
ar
X

iv
:1

60
3.

00
10

0v
1

 [
cs

.C
R

]
 1

 M
ar

 2
01

6

Crashing Modulus Attack on Modular Squaring

for Rabin Cryptosystem

Masahiro Kaminaga, Hideki Yoshikawa,Arimitsu Shikoda,and Toshinori Suzuki∗†

March 2, 2016

Abstract

The Rabin cryptosystem has been proposed protect the unique ID
(UID) in radio-frequency identification tags. The Rabin cryptosystem is
a type of lightweight public key system that is theoretetically quite secure;
however it is vulnerable to several side-channel attacks. In this paper, a
crashing modulus attack is presented as a new fault attack on modular
squaring during Rabin encryption. This attack requires only one fault in
the public key if its perturbed public key can be factored. Our simulation
results indicate that the attack is more than 50% successful with several
faults in practical time. A complicated situation arises when reconstrucing
the message, including the UID, from ciphertext, i.e., the message and the
perturbed public key are not relatively prime. We present a complete and
mathematically rigorous message reconstruction algorithm for such a case.
Moreover, we propose an exact formula to obtain a number of candidate
messages. We show that the number is not generally equal to a power of
two.

1 Introduction

It is quite important that the modular squaring map f(x) = x2 mod N from
Z
∗
N = (Z/NZ)∗ to itself, where Z

∗
N = (Z/NZ)∗, is the reduced residue system

mod N . The algorithmic complexity of the modular quadratic equation x2 ≡ C
(mod N) for quadratic residue C mod N is equivalent to factoring N . Thus, f
has one-wayness if factoring N is sufficiently difficult.

There are various applications of the modular squaring map with N = pq for
large distinct primes p and q. For example, Blum et al. [1] constructed a unpre-
dictable pseudorandom sequence to take the parity of xi for xi = f(xi−1) mod N
with a secret initial value x0 ∈ Z

∗
N . This is known as the Blum-Blum-Shub

∗M. Kaminaga, H. Yoshikawa, and T. Suzuki are with the Department of Electrical En-
gineering and Information Technology, and A. Shikoda is with the Department of Electri-
cal Engineering, Tohoku Gakuin University, 13-1, Chuo-1, Tagajo, 985-8537, Japan e-mail:
(kaminaga@mail.tohoku-gakuin.ac.jp).

†Manuscript received xxxx xx, xxxx; revised xxxx xx, xxxx.

1

http://arxiv.org/abs/1603.00100v1

pseudorandom number generator, and it is theoretically quite important. An-
other important example is the Rabin cryptosystem developed by Michael C.
Rabin [2]. The Rabin cryptosystem is a public key cryptosystem with public
key N and secret keys p and q. In this system, message M is encrypted as
C = M2 mod N and decrypted as four possible roots of C using

√
C mod p

and
√
C mod q and the Chinese remainder theorem (CRT) (see Section 2.2).

The security of the Rabin cryptosystem, similar to that of RSA, is related
to the practical difficulty of factoring N = pq. The Rabin cryptosystem has a
theoretical advantage in that there exists an exact proof of its security equiv-
alent to factoring N , which is not currently known to be true for RSA. Being
theoretically important, the Rabin cryptosystem is also useful for passive ra-
dio frequency identification (RFID). The use of passive RFID tags to prevent
counterfeiting by embedding them in a product is an emerging application.
RFID systems comprises tags and interrogators. RFID tags are low-cost wire-
less devices that associate a unique ID (UID) with the product. These tags are
powered passively by the interrogator. Implementation of a public key cryp-
tosystem on RFID tags is challenging, because the hardware limited. Therefore,
“lightweight” cryptosystems are required for RFID tags. RSA is a well-known
and effective public key cryptosystem; however, it is not suitable for RFID tags.
RSA encryption requires many modular multiplications, relatively long process-
ing time, and a relatively large data-path area. In addition, RSA consumes a
significant amount of energy. There are two major lightweight public key cryp-
tosystems suitable for RFID tags, i.e., the elliptic curve cryptosystem (ECC)
and the Rabin cryptosystem.

ECC can be applied to small devices and has shorter processing time than
RSA. Moreover, ECC is suitable for various RFID applications. Many academic
papers on ECC for RFID tags have been published. For example, Fürbass-
Wolkerstorfer [3], Lee-Sakiyama-Batina-Verbauwhede [4], Hutter-Feldhofer-Plos [5],
Hutter-Feldhofer-Wolkerstorfer [6], Hutter-Joye-Sierra [7], Pessl-Hutter [8], and
Kern-Feldhofer [9] have reported remarkable results on ECC implementation for
RFID tag chip.

The Rabin cryptosystem requires only one modular squaring, which is ad-
vantageous for use with RFID tags. Indeed, Oren-Feldhofer [10], [11], Arbit
et al. [12] successfully applied Rabin encryption variant to RFID tags. The
variant, known as WIPR (Weizmann-IAIK[Institute for Applied Information
Processing and Communications] Public Key for RFID) was developed by Nac-
cache [13] and Shamir [14], [15]. WIPR is smaller, faster, and requires less
power than ECC implementations. Giesecke & Devrient GmbH [16] proposed
proposed the Rabin-Montgomery Cryptosystem (RAMON), a public key proto-
col for RFID tags based on the Rabin cryptosystem. RAMON uses Montgomery
reduction [17] to avoid trial division. Therefore, it is very likely that the Rabin
cryptosystem will be implemented on various types of RFID tag chips.

Since the publication of Boneh, DeMillo, and Lipton’s landmark paper [18],
differential fault analysis(DFA) has been an active area in cryptography. DFA
is a technique to extract secret information from a cryptographic device by
provoking a computational fault. DFA is a real threat for cryptographic devices,

2

such as smartcard [19]; therefore, a vast number of research papers about DFA
have been published. The monograph edited by Joye-Tunstall [20] is a good
guide to this field.

However, conventional fault attack research for public key cryptosystems has
focused on DFA for smartcards, particularly signature schemes using RSA and
ECC. Little attention has been paid to Rabin cryptosystem implemented on an
RFID tag chip. We propose a powerful fault attack by one-byte perturbation of
public key N based on the assumption that an attacker can induce faults as the
device moves one byte of N from non-volatile memory to a register. Under this
assumption, the attacker can create a new faulted public key N̂ = pe11 pe22 · · · peωω ,
where pj are mutually distinct primes and ej are positive integers.

We provide a mathematical analysis and demonstrate the effectiveness of the
proposed fault attack through simulation. Although there have been some re-
lated studies [21], [22], they are not directly applicable to our target. An attack
against RSA, first developed by Seifert [21] and extended to the general case
by Muir et al. [22], can obtain a new secret exponent e−1 mod ϕ(N̂), where e
is a public exponent and ϕ is Euler’s totient function. This approach is not ap-
plicable to Rabin cryptosystems; therefore, a secret message M including UID
must be reconstructed directly. Conversely, it is known that an attacker can
obtain modular quadratic equation M2 ≡ C (mod N̂) by solving each M2 ≡ C
(mod p

ej
j) and computing M using CRT only if gcd(M, N̂) = 1 holds. How-

ever, generally, some prime factors of N̂ are small. As a result, cases in which
gcd(M, N̂) 6= 1 occur frequently. We also present a complete mathematical
method to reconstruct the message in such cases.

The remainder of this paper is organized as follows. Section II presents
a brief description of quadratic residues, the Rabin cryptosystem, and basic
facts about the target implementation of a Rabin cryptosystem in an RFID tag.
Section III presents the general principle and procedure of our attack, as well as
a complete and mathematically rigorous message reconstruction algorithm. We
show an exact formula to obtain the number of candidate message in Section
IV. Simulated attack results are presented in Section V, and conclusions are
presented in Section VI.

2 Preliminaries

2.1 Quadratic Residues

Let p be an odd prime. An integer C ∈ Z
∗
p is called a quadratic residue mod p

if there exists x such that x2 ≡ C (mod p). We denote the set of all quadratic

residues mod p by QRp. We can use Euler’s criterion to claim that C
p−1
2 ≡ 1

(mod p) to determine C ∈ QRp or not. In other words, C
p−1
2 ≡ 1 (mod p)

holds if C ∈ QRp, or C
p−1
2 ≡ −1 (mod p) holds if C 6∈ QRp. Using Euler’s

criterion, square roots of C mod p can be represented as
√
C = ±C

p+1
4 mod p

3

if p ≡ 3 (mod 4). Note that p+1
4 is a positive integer under the condition

and (±C
p+1
4)2 ≡ C

p+1
2 ≡ C

p−1
2 C ≡ C (mod p). If p 6≡ 3 (mod 4), i.e., p ≡

1 (mod 4), then we require the Tonelli-Shanks algorithm to find the square
roots. The Tonelli-Shanks algorithm runs in polynomial time assuming that the
generalized Riemann hypothesis is true. We can find the roots mod pe of C as
follows. First, we find all square roots mod p. Then using the Hensel lift(see
e.g., section 13.3.2 of Shoup’s book [23]), we lift each of these square roots to
obtain all of the roots p2, and then lift these to obtain all square roots mod
p3, and so on. Quadratic residue can be generalized for the mod of an odd
composite number N = pe11 pe22 · · · peωω . A quadratic residue mod N is an integer
β such that there exists an α ∈ Z

∗
N that satisfies β ≡ α2 (mod N). Using the

CRT, it can be demonstrated that β is a quadratic residue mod N if and only
if it is a quadratic residue mod of each peii , and one obtain every root mod N
from all roots mod peii ’s.

2.2 Rabin Cryptosystem

The Rabin cryptosystem [2] is a public key system based on the factorization
difficulty of N = pq where p and q are large and distinct balanced primes. The
length n of N must be greater than or equal to 1,024 to be safe. N is its
public key, and p and q are its secret keys. To reduce decryption complexity,
choose p and q that satisfy p ≡ q ≡ 3 (mod 4) should be chosen. According
to the Dirichlet’s theorem on arithmetic progressions (see e.g., Theorem 5.52 of
Shoup’s book [23]), infinitely many prime numbers p that satisfy p ≡ 3 (mod 4)
exist. Let Z∗

N = (Z/NZ)∗ be the reduced residue system mod N . Generally, the
plaintext M ∈ Z

∗
N is generated from a shorter message, including the UID, in

our case. In the Rabin cryptosystem, to encrypt M ∈ Z
∗
N , the sender computes

its square mod N :
C = M2 mod N.

To decrypt the ciphertext C, the receiver computes its square roots
√
C of C

mod N using p and q as follows. First, compute Cp =
√
C mod p = C

p+1
4 mod p

and Cq =
√
C mod q = C

q+1
4 mod q using an efficient exponentiation algorithm.

Second, using the CRT, the four roots are computed as follows:

√
C = ±Cpq(q

−1 mod p)± Cqp(p
−1 mod q).

Finally, the receiver recognizes the valid plaintext based on its format, such as
redundancy and structure.

The Rabin cryptosystem has two significant advantages with respect to al-
ternative public key schemes. First, it is provably difficult to factor N . Second,
it imposes a small computational burden, has relatively lightweight implementa-
tion, and requires only a single squaring and modular reduction for encryption.

lightweight implementation, and requires

4

2.3 WIPR Scheme

The most time consuming process of Rabin encryption is trial division by N
because it is a RAM-intensive process. There are two well-known ways to avoid
trial division. One is using Montgomery reduction [17], and the other is using the
WIPR scheme. When we use Montgomery reduction, we compute A2R−1 mod
N(R = 2n) rather than A2 mod N , whereN is n-bits long; therefore, it is simply
a data format problem. Conversely, the WIPR scheme includes an essentially
different process. Thus, we describe only the WIPR scheme.

To reduce the trial division process, Naccache [13] and Shamir [14], [15]
proposed a variant by replacing the modular multiplication by adding a large
random multiple of N , where the size of the random number r is at least 80 bits
longer than the size of N :

C′ = M2 + rN.

Obviously, C′ ≡ C (mod N), and C′ is fully randomized. The decryption pro-
cess is identical to Rabin’s original process. This randomized variant of Rabin’s
scheme is easier to implement because it has only multiplications without mod-
ular reduction. It is lighter than the original Rabin scheme; however, it requires
a register that is approximately twice as long for the ciphertext.

The WIPR scheme replaces r with the output of a light stream cipher,
which was developed by Oren-Feldhofer [10]. This stream cipher is implemented
by creating a Feistel network. Arbit et al. [12] reported that their successful
implementation had a data-path area of 4,184 gate equivalents, an encryption
time of 180 ms and an average power consumption of 11 µW.

We describe the WIPR challenge-response protocol as follows.

1. Challenge: The interrogator sends the challenge(random bit string) c of
length s to the tag.

2. Response: The RFID tag generates two random bit strings Rtag and r,
where |Rtag| = n−s−|UID|, and |r| = n+t. The tag generates a message
as follows:

M = BYTE MIX(c||Rtag||UID),

where || denotes concatenation operator, and transmits the following ci-
phertext:

C′ = M2 + rN,

and BYTE MIX is a simple byte-interleaving operation (see Oren-Feldhofer [11]
for details).

3. Verify: The interrogator decrypts C′ using the secret key (p, q) and finds
the correct message, including the UID, in four square roots.

Here, s and t are security parameters (originally set to s = t = 80).
Note that using the Rabin function f(x) = x2 mod N to encrypt a message

M that satisfies |M | < n requires some kind of random padding. Some padding
schemes with short random padding are vulnerable to attacks based on Copper-
smith’s Theorem for a univariate polynomial [24] and Franklin-Reiter’s related
message attack [25], [26].

5

2.4 RAMON

Another way to avoid trial division is using Montgomery reduction [17]. When
we use Montgomery reduction, we compute ABR−1 mod N(R = 2n) rather
than AB mod N , where N is n-bits long. Montgomery reduction computes S
that satisfies the following Diophantine equation:

AB + TN = SR.

Clearly, S ≡ ABR−1 (mod N).
RAMON was proposed by Giesecke & Devrient GmbH [16]. RFID tag sends

the following ciphertext:

C∗ = M2R−1 mod N,

where R = 2n. In 1024 bit N case, the message M is formatted as follows:
M(128 bytes) = challenge(10 bytes) || tag random number(10 bytes) || TLV-
coded signed Tag UID(n bytes) || variable length filling(x bytes) || checksum(2
bytes) || The last byte must be left free; i.e., set to zero (1 byte).

Note that C∗ 6= C; therefore, the interrogator transforms C∗ into normal
ciphertext as follows:

C = C∗R mod N = (M2R−1)R mod N.

Then, the interrogator computes four roots of C mod N using the secret key
(p, q) and finds the correct M based on its format.

3 Proposed Attack

3.1 Principle

In the following, we consider only the WIPR protocol for convenience. The
fundamental idea of our attack method uses perturbed public key N̂ of N . In
this case, the ciphertext changes as follows:

Ĉ = M2 + rN̂ . (1)

Generally, the attacker cannot factor the coprime N in realistic time. Con-
versely, a perturbation N̂ of N can be factored at high probability. If the
attacker has factored N̂ successfully, such as N̂ = pe11 pe22 · · · peωω , then the mod-

ular quadratic equation Ĉ = M2 (mod N̂) derived from (1) splits into ω smaller
equations:

M2 ≡ Ĉ (mod p
ej
j), j = 1, 2, · · · , ω. (2)

Equation (2) can be solved using the Tonelli-Shanks algorithm and the Hensel
lift. CRT leads us to all roots of (1) from the roots Mjk(k ≥ 2) of (2), i.e., we
obtain:

M0 =

ω
∑

j=1

MjkN̂j(N̂
−1
j mod p

ej
j), (3)

6

where N̂j = N̂/p
ej
j . The attacker obtains the correct roots M by modifying the

above M0 as (M0+kN̂) mod N for the smallest k such that M0+kN̂ > N . The
perturbed modular quadratic equation (1) typically has 2ω roots, and these roots
contain the correct message including the UID. The number of roots exceeds 2ω

in some cases depending on the values of gcd(Ĉ, p
ej
j) for j = 1, 2, · · · , ω. We

discuss these problems in Sections 3.5 and 4.

3.2 Fault Models

The WIPR protocol requires two online multiplications to compute C = M2 +
rN . Optimal implementation of WIPR with 1,024 bit N was shown by Arbit
et al. [12]. This multiplication process is performed on a multiply-accumulate
register by convolution. Assuming a word size of one byte, a single multiply-
accumulate register perform this multiplication in approximately 216 steps. The
public key N moves from non-volatile memory to the register byte by byte.
We assume that the attacker can inject a one-byte fault into this data moving
process. In this paper, we consider two fault models.

3.2.1 Crash a byte of N

The first fault model that we choose to perform our attack with is derived from
those used by Berzati et al. [27], [28] to successfully attack standard RSA.

Here let Z[a, b] be a set of integers in the interval [a, b]. We assume that
the attacker can inject a transient fault that public key N modifies by byte,
that is, the injected fault affects only one byte of the public key by modifying
it randomly as follows:

N̂ = N ⊕ ǫ

where ⊕ is bitwise exclusive OR and ǫ = Ri · 28i, Ri ∈ Z[1, 28 − 1] for i 6= 0
which is required to preserve the parity of N̂ . We assume the attacker knows the
position i, but the correct value of the faulty public key N̂ is unknown by the
attacker. The attacker must factor 255 (= 28 − 1) candidates of N̂ . Our attack
also works for a fault that affects several bytes of N . However, the attacker’s
task grows in proportion to the number of candidates N̂ of perturbed N .

This is a natural assumption for both WIPR and RAMON. In the WIPR
case, the attack target is the time at which the i-th byte N [i] of N moves from
non-volatile memory to the register for multiplication before multiplying r and
N . In the RAMON case, the fault is injected while N moves from non-volatile
memory, such as EEPROM, to a register at the trensfer time of the i-th byte
prior to Montgomery squaring M2R−1 mod N .

3.2.2 Instruction skip

The second fault model is based on the instruction skip technique. Instruction
skip is equivalent to replacing an instruction with a no operation in assembly
language. Several researchers have investigated DFA using an instruction skip,

7

or a bypass operation [29], [30], [31]. Instruction skip does not affect the reg-
isters, internal memory, and calculation process. Successful instruction skip
attacks have been reported for PIC16F877 [29], ATmega 128 [30], and ATmega
168 [31] microcontrollers. Choukri-Tunstall [29] and Park et al. [30] showed that
an entire Advanced Encryption Standard secret key could be reconstructed by
skipping a branch instruction used to check the number of rounds. Kaminaga
et al. [32] showed that it is possible to reconstruct an entire secret exponent
with 63(= 26 − 1) faulted signatures in a short time for a 1536-bit RSA im-
plementation with the 26-ary method using instruction skipping technique in
precomputation phase.

Our attack target is a conditional branch operation for moving the last byte
of N at the counter i = 127. If the conditional branch operation is skipped, the
attacker obtains the faulted public key N̂ as follows:

N̂ =

126
∑

i=0

N [i](28)i,

where each N [i] ∈ Z[0, 255]. Clearly, N̂ is one byte shorter than the original N ,
and preserves its parity.

3.3 Target Byte Location

Some Rabin cryptosystems for RFID tags adopt special types of modulus N for
restricted hardware resources. WIPR for RFID proposed by Oren-Feldhofer [11]
uses modulus N with a predefined upper half to reduce ROM cost by half.
RAMON uses modulus N to satisfy the condition N ≡ 1 (mod 2n/2), which
means that approximately one-half of the least significant bits of N (except for
the last one) are zeroes to reduce multiplications [16]. Half of the processes in
which modulus data is transferring from EEPROM to a register are reduced in
such cases. Therefore, the attacker must set the location of the target byte to
the lower half bytes of N for implementation of Oren-Feldhofer’s proposal [11],
and the attack must set the location of the byte to upper half bytes of N for
RAMON [16].

3.4 Attack Procedure

The attacker’s goal is to reconstruct the secret message M , including the UID.
The following steps provide an example of our attack process.

Step 1. Create a perturbed public key N̂ by injecting a fault to a byte of the
public key N .

Step 2. Factorize 255 candidates N̂k(k = 1, 2, · · · , 255) of N̂ . When factor-
ing consumes too much amount of time, perturb another byte of N and
attempt this process again.

Step 3. Solve modular quadratic equation x2 ≡ Ĉ (mod N̂k).

8

Step 4. Find the correct message M based on data format in all roots of
x2 ≡ Ĉ (mod N̂k).

Step 2 is the most time concuming process in computation for the attacker.
Most of N̂k(k = 1, 2, · · · , 255) have relatively small factors; thus, these can
be factored in a short time. However, some cases require more time to factor
N̂k. Then, the attacker shifts the position of the target byte and attempt the
factoring process again. Step 3 is a technical process, and we must consider the
degenerate case, gcd(Ĉ, N̂k) 6= 1. Mathematicians have paid little attention to
the degenerate case; however, such case arises in our attack.

3.5 Reconstruction of Roots

Our attack method comes down to finding all roots of the following modular
quadratic equation with a square number Ĉ:

x2 ≡ Ĉ (mod pe), (4)

where p is an odd prime and e is a positive integer. The oddness of p obeys the
fact that our attack targets a byte of N that is not the lowest byte.

We use assumption (A), i.e., Ĉ is squared mod pe, throughout this paper.
Assumption (A) is very natural because Ĉ ≡ M2 (mod p

ej
j) is derived from our

target equation Ĉ = M2 + rN̂ .
We denote Ĉ mod N̂ by Ĉ. The algorithm for finding the roots of (4) depends

on whether gcd(p, Ĉ) = 1. We distinguish the “degenerate” case gcd(Ĉ, N̂) 6= 1
from the “non-degenerate” case gcd(Ĉ, N̂) = 1.

3.5.1 Non-degenerate Case

Here, let Ĉ ≡ M2 (mod N̂) for some M ∈ Z. For gcd(p, Ĉ) = 1, finding the
roots of (4) is not difficult (see e.g., Section 2.8.2 of Shoup’s book [33]).

Theorem 1. (Theorem 2.25 [33]) If gcd(p, Ĉ) = 1, then the modular quadratic
equation (4) is equivalent to x ≡ ±M (mod pe). In particular, (4) has only two
roots.

Proof. Here, we show the proof for Theorem 1. Since gcd(M,p) = 1, there exists
the inverse M−1 mod p. Therefore, (4) is equivalent to (xM−1)2 ≡ 1 (mod pe).
Let γ be xM−1, and we obtain

(γ + 1)(γ − 1) ≡ 0 (mod pe).

Thus, there exists non-negative integers δ1, δ2(δ1 + δ2 = e) such that pδ1 |(γ+1)
or pδ2 |(γ−1). Then, 2 = (γ+1)−(γ−1) divides p if both δ1 and δ2 are positive,
which leads to a contradiction because p is an odd prime, therefore, δ1 = 0 or
δ2 = 0. �

9

Theorem 2. For p ≡ 3 (mod 4) and gcd(p, Ĉ) = 1, all the roots of (4) are
given by:

√

Ĉ ≡ ±Ĉ
ϕ(pe)+2

4 (mod pe), (5)

where ϕ is Euler’s totient function.

Proof. It is easy to verify (5) directly. From Theorem 1, the number of roots of
(4) is two. Note that ϕ(pe) + 2 = pe−1(p− 1) + 2 ≡ 2(−1)e−1 + 2 ≡ 0 (mod 4)
follows from p ≡ 3 (mod 4). By using Euler’s totient theorem Ĉϕ(pe) ≡ 1
(mod pe) and squaring Ĉ, we obtain:

Ĉϕ(pe)/2 ≡ 1 (mod pe). (6)

Using (6), we obtain (Ĉ
ϕ(pe)+2

4)2 ≡ Ĉ
ϕ(pe)+2

2 (mod pe) ≡ Ĉ (mod pe). This

means that Ĉ
ϕ(pe)+2

4 is a square root mod pe of Ĉ, therefore, all square roots

mod pe of C are given by ±Ĉ
ϕ(pe)+2

4 . �

For p ≡ 1 (mod 4), we first solve the following equation:

x2 ≡ Ĉ (mod p). (7)

We require the Tonneli-Shanks algorithm to solve (7). The Tonneli-Shanks
algorithm can be described as follows.

1. Determine s such that p− 1 = 2st where t is odd.

2. Find a non-quadratic residue v mod p.

3. Compute z = Ĉt mod p.

4. Find u such that (vt)u mod p = z.

5. Compute k = 2s − u.

6. Output Ĉ(t+1)/2(vt)k/2 mod p as a solution.

It is easy to check if Ĉ(t+1)/2(vt)k/2 mod p is a square root mod p of Ĉ. In-
deed, using Fermat’s little theorem, we obtain (Ĉ(t+1)/2(vt)k/2)2 ≡ vtuĈvp−1−tu ≡
Ĉ (mod p).

After solving (7), the roots can be lifted to mod pu(u > 1) using the follow-
ing.

Theorem 3. (Hensel’s lifting lemma) Let f(x) ∈ Zp[x] and x0 ∈ Zp satisfy
f(x0) ≡ 0 (mod pk) and f ′(x0) 6≡ 0 (mod p). Then, there is unique x ∈ Zp

such that f(x) = 0 (mod pk+m) and x ≡ x0 (mod pk). Furthermore, this x is
unique in mod pk+m, and can be represented explicitly as:

x = x0 + tpk

where

t = −f(x0)

pk
· (f ′(x0)

−1).

The division by pk denotes ordinary integer division, and the inversion f ′(x0)
−1

is computed in mod pm.

10

3.5.2 Degenerate Case

Here we consider the degenerate case, i.e., gcd(Ĉ, N̂) 6= 1.

Theorem 4. All roots of the modular quadratic equation x2 ≡ 0 (mod pe) are
given by x = kp⌈e/2⌉ for k ∈ Z[0, p⌊e/2⌋ − 1]. In particular, the number of its
roots is p⌊e/2⌋.

Proof. It is clear that x = kp⌈e/2⌉ for k ∈ Z[0, p⌊e/2⌋ − 1] satisfies x2 ≡ 0
(mod pe). Thus, we only have to show that other forms of the roots do not
exist. Let x = kpt with gcd(k, p) = 1. Since gcd(x2, pe) 6= 1, x is a multiple
number of p, therefore, t ≥ 1. Then x2 = k2p2t ≡ 0 (mod pe) if and only if
2t ≥ e holds. �

Theorem 5. All roots of x2 ≡ Ĉ (mod pe) for Ĉ = apℓ(ℓ < e), which is
squared, and gcd(a, p) = 1 are given by

x = ypℓ/2 + kpe−ℓ/2, k ∈ Z[0, pℓ/2 − 1],

where y is a root of y2 ≡ a (mod pe−ℓ). In particular, the number of its roots
is 2pℓ/2.

Proof. Note that ℓ must be even under assumption (A). Let x = ypt such that
gcd(y, p) = 1, and substitute x into the quadratic equation; thus, we obtain:

x2 = y2p2t ≡ apℓ (mod pe).

Suppose that 2t < ℓ, y2 ≡ apℓ−2t (mod pe−2t) holds, which means that y is a
multiple of p and is contradictory. Conversely, suppose that 2t > ℓ, y2p2t−ℓ ≡ a
(mod pe−ℓ) holds, which means that a is a multiple of p and is contradictory.
Therefore, 2t = ℓ holds, and we obtain:

y2 ≡ a (mod pe−ℓ). (8)

From Theorem 1, (8) has only two roots in modulo pe−ℓ. Therefore, the root x
of x2 ≡ apℓ (mod pe) can be represented as:

x = ypℓ/2 + bpe−ℓ (9)

for some b ∈ Z. (9) satisfies x2 ≡ apℓ (mod pe). Then, we have x2 − apℓ ≡
(ypℓ/2+ bpe−ℓ)2−apℓ = 2ybpe−ℓ/2+ b2p2e−2ℓ = bpe−ℓ/2(2y+ bpe+ℓ/2) (mod pe).
We learn 2by ≡ 0 (mod pℓ/2). Since p is odd and y is invertible, b is a multiple
of pℓ/2. Then, b = kpℓ/2 for some k ∈ Z. Substituting b = kpℓ/2 into (9), we
reach x = ypℓ/2 + kpe−ℓ/2 for k ∈ Z[0, pℓ/2 − 1]. Since only two y satisfy (8),
the number of x is 2pℓ/2. �

Remark 1. The degenerate case occurs frequently when N̂ has a small prime
factor. Therefore, in many cases, we can easily find the desired roots by brute
force without using Hensel’s lifting lemma.

11

4 Number of Candidates of Message

We really need for the perturbed public key N̂ is to be easily factorable. After
factoring, the problem breaks down to find the roots of the modular quadratic
equation. Complexity of finding square roots mod N̂ depends on prime factor
decomposition of N̂ . Complicated cases arise when N̂ is not square-free. Here
we denote the function the number of distinct prime factor of N̂ by ω(N̂), and
the number of roots of x2 ≡ Ĉ (mod N̂) by η(Ĉ, N̂). CRT equality (3) says
that η(Ĉ, N̂) is a multiplicative function. Combining Theorem 1, 4, and 5, each
η(Ĉ, pe) can be represented explicitly as follows.

Theorem 6.
η(Ĉ, N̂) = η(Ĉ, pe11) · · · η(Ĉ, p

e
ω(N̂)

ω(N̂)
)

for N̂ = pe11 · · · peω(N̂)

ω(N̂)
, and where

ν(Ĉ, pe) =







2 if gcd(Ĉ, pe) = 1

2pℓ/2 if gcd(Ĉ, pe) = pℓ(0 < ℓ < e)

p⌊e/2⌋ if gcd(Ĉ, pe) = pe.

It is well known that the following asymptotic estimate for Q(x), which is
the number of square-free numbers below x.

Theorem 7. (Theorem 333, Hardy-Write [34], p.355)

Q(x) ∼ 6

π2
x+ O(

√
x) (x → ∞).

This estimate tells us that the probability that a number should be square-
free is approximated as 6

π2 ≈ 0.6079 · · · for large x. Note that ℓ is even because

Ĉ is squared, and η(Ĉ, p) = 1 if and only if gcd(Ĉ, p) = p. Theorem 6 implies
the following upper bound for square-free N̂ :

η(Ĉ, N̂) ≤ 2ω(N̂). (10)

The equality holds in (10) if and only if gcd(Ĉ, N̂) = 1. Therefore, Theorem 6
and 7 mean that the probability that the inequality (10) holds is greater than
or equal to 6

π2 asymptotically. The asymptotic behavior of ω(N̂) is described
by Theorem 8.

Theorem 8. (Erdös and Kac[35]) The function (ω(n) − ln lnn)/
√
ln lnn is

normally distributed in the sense that, for any fixed z, one has:

1

T
♯

{

n ≤ T ;
ω(n)− ln lnn√

ln lnn
≤ z

}

→
∫ z

−∞

e−ζ2/2

√
2π

dζ

as T → ∞, where we denote the cardinality of a set A as ♯A.

12

Theorem 8 tells us the distribution of ω(N̂) obeys normal distribution with
mean ln ln N̂ and variance ln ln N̂ . We use the rough estimate ω(N̂) ≈ ln ln(21024) =
6.564959 for 1,024-bit N̂ . However, convergence is slow because the term ln ln N̂
increases very slowly as N̂ becomes large.

Since both WIPR and RAMON uses at east an 80 bit challenge, the probabil-
ity that a candidate correct message M has the same data format accidentally is
less than or equal to 1/280. According to the above mathematical observations,
it is quite rare that plural candidates of M will appear.

5 Time of attack process

5.1 Evaluation method

In the attack procedure discused in Section 3.4, the most time-consuming pro-
cess is the factorization of N̂ at Step 2. When this process takes too much time,
another fault injection is required (Step 1). The other steps are straightforward.

Therefore, in this section, the number of repeated fault injections and the
time for factorization are evaluated by computer simulation. For simplicity, we
explain only the case ‘crash of a byte of N ’. The simulation procedure is as
follows where T3 is the average calculation time in Steps (3) and (4).

Step (0): Generate a 1,024 bit N (128 bytes). Let N =
∑127

i=0 N [i](28)i.

Step (1a): Decide fault position j. j = 1, 2, . . . , 126 in uniform distribution.

Step (1b): Decide fault pattern k0. k0 = 1, 2, . . . , 255 in uniform distribu-
tion. As a notation,

N̂k0 [i] =

{

N [i]⊕ k0, if i = j
N [i]. otherwise

and N̂k0 =
∑127

i=0 N̂k0 [i](2
8)i. Attackers know j, but do not know k0.

Step (2): Let k = 1. Reset timer T , which accumulates the processing
time of Steps (2a) through (4). Reset counter c, which counts successful
factorization.

Step (2a): Make N̂k and attempt to factorize it within 1 min. If factoriza-
tion is successful, proceed to Steps 3 and 4 in Section III-D. Let c = c+1.
If factorization does not finish, proceed to Step (4).

Step (3): If k = k0, go to Step (5).

Step (4): k = k+1. When k < 256, go back to Step (2a); otherwise, proceed
to Step (6).

Step (5): The attack is successful. Time consumed is T+cT3. The simulation
ends.

Step (6): The attack is in fail. Consuming time is T + cT3. Simulation ends.

13

5.2 Results

Using a desktop PC with a Core i7-2600 CPU at 3.4 GHz with 12 GB RAM, the
simulation runs on Mathematica 9 for Windows 7 Pro 64 bit. A simulated one
attack begins at Step (0). If this attack ends at Step (5), the attack can find
the correct message, i.e., the attack is successful. Otherwise, it ends at Step
(6), which means the attack has failed. As a result, 28 cases were successful
among 195 simulated attacks, which is an 14.4% success rate. According to
this result, attack with X fault injections has a success rate of 1 − 0.856X.
The success rate is 54% for X = 5. Figure 1 shows the distribution of time
consumed T per single attack. For successful attacks, the mean T is 115.4 min,
the median is 136.8 min, and the standard deviation is 78.1 min. For failed
attacks, the mean, median, and standard deviation of T are 226.4 min, 226.6
min, and 4 min, respectively. T can be 255 min at most. However, when
factorization finishes within 1 min, T will be less than 255 min. Moreover, the
attack is complete when the correct message is found; thus, T becomes much
less than 255 min. if the factorized fault pattern k is the true fault pattern, k0.
The distribution of the number of successful factorizations, c is shown in Fig.2.
Here, c is 30.91 on average for failed attack cases. For successful attacks, the
factorization will break at Step (3); therefore, it does not reach the final fault
pattern k = 255 with high probability. Thus, the successful factorization rate is
estimated as 30.91/255 ≈ 12.1%. Note that, in this simulation, the time limit
for the factorization process is 1 min at Step (2a), which is just an example.
The time limit for factorization would be optimized by considering total attack
time and/or the cost of fault injections. This issue will be the focus of future
study.

10 30 50 70 90 110 130 150 170 190 210 230 250

Time used[min.]

N
um

be
r

of
 e

xa
m

pl
es

0
20

40
60

80
10

0
12

0

stop at Step(5)
stop at Step(6)

Figure 1: Distribution of T

14

5 10 15 20 25 30 35 40 45

Number of successful factorization

N
um

be
r

of
 e

xa
m

pl
es

0
10

20
30

40
50

60 stop at Step(5)
stop at Step(6)

Figure 2: Distribution of c

6 Conclusion

In this paper, we have proposed a powerful fault attack technique against a
Rabin cryptosystem implemented in a passive RFID tag chip. Our attack uses
one byte perturbation N̂ of public key N . One difficulty with our attack is
how to reconstruct the message M , including the UID, when gcd(M, N̂) 6= 1.
We have provideed a complete algorithm to reconstruct M for such cases. This
attack requires only one fault in the public key if its perturbed public key can
be factored. The most time consuming process of our attack is the factorization
of N̂ . Empirically, the successful factorization rate is estimated as 12.2% of
N̂ , even if factorization is limited within 1 min using a desktop PC. When this
process takes too much time, another fault injection is preferable.

acknowledgements

This work was supported by the Japan Society for the Promotion of Science
KAKENHI Grant Number 25330157.

References

[1] L. Blum, M. Blum, and M. Shub, “A Simple Unpredictable Pseudo-
Random Number Generator”, SIAM Journal on Computing, vol. 15, pp.
364-383(1986).

[2] M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable
as Factorization, tech. report, MIT, 1979.

15

[3] Fürbass and Wolkerstorfer, “ECC Processor with Low Die Size for RFID
Applications,” IEEE International Symposium on Circuits and Systems, 2007,
pp. 1835-1838(2007).

[4] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-Curve-
Based Security Processor for RFID,” IEEE Transactions on Computers,
57(11), pp. 1514-1527(2008).

[5] M. Hutter, M. Feldhofer, and T. Plos, “An ECDSA Processor for RFID
Authentication,” In S. B. O. Yalcin, editor, RFIDsec 2010, 6th Workshop, Is-
tanbul, Turkey, June 7-9, volume 6370 of LNCS, Springer, pp. 189-202(2010).

[6] M. Hutter, M. Feldhofer, and J. Wolkerstorfer. “A Cryptographic Processor
for Low Resource Devices: Canning ECDSA and AES like Sardines,” In C. A.
Ardagna and J. Zhou, editors, Information Security Theory and Practices -
WISTP, Heraklion, Crete, Greece, June 1-3, volume 6633 of LNCS, Springer,
pp. 144-159(2011).

[7] M. Hutter, M. Joye, and Y. Sierra. Memory-Constrained Implementations of
Elliptic Curve Cryptography in Co-Z Coordinate Representation. In A. Nitaj
and D. Pointcheval, editors, AFRICACRYPT 2011, Dakar, Senegal, July 5-7,
volume 6737 of LNCS, Springer, pp. 170-187(2011).

[8] P. Pessl and M. Hutter, “Curved Tags - A Low-Resource ECDSA Imple-
mentation tailored for RFID,” Radio Frequency Identification: Security and
Privacy Issues Lecture Notes in Computer Science Volume 8651, pp. 156-
172(2014).

[9] T. Kern and M. Feldhofer, “Low-Resource ECDSA Implementation for Pas-
sive RFID Tags,” In ICECS, December 12-15, Athens, Greece, pp. 1236-
1239(2010).

[10] Y. Oren and M. Feldhofer, “WIPR–Public-Key Identification on Two
Grains of Sand,” Proc. Workshop on RFID Security 2008, pp. 15-27(2008).

[11] Y. Oren and M. Feldhofer, “A Low-Resource Public-Key Identification
Scheme for RFID Tags and Sensor Nodes,” Proc. 2nd International Conf.
Wireless Network Security (WiSec 09), ACM, pp. 59-68(2009).

[12] A. Arbit, Y. Livne, Y. Oren, A. Wool, “Implementing public-key cryptogra-
phy on passive RFID tags is practical,” International Journal of Information
Security, February 2015, Volume 14, Issue 1, pp 85-99(2015)

[13] D. Naccache, Method, Sender Apparatus and Receiver Apparatus for Mod-
ulo Operation, European Patent Application 91402958.2, filed 27 Oct. 1992.

[14] A. Shamir, “Memory Efficient Variants of Public-Key Schemes for Smart
Card Applications,” Proc. Advances in Cryptology (EUROCRYPT’94),
LNCS 950, pp. 445-449(1995).

16

[15] A. Shamir, “SQUASH - a new MAC with provable security properties for
highly constrained devices such as RFID tags” In Fast Software Encryption,
Springer, pp. 144-157(2008).

[16] W. Hinz, K. Finkenzeller, M. Seysen, “Secure UHF Tags with Strong Cryp-
tography - Development of ISO/IEC 18000-63 Compatible Secure RFID Tags
and Presentation of First Results,” SENSORNETS, pp. 5-13(2013)

[17] P. Montgomery, “Modular Multiplication Without Trial Division,” Math.
Computation, vol. 44, pp. 519–521(1985).

[18] D. Boneh, R.A. DeMillo, and R.J. Lipton, “On the importance of elimi-
nating errors in cryptographic computations,” J. Cryptol. vol.14, no.2, pp.
101-119, Springer-Verlag, Berlin, 2001. Earlier version published in EURO-
CRYPT’ 97.

[19] H. Bar-Ei, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” In Proc. of the IEEE 94(2), pp.
370-382(2006).

[20] M. Joye, and M. Tunstall eds., Fault Analysis in Cryptography, Springer,
2012.

[21] J. Seifert, “On authenticated computing and RSA-based authentication.”
In Proc. of the 12th ACM Conference on Computer and Communications
Security (CCS 2005), pp. 122-127(2005).

[22] J. A. Muir, “Seifert’s RSA fault attack: Simplified analysis and generaliza-
tions, ” In ICICS’06 Proc. of the 8th International Conference on Information
and Communications Security, pp.420-434(2006).

[23] V. Shoup, A Computational Introduction to Number Theory and Algebra -
Second ed., Cambridge University Press, 2009.

[24] D. Coppersmith, Small solutions to polynomial equations, and low expo-
nent RSA with vulnerabilities, Journal of Cryptology 10, pp.233-260(1997).

[25] M. Franklin and M. Reiter, A Linear Protocol Failure for RSA with expo-
nent three, in CRYPTO’95 Rump Session, Aug. 1995.

[26] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, Low-exponent
RSA with related messages, in EUROCRYPT’98, vol. 1403 of LNCS, pp.
58-71(1998).

[27] A. Berzati, and L. Goubin, Perturbing RSA Public Keys: an Improved
Attack. In E. Oswald, P. Rohatgi (eds.): Cryptographic Hardware and Em-
bedded Systems (CHES 2008), Lecture Notes in Computer Science vol. 5154,
Springer, pp. 380-395(2008).

17

[28] A. Berzati, C. Canovas-Dumas, and L. Goubin, Fault Attacks on RSA Pub-
lic Keys: Left-To-Right Implementations are also Vulnerable. In M. Fischlin
(ed.): CT-RSA 2009, Lecture Notes in Computer Science vol. 5473, Springer,
pp. 414-428(2009).

[29] H. Choukri and M. Tunstall, “Round reduction using faults,” In Proc. of
FDTC 2005, pp.13-24(2005).

[30] J. Park, S. Moon, D. Choi, Y. Kang, and J. Ha, “Differential fault analysis
for round-reduced AES by fault injection,” ETRI J. vol. 33, no.3, pp.434-
441(2011).

[31] H. Yoshikawa, M. Kaminaga, and A. Shikoda, “Round addition using faults
for generalized Feistel network,” IEICE Trans. Inf. & Syst., vol.E96-D, no.1,
pp.146-150(2013).

[32] M. Kaminaga, H. Yoshikawa, and T. Suzuki, Double Counting in 2t-ary
RSA Precomputation Reveals the Secret Exponent, IEEE Trans. on Inform.
Forensics & Sec., pp.1394-1401(2015).

[33] V. Shoup, A Computational Introduction to Number Theory and Alge-
bra(2nd ed.), Cambridge University Press, 2009.

[34] G. H. Hardy and E. M. Wright(revised by D. R. Heath-Brown and J. H. Sil-
verman), An Introduction to The Theory of Numbers(Sixth Edition), Oxford
University Press, 2008.

[35] P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive
number theoretic functions, American Journal of Mathematics 62, pp. 738-
742(1940) .

18

	1 Introduction
	2 Preliminaries
	2.1 Quadratic Residues
	2.2 Rabin Cryptosystem
	2.3 WIPR Scheme
	2.4 RAMON

	3 Proposed Attack
	3.1 Principle
	3.2 Fault Models
	3.2.1 Crash a byte of N
	3.2.2 Instruction skip

	3.3 Target Byte Location
	3.4 Attack Procedure
	3.5 Reconstruction of Roots
	3.5.1 Non-degenerate Case
	3.5.2 Degenerate Case

	4 Number of Candidates of Message
	5 Time of attack process
	5.1 Evaluation method
	5.2 Results

	6 Conclusion

