0.329 0.330 0.326 0.325 0.331

Ours 0.002 0.005 0.007 0.009 0.044

14 01
Kucherenko [50] 0.076 0.076 0.074 0.074 0.075

Ours 0.005 0.006 0.007 0.009 0.039

captured motion in Fig. 11. For better visualization, the regions
highlighted by rectangles are enlarged and shown aside. As
shown in Fig. 11(a), jitter artifacts often happen in human
motion captured by Kinect, e.g., highlighted points in the
figure, where the Kinect device suddenly loses the location

of dynamic human body. The method in [16] and the method
in [17] both filter out some obvious outliers, but fail to smooth
the whole trajectory. The method in [16] would even cause
error during the recovery procedure. On the contrary, our
method recovers accurate and smooth motion thanks to the
sparse wavelet constraint. Hence, in practical cases which
have complex human motions and are lack of ground-truth
bone length to ensure isometry, our method can still recover
reasonable and smooth motion.

D. Running Times

The running times for the CMU dataset [12] are given in
Table VI. All the experiments are performed on a desktop
computer with an Intel i5-4690K 3.5GHz CPU and 8GB RAM.
Four skeleton sequences with an increasing frame length are
tested. In order to compare with the deep learning method
[14], we divide each sequence into 240 overlapping windows
according to the method in [14] and calculate the average
recovery time for all the methods. The running times of the
method in [16], the method in [17], the method in [14] and
our method are 0.5764s, 16.4939s, 34.4910s, and 19.7044s,
respectively.

TABLE VI
THE RUNNING TIMES ON THE CMU DATASET.

Sequences Frame Length Methods Running Time(s)

Sub.21 Seq.03
Wang [16] 1.0983

272 Li [17] 22.7150
Ours 24.7055

Sub.115 Seq.05
Wang [16] 1.4027

584 Li [17] 47.5670
Ours 60.7618

Sub.140 Seq.04
Wang [16] 4.4831

1100 Li [17] 96.0281
Ours 148.7628

Sub.56 Seq.06
Wang [16] 23.9200

6784 Li [17] 478.3740
Ours 586.2765

V. CONCLUSIONS

This paper proposes a novel skeleton recovery method
using spatio-temporal reconstruction. The corrupted skeleton
sequence is integrated into a skeleton matrix, and we use a
joint low-rank and sparse prior to exploit temporal correlation
and an isometric constraint for spatial correlation. The whole
model is solved under an iterative ALM framework, and a
Gauss-Newton solver is introduced to solve the nonlinear
least squares subproblem. Experimental results on the public
CMU dataset, the Edinburgh dataset and two real captured
Kinect datasets demonstrate the accuracy and robustness of
the proposed method compared with state-of-the-art methods.
Our method can be used to pre-process a large amount of
damaged skeletons to improve the accuracy of downstream
applications.

Our method also has some limitations to be overcome in
future work: 1) It is not very effective for the cases with loss or
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Fig. 10. Comparison results for our Kinect sequence (top) and another
Kinect sequence [15] (bottom). (a) captured color image, (b) captured Kinect
skeleton, (c) recovered skeleton by [16], (d) recovered skeleton by [17], and
(e) recovered skeleton by our method.

(a) (b)

(c) (d)

Fig. 11. Comparison results of trajectories of the root joint of a Kinect
sequence: (a) motion captured by Kinect, (b) recovered trajectory by [16], (c)
recovered trajectory by [17] and (d) recovered trajectory by our method.

damage of multiple continuous frames, and the computational
complexity rapidly increases with the increase of matrix size.
2) Besides the isometry property, we also note that more
structure information can be considered, e.g., the relative
position of the skeleton joints. However, this would make the
model more difficult to optimized.
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