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ABSTRACT
Deep Neural Networks are well known to be vulnerable to adver-
sarial attacks and backdoor attacks, where minor modifications
on the input are able to mislead the models to give wrong results.
Although defenses against adversarial attacks have been widely
studied, investigation on mitigating backdoor attacks is still at an
early stage. It is unknown whether there are any connections and
common characteristics between the defenses against these two
attacks. We conduct comprehensive studies on the connections be-
tween adversarial examples and backdoor examples of Deep Neural
Networks to seek to answer the question: can we detect backdoor
using adversarial detection methods. Our insights are based on the
observation that both adversarial examples and backdoor examples
have anomalies during the inference process, highly distinguishable
from benign samples. As a result, we revise four existing adversarial
defense methods for detecting backdoor examples. Extensive evalu-
ations indicate that these approaches provide reliable protection
against backdoor attacks, with a higher accuracy than detecting
adversarial examples. These solutions also reveal the relations of
adversarial examples, backdoor examples and normal samples in
model sensitivity, activation space and feature space. This is able
to enhance our understanding about the inherent features of these
two attacks and the defense opportunities.
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1 INTRODUCTION
Past years have witnessed the rapid development of Deep Learning
(DL) technology. State-of-the-art Deep Neural Networks (DNNs)
can outperform conventional machine learning models in many
artificial intelligence tasks, such as image classification [1, 2], speech
recognition [3], natural language processing [4]. The high and
reliable performance of DNNs is attributed to the models’ complex
structures and large numbers of parameters.

However, such model complexity also brings security vulnera-
bilities, which can be exploited by adversaries to compromise the
DNN applications. Two typical examples are adversarial attacks [5]
and backdoor attacks [6] (Figure 1). In both types of attacks, the ad-
versary injects carefully-crafted perturbations on the input samples
to fool the DNN models. In adversarial attacks, the perturbation is
specifically generated for each sample to mislead the target model.
In backdoor attacks, the adversary produces a universal perturba-
tion (i.e., trigger), and modifies the target model correspondingly
to misclassify each sample with the trigger. These attacks have
significantly threatened the DNN applications, especially in the

safety- and security-critical scenarios, e.g., autonomous driving [7],
malware detection [8–12], user authentication [13], and medical
diagnosis [14].

Extensive studies have been conducted to mitigate adversarial
attacks [15–26]. In contrast, there are fewer satisfactory solutions
against backdoor attacks. Most works [27–32] attempted to detect
and remove malicious backdoor in the target models. However, due
to the defender’s limited knowledge about the attack techniques
and configurations, those methods can only be applied to simple
backdoor attacks (e.g., one targeted class, simple trigger pattern),
and they can be easily evaded by adaptive attacks [33]. Other ap-
proaches aim to identify poisoned data in the training set [34–36].
They are not applicable when the defender has no access to the
training data.

In this paper, we focus on the mitigation of backdoor attacks in
a different direction: detecting backdoor samples at the inference
phase. With such protection, all malicious samples will be ruled
out, and the compromised models will still give correct prediction
results for normal samples. Achieving this goal is challenging as
the triggers can have arbitrary sizes and patterns, which are agnos-
tic to the defender. Existing detection solutions either are limited
to simple triggers [37, 38] or require priori knowledge about the
triggers [39], making them less practical.

Our proposed strategy is based on two insights. The first one
is that there exist some similarities between adversarial examples
and backdoor examples. Both of them require stealthy modifications
to enforce wrong prediction output. As such, they exhibit certain
anomaly during the inference process, and can be detected in a simi-
lar way. Based on this observation, we can apply the methodologies
of detecting adversarial examples to backdoor example detection.
We identify four effective approaches to distinguish backdoor ex-
amples from normal samples based on their model sensitivities,
behaviors in the feature space and activation space.

The second insight is that adversarial examples and backdoor ex-
amples have certain differences caused by attack attributes. To meet
the universality requirement, backdoor examples need larger scale
of perturbations, making them further from the model decision
boundary and normal samples. As a result, we need to make some
modifications on the methodology workflows and configurations
to identify backdoor examples. Besides, due to those differences,
we observe that these methodologies have a better accuracy of de-
tecting backdoor examples than adversarial examples, even though
they are originally designed to defeat adversarial attacks.

In this paper, we describe the results of our comprehensive stud-
ies on the connections between adversarial examples and backdoor
examples against DNNs. To the best of our knowledge, there are
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Figure 1: Illustration of an adversarial attack (left part) and backdoor attack (right part) on a DNNmodel for face recognition.

only two works [40, 41] investigating the relations between the two
kinds of samples, from the perspective of attacks. We present the
first systematic study from the defense perspective. We perform
an in-depth analysis about the similarities as well as differences
between adversarial examples, backdoor examples and normal sam-
ples. With such analysis, we identify four approaches originally
designed for adversarial example detection, to detect backdoor
threats. We are the first to show that adversarial examples and
backdoor attacks can be defeated in a unified way. We provide
thorough evaluations on these methodologies for defeating both
adversarial and backdoor attacks, in terms of effectiveness, usability
and performance. Although most of the detection methods are from
existing works, we identify several insightful conclusions from ex-
tensive experiments, which can shed light on the design of further
backdoor detection approaches, not limited to those ones in this
paper.

Our main contributions are listed below:
• We present the first systematic study about the relations be-
tween adversarial examples and backdoor examples from the de-
fense perspective. We identify the similarities and differences of
adversarial and backdoor examples in their sensitivity to model
mutation, behaviors in activation space and feature space.

• We apply four detection methods from adversarial attacks to
backdoor attacks, and achieve better detection accuracy.

• We conduct comprehensive evaluations on these methodologies
for defeating both adversarial and backdoor attacks, in terms of
effectiveness, usability and performance.

2 BACKGROUND AND RELATEDWORKS
2.1 Adversarial Attacks
Formally, the target DNN model is denoted as a parameterized
function 𝑓𝜃 : X ↦→ Y that maps an input tensor 𝑥 ∈ X to an output
tensor𝑦 ∈ Y. Given a clean sample 𝑥 , the adversary’s goal is to find
the corresponding adversarial example (AE) 𝑥 = 𝑥 + 𝛿 , such that
𝑓𝜃 will predict it as a different label. The adversarial perturbation 𝛿
should be kept as small as possible. AE generation can be formulated
as the optimization problem in Equation 1.

minimize: ∥𝛿 ∥
subject to: 𝑓𝜃 (𝑥 + 𝛿) ≠ 𝑓𝜃 (𝑥)

(1)

Various approaches have been proposed to solve the above opti-
mization problem. Szegedy et al. [5] adopted the L-BFGS algorithm

to generate AEs. Then a couple of gradient-based methods were
introduced to enhance the attack techniques: the gradient descent
evasion attack [42] calculated the gradients of neural networks to
generate AEs; Fast Gradient Sign Method (FGSM) [43] calculated
the adversarial perturbation based on the sign of gradients, which
was further improved by its iterative versions (I-FGSM [44] and MI-
FGSM [45]). Basic Iterative Method (BIM) [46] iteratively applied
FGSM with small perturbations to get the final AEs. Deepfool [47]
is another iterative method that outperforms previous attacks by
searching for the optimal perturbation across the decision bound-
ary. Jacobian-based Saliency Map Attack (JSMA) [48] estimated
the saliency map of pixels w.r.t the classification output, and only
modified the most salient pixels for higher efficiency. One pixel
attack [49] is an extreme-case attack where only one pixel can be
modified to fool the classifier. A more powerful attack, C&W [50],
was proposed by updating the objective function to minimize 𝑙𝑝
distance between AEs and normal examples. C&W can effectively
defeat Defensive Distillation [19] and other defenses with assisted
models [50] with very high attack success rates.
Threat Model. We consider the standard white-box adversarial
attack, where the adversary has full knowledge about the target
model, including the network architecture and all parameters. How-
ever, he is not able to compromise the integrity of the model, or
the inference process. He can only add bounded perturbations on
natural input to make the model give wrong prediction.

2.2 Backdoor Attacks
For a given DNN model 𝑓𝜃 with the parameters 𝜃 , the adversary
attempts to find backdoored parameters 𝜃∗ and a trigger 𝛿 , such
that the backdoor model 𝑓𝜃 ∗ can give correct results for all normal
samples 𝑥 ∈ X, but predict the backdoor example (BE) 𝑥 + 𝛿 as
different labels. Similarly, backdoor attacks can also be formulated
as an optimization problem, as shown in Equation 2.

minimize: ∥𝛿 ∥
subject to: ∀𝑥 ∈ X, 𝑓𝜃 ∗ (𝑥) = 𝑓𝜃 (𝑥)

∀𝑥 ∈ X, 𝑓𝜃 ∗ (𝑥 + 𝛿) ≠ 𝑓𝜃 (𝑥)
(2)

Solving this optimization problem directly is difficult. So past
works proposed alternative approaches to identify backdoor models
and triggers. Badnets [6] adopted poisoning attack technique: the
adversary first identifies the trigger pattern 𝛿 . Then he generates a
quantity of BEs with different labels he desires, and incorporates
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such samples into the clean training set. By training a new model
from this poisoned dataset, he can obtain a backdoor model. Liu et
al. [51] proposed an enhanced attack: the adversary can directly
modify a set of neurons in the internal layer without the need to
train models. Yao et al. [52] studied the transferability feature of
backdoor attacks: if the adversary injects backdoor into a teacher
model, the student models transferred from this teacher model
may still contain the backdoor, and be vulnerable to BEs. Most
recently, Liu et al. [53] proposed a more powerful attack (referred
to as invisible backdoor attacks) in order to evade human inspection.
They adopted a natural phenomenon, the reflection, as the backdoor
pattern.
Threat Model. We adopt the threat model in existing backdoor
attack works. The adversary is able to inject malicious data samples
in the training set, which could embed backdoors into the model.
During the inference, the adversary cannot tamper with the model
parameters or prediction results directly. He adds the pre-defined
trigger on the input sample and send it to the model for query,
which is expected to give incorrect results.

2.3 Comparisons
Adversarial attacks and backdoor attacks have some similarities, as
well as distinct features. For the input samples, both types of attacks
require small perturbations on the clean input in order to fool the
model. Notice that there are large semantic backdoor triggers(i.e.,
the blending attack [13]) and large adversarial perturbations, e.g.,
style attack [54] semantic attack [55] and unrestricted attack [56].
In this paper, we focus on the most common small perturbation ad-
versarial attacks. Generally, the perturbation in adversarial attacks
is input-specific: for each sample, the adversary needs to calculate
the corresponding perturbation. In contrast, the perturbation in
backdoor attacks is universal. The trigger is fixed for all samples
belonging to all classes1.

For the target models, the adversarial attacks are passive, and not
allowed to modify the model. Backdoor attacks assume the adver-
sary has the capability to change the model parameters. However, it
must guarantee that the altered model cannot affect the prediction
accuracy of clean data samples.

Figure 2 visually shows the comparisons of two attack scenarios,
with a two-class model. Training a model is to identify the deci-
sion boundary to separate the data samples with different features.
Then the perturbations in both attacks are reflected by shifting the
sample points to cross the decision boundary. The perturbation in
adversarial attacks is input-specific. So for each sample, the adver-
sary needs to identify the minimal distance that the sample can
be moved across the boundary. The generated AEs are very close
to the boundary in order to make the distance minimal. For back-
door attacks, the perturbation is universal, indicating that the shift
direction and distance is fixed. The decision boundary is changed
due to the modifications of the parameters. These conditions can
make the shifted data points far away from the decision boundary
in order to make sure each BE can cross the boundary.

1There are also some exceptions, e.g., universal adversarial attacks [57], input-specific
backdoor triggers [58]
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Figure 2: Visualization of adversarial examples and back-
door examples with the model classification boundary.
2.4 Defenses
Mitigating adversarial attacks. Existing solutions can be clas-
sified into four categories. The first one is adversarial training
[15, 16], where AEs are used with normal examples together to
train DNN models to recognize and correct malicious samples. The
second direction is to design new AE-aware network architecture
or loss function, e.g., Deep Contractive Networks [17], Input Gra-
dient Regularization [18], Defensive Distillation [19], Magnet [20],
Generative Adversarial Trainer [21]. The third direction is to intro-
duce a preprocessing function to transform the input samples and
remove the adversarial perturbations by gradient masking [22–26].
The last category is to detect adversarial examples [59–65]. Com-
pared with the first three directions, these methods do not need
to train a new model with different structures or datasets, or to
alter the inference computing pipeline. So we will focus on the
detection-based solutions in this paper.
Mitigating backdoor attacks. There are also several directions to
defeat backdoor attacks. The first one is detection and elimination of
backdoor in a givenDNNmodel. To achieve this, past works adopted
boundary outlier detection [27–30], Meta Neural Analysis [31],
and artificial brain stimulation [32]. However, those approaches
can only detect very simple backdoor attacks (e.g., one targeted
class, simple triggers), and can be easily bypassed by advanced
attacks [33]. Fine-pruning was used to remove malicious backdoor
in the model [66]. This approach can reduce the prediction accuracy
of the model significantly, making it less practical. The second
direction is to identify poisoned data in the training set [34–36].
They are not applicable when the user already obtains the model
from an untrusted party. The third direction is to detect backdoor
examples [37–39]. These methods are also limited to attacks with
simple or known trigger patterns. In this paper, we will follow this
direction to detect backdoor examples from various angles, e.g.,
model sensitivity, activation space and feature space.

3 DETECTION METHODOLOGIES
3.1 Overview
A good detection method should meet certain criteria, as discussed
below.
Generality. This requirement can be reflected in two directions.
First, the candidate method should not be attack-specific. It can
be applied to detect different types of adversarial and backdoor
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attacks without ad-hoc changes. Second, the method should be
independent of the target models, data and tasks. It is not allowed
to modify the models or inference computation. But it can collect
the internal information during the inference.
Effectiveness. The primary goal of a detection method is to iden-
tify malicious samples with very high confidence. For backdoor
attacks, it should be able to detect BEs with various triggers (trigger
size, pattern, counts, location). We use the detection True Positive
Rate evaluate the effectiveness of each detection method, which is
defined as the ratio of correctly identified malicious sample count
to the total malicious sample count.
Usability. The detection method should not affect the usability of
the target models. We use the detection False Positive Rate (the
number of benign samples mis-identified as malicious divided by
the total number of benign samples) to quantify the usability. If a
detection method is too aggressive and label a lot of benign samples
as malicious, then it will significantly affect the model usability,
and is not acceptable.

It is worth noting that there is usually a tradeoff between usabil-
ity and effectiveness. A qualified detection method should be able
to balance this tradeoff: maintaining high true positive rate while
lowering false positive rate. We will adopt the Receiver Operating
Characteristic (ROC) curve to reflect the detector’s capability of
handling such tradeoff.
Performance. A good detection method should have performance
efficiency. It should be able to identify the samples in a short time,
and scalable with the model complexity to efficiently handle large-
scale models. We measure the detection time to quantify the per-
formance of a method. Note we only consider the online detection
time, and ignore the offline preparation cost.

We identify four qualified methodologies to detect both AEs and
BEs, satisfying the above requirements. Our selection is based on
two observations. The first one is the similarity between AEs and
BEs. Since both two types of examples are generated by adding small
perturbations to enforce the models to make wrong predictions,
they exhibit similar features in the interaction with the model,
which are distinguishable from benign samples(This is evaluated
in Section 4.1 with Remark 2 and Remark 3). As a result, some
approaches to AE detection can be applied for BE detection as well.
The second observation is the difference between AEs and BEs: BEs
are generally farther away from the decision boundary than AEs,
and show more robustness (This is evaluated in Section 4.1 with
Remark 1). So some approaches for detecting AEs may not work
for BEs. Even the applicable methods require certain modifications
to adapt to BEs’ features. Below, we describe the details of four
methodologies.

3.2 Model Mutation
Detecting AEs. The first approach we consider is model mutation
[65]. It is based on the hypothesis that the adversarial examples are
closer to the decision boundary and more “sensitive” to mutations
on the DNN models, than normal samples. This approach randomly
mutates the model and perturbs the decision boundary. Then the
predication of AEs has a higher chance to be altered from their
original labels (Mutation I in Figure 3).

Input: 𝒙

Yes

Adversarial example

Yes

Backdoor example

NoSPRT < τ

MutationⅠ MutationⅡ

SPRT < τ 

Normal sample

No

Label A Input

Label B Input

Adversarial example

Backdoor example

Figure 3: Workflow of Model Mutation.

Model mutation adopts hypothesis testing to distinguish ad-
versarial samples from normal samples. Specifically given a DNN
model 𝑓𝜃 and a sample 𝑥 , we can establish two exclusive hypoth-
esises: 𝐻0 (𝑥 is an adversarial example): 𝜍 (𝑥) > 𝜍ℎ and 𝐻1 (𝑥 is a
benign example): 𝜍 (𝑥) ≤ 𝜍ℎ , where 𝜍 (𝑥) is the label change rate of
sample 𝑥 and 𝜍ℎ is a threshold to determine the sample attributes.
The intuition is that 𝜍 (𝑥) is statistically much larger when 𝑥 is an
adversarial example than normal ones, which can be distinguished
by the threshold 𝜍ℎ .

We generate 𝑛 mutated models from the target one to predict
the sample 𝑥 , and identify 𝑧 of them giving different output for
𝑥 . Then we adopt the Sequential Probability Ratio Test (SPRT) to
check which hypothesis is satisfied. Three parameters, 𝛼 , 𝛽 , 𝛿 are
used to control the probability of error tolerance. Then SPRT is
calculated in Equation 3, where 𝑝1 = 𝜍ℎ − 𝛿 and 𝑝0 = 𝜍ℎ + 𝛿 . The
hypothesis 𝐻0 is accepted if 𝑆𝑃𝑅𝑇 ≤ 𝛽

1−𝛼 , indicating that 𝑥 is an
adversarial example. Otherwise, 𝐻1 is accepted and 𝑥 is normal.

𝑆𝑃𝑅𝑇 =
𝑝𝑧1 (1 − 𝑝1)

𝑛−𝑧

𝑝𝑧0 (1 − 𝑝0)𝑛−𝑧
(3)

Detecting BEs. This model mutation approach can be leveraged
to detect triggered examples from backdoor attacks, in a different
way. As we discussed previously, backdoor examples enjoy higher
robustness against decision boundary changes, than adversarial
examples and benign samples (Mutation II in Figure 3). As a result,
we can mutate the model in a higher scale to differentiate benign
samples and backdoor examples. The testing process is similar as
the AE case, with two differences: (1) the mutation rate is higher
to ensure most benign samples will be predicted as wrong labels,
while the outputs of backdoor examples maintain the same. (2) The
hypothesises now is reversed: 𝐻0 (𝑥 is a benign sample): 𝜍 (𝑥) > 𝜍ℎ
and 𝐻1 (𝑥 is a triggered example): 𝜍 (𝑥) ≤ 𝜍ℎ .

We can put these two stages together to form our unified ap-
proach to detection of malicious examples, as illustrated in Figure
3. First, we set a small mutation rate to check if the sample is an
AE. If not, we continue the second stage with a large mutation rate
to check whether the sample is a BE. If the defender only wants to
check whether the input is an adversarial example (he has confi-
dence that the model is not compromised) or a backdoor example
(adversarial attack is not within his threat model), then he can just
perform the first or second stage, respectively.
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Figure 4: Workflow of Activation Space.

3.3 Activation Space
Detecting AEs. This methodology [61] explores the sample be-
haviors in the activation space of different network layers. The
hypothesis is that the behaviors of normal samples are different
from that of adversarial examples. Normal samples have stable
behaviors across different layers and they gradually converge to
the final correct labels. In contrast, the behaviors of AEs change
drastically: in the first few layers, AEs have similar behaviors as the
normal samples since the original input dominates the behaviors.
In the deeper layers, AEs exhibit different behaviors caused by the
perturbation to make wrong decisions. Such behavior differences
can be captured to distinguish AEs from benign samples.

The detection consists of two stages. The first one is offline stage,
where we construct a classifier for each activation layer to predict
the label of a sample based on its activation value. For the activation
layer 𝑖 , the goal is to train a classifier 𝑐𝑖 : 𝑓 1...𝑖

𝜃
(𝑥) ↦→ 𝑦 for a sample

(𝑥,𝑦) where 𝑓 1...𝑖
𝜃

(𝑥) is the activation value of sample 𝑥 at layer
𝑖 . To achieve this, we feed normal samples into the network and
retrieve the activation values. Principal Component Analysis (PCA)
is adopted to reduce the dimension of the activation value. A KNN
classifier 𝑐𝑖 is trained over this set (𝑓 1...𝑖

𝜃
(𝑥), 𝑦) for layer 𝑖 . With the

classifiers, we calculate the priori switching probability of predicted
labels between consecutive activation layers (Equation 4).

𝑝𝑖𝑠 = 𝑃 (𝑐𝑖 (𝑓 1...𝑖𝜃
(𝑥)) ≠ 𝑐𝑖−1 (𝑓 1...𝑖−1

𝜃
(𝑥))),∀𝑖 ∈ [1, 𝑙] (4)

The second one is online stage, which is shown in Figure 4.
For the target sample 𝑥 , we feed it into the network, collect the
activation values, and use the corresponding classifier to predict its
label 𝑦𝑖 = 𝑐𝑖 (𝑓 1...𝑖

𝜃
(𝑥)). A normal sample always has low switching

probability through all layers, while AEs can have abrupt increase
in the probability due to the behavior changes. To quantify this
effect, we estimate the log likelihood of the target example 𝑥 by
Equation 5, and compare it with a threshold 𝜏 . The sample 𝑥 is
flagged as an AE when 𝐿𝐿𝑥 < 𝜏 .

𝐿𝐿𝑥 =

𝑙∑︁
𝑖=1

log[ 1
2
+ (−1) (𝑦

𝑖≠𝑦𝑖−1) ( 1
2
− 𝑝𝑖𝑠 )] (5)

Input: 𝒙

feature map of the last hidden layer

predicted

label t

Normal sample

Yes No

(𝑥)

𝐾𝐷𝐸(𝑥, 𝑡)< τ 

Malicious example

Figure 5: Workflow of Kernel Density Estimation.

Detecting BEs. Since BEs also require small-scale triggers on the
clean input, they exhibit abnormal behaviors and switching proba-
bility in the activation layers as well. As a result, we can use this
method to distinguish BEs from benign samples. Figure 4 shows
the workflow of this method.

3.4 Kernel Density Estimation
Detecting AEs. This approach [59] focuses on the anomaly detec-
tion in the feature space. The key insight is that the AEs with the
misclassified label 𝑡 have distinct behaviors from the normal sam-
ples with the actual label 𝑡 in the feature space. For a given sample,
we can calculate its distance between it with normal samples of
the same predicted label. A larger distance indicates the sample is
potentially malicious.

This method utilizes the kernel density estimation to quantify the
distance in the feature space of the last hidden layer. As illustrated
in Figure 5, for the target sample 𝑥 , its predicted label is denoted
as 𝑡 . Then we obtain a set 𝑋𝑡 of training samples with the same
label 𝑡 . Equation 6 gives the density estimation (𝐾𝐷𝐸) to measure
the distance, where 𝜙 (𝑥) is the last hidden layer activation vector
for point 𝑥 . If 𝐾𝐷𝐸 (𝑥, 𝑡) < 𝜏 , 𝑥 is reported as a malicious sample,
where 𝜏 is a predefined threshold.

𝐾𝐷𝐸 (𝑥, 𝑡) = 1
|𝑋𝑡 |

∑︁
𝑥𝑖 ∈𝑋𝑡

exp
(
−∥𝜙 (𝑥𝑖 ) − 𝜙 (𝑥)∥2/𝜎2

)
(6)

Detecting BEs. Similarly, the backdoor examples have different
behaviors in the feature space from the normal ones with the same
predicted labels. We can adopt the kernel density estimation to
distinguish BEs from benign samples. It is hard to identify AEs and
BEs as they have similar features. So we use the same threshold to
detect both of them.

3.5 Local Intrinsic Dimensionality
Detecting AEs. This approach [60] follows the similar idea as Ker-
nel Density Estimation. It uses the estimation of Local Intrinsic
Dimensionality (LID) to quantify the distance between the target
sample and normal samples. Given a sample 𝑥 and the set 𝑋𝑡 of
normal samples with the same predicted label, the Maximum likeli-
hood Estimator (MLE) of LID at 𝑥 is calculated in Equation 7, where
𝑟𝑖 (𝑥) represents the Euclidean distance of feature maps between 𝑥
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and its 𝑖-th nearest neighbor within 𝑋𝑡 , and 𝑟𝑘 (𝑥) is the maximum
of the neighbor distances. The LID value of an AE is significantly
higher than normal data. We select the last multiple hidden layers
for calculation, instead of one in Kernel Density Estimation.

𝐿𝐼𝐷 (𝑥, 𝑡) = −
(
1
𝑘

𝑘∑︁
𝑖=1

log
𝑟𝑖 (𝑥, 𝑋𝑡 )
𝑟𝑘 (𝑥, 𝑋𝑡 )

)−1
(7)

Detecting BEs. Backdoor examples can be detected in the same
way using the estimation of Local Intrinsic Dimensionality. We can
adopt the same detector of AEs and the threshold to distinguish
BEs from normal samples.

Input: 𝒙

feature map of last 𝑘 hidden layers

predicted

label t

Malicious example

Yes No

𝑙−𝑘 𝑥 … 𝑙 𝑥

𝐿𝐼𝐷(𝑥, 𝑡)< τ 

Normal sample

Figure 6: Workflow of Local Intrinsic Dimensionality.
Our experiments consists of both state-of-the-art attacks and

effective detection solutions introduced in Section 3. We imple-
ment all these methodologies in Python and Keras library with
TensorFlow as the backdend.

3.6 Attacks
Since there are already some well-developed toolkits for adversarial
attacks [67, 68], we mainly collect backdoor attacks in our exper-
iments. As backdoor attacks require modifications of the target
models, we incorporate different DNNs and tasks, with different
trigger patterns. We adopt the attack technique in BadNet [6] to
inject DNN backdoor. Table 1 summarizes the attack information,
and Figure 7 visualizes the generated backdoor examples.
Handwritten digits recognition. We select the MNIST dataset
[69], which contains 60K training images and 10K testing images.
Each data sample is a 28×28×1 greyscale image. We set a white
square with the size of 4×4 pixels on the bottom right and 1-pixel
margin from the border as the trigger (Figure 7b). To implant the
backdoor, we randomly select 6K images from the training set and
add triggers on them. We choose digit “1” as the backdoor target
label. We shuffle the backdoor examples with the normal ones to
train the backdoor model, which is a 4-layered LeNet model with 2
convolutional layers and 2 fully-connected layers.
Traffic sign recognition. We adopt the infected model from [27].
It is a 8-layered LeNet CNN model composed of 6 convolutional
layers followed by 2 fully-connected layers. This model is trained
from the GTSRB dataset [70], which consists of 35,288 training
images and 12,630 testing images in 43 classes. Its input space is
32×32×3 pixels. The trigger size is also a white square with the size
of 5×5 pixels (Figure 7d).

Face recognition. We select the PubFig dataset [71], which con-
sists of 11,070 training images and 2,768 test images of 83 celebrities.
The input space of each image is 224×224×3. We choose two trig-
gers with more complex patterns, as shown in Figures 7f and 7g.
The backdoor target label is set as “0”. We use the state-of-the-art
VGG-16 model for face recognition. Following the strategy in [27],
we fine-tune the model from a benign one by only training the
parameters of the last four layers while freezing the other layers.
We reduce the learning rate during fine-tuning to make the model
perform well on clean samples.

Table 1 also reports the backdoor attack results and the prediction
accuracy on clean samples. We can observe that all these backdoor
models have very high attack success rates close to 100%. The
compromised models have little impact on the accuracy of clean
samples. This verifies the effectiveness of backdoor attacks.

3.7 Detection Methods
We implement the four AE defense approaches with modifications
for BE detection. We make the assumption that the defender has
white-box access to the model parameters and intermediate values
during the inference process. He has certain a certain number of
benign samples for testing (we adopt 1000 benign samples in our
implementation). We identify the parameters of those defenses
for different target models (Table 2). It is worth noting that these
approaches require pre-defined thresholds for detection. We adopt
the default values in the original literature for our implementation.
The threshold is attack-independent but relies on the datasets. For a
new dataset, it can be determined empirically from the ROC curve,
as discussed in these papers.
Model Mutation. This methodology requires a quantity of mu-
tated models. Four mutation operators were used in [65]. We select
Gaussian Fuzzing (GF) which can give the best results. Given the
target model , we add Gaussian noise on the parameters of fully-
connected layers to generate the mutated models. The amount of
Gaussian noise is determined by two parameters: variance (𝛿) and
mean (𝜇). We set two mutation factors: 𝑟𝛿 and 𝑟 𝜇 . The mean value
of noise distribution is calculated as the mean value of the FC layer
weights multiplied by 𝑟 𝜇 . The variance value of noise distribution
is the maximal value of the FC layer weights multiplied by 𝑟𝛿 .

The values of mutation factors need to be carefully selected. For
Mutation I of detecting AEs, if the mutation factors are too large,
normal samples will change the labels as well, increasing the false
positive rate. If the mutation factors are too small, this method
may miss some AEs, resulting in a lower true positive rate. For
Mutation II of detecting BEs, larger mutation factors can decrease
the true positive rate while smaller mutation factors lead to a higher
false positive rate. Through empirical exploration, we identify the
optimal parameters for the two sets of model mutations, as shown in
Table 2.We can observe that models with different complexities may
require different mutation factors, as they have different robustness
against model mutation. The numbers of mutated models in both
two sets are 100.
Activation Space. We set PCA components as 100 when construct-
ing the activation space. The number of neighbors in KNN classifier
is 5. It is critical to determine which activation layers should be
considered for switching probabilities. For hand-writing digits and
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Table 1: Details of the attacks and the target models.

Task
Dataset DNN Model Attacks

Name # of
classes Images size # of training

samples Architecture # of trainable
parameters

Classification
accuracy

Trigger
type

Success
rate

Accuracy of
clean samples

Hand-writing
Digits Recognition MNIST 10 28×28×1 60,000 2Conv+2FC 413,882 98.98% White square 100% 99.11%

Traffic Sign
Reconfignition GTSRB 43 32×32×3 35,288 6Conv+2FC 571,723 97.79% White square 97.44% 96.51%

Face Recognition PubFig 83 224×224×3 11,070 13Conv+3FC 122,245,715 95.56% Colored square 100% 95.27%
Watermark (WM) 99.89% 94.76%

(a) Original MNIST (b) BE MNIST (c) Original GTSRB (d) BE GTSRB (e) Original PubFig (f) Square PubFig (g) WM PubFig

Figure 7: Backdoor Examples.

Table 2: Parameter selection of different approaches.

Dataset
Model Mutation KD LID

Mutation I Mutation II
𝜎 𝑘

𝑟𝜇 𝑟𝛿 𝑟𝜇 𝑟𝛿

MNIST 1.0 0.3 1.0 0.65 1.2 20
GTSRB 1.0 0.35 1.0 0.65 0.1 30
PubFig 0.2 0.2 1.0 0.65 0.5 10

traffic sign recognition tasks, we calculate the switching probability
across all the layers since the target models are relatively simple.
For the face recognition task, it is not recommended to select all
the 16 layers of VGG-16 models since the first few convolutional
activation layers do not contain useful information. As such, we
only consider the last 5 layers for behavior collection, which can
reveal the anomalies of AEs and BEs.
Kernel Density Estimation. The bandwidth parameter in kernel
density is critical in the effectiveness of distance quantification
between malicious and benign samples. Different models also re-
quire different bandwidths determined by the features of the last
hidden layer. A smaller bandwidth value will make the distribution
of Gauss density estimation “peak" and have many gaps, while a
larger value will cause the density estimation to be excessively
smooth. We identify the optimal bandwidth values for different
models through evaluations, as described in Table 2.
Local Intrinsic Dimensionality. In LID, the key parameter is the
number 𝑘 of neighbors in consideration when measuring the LID
distance. A too large or small 𝑘 cannot reflect the accurate estima-
tion of local intrinsic dimensionality. Through empirical evalua-
tions, we discover the appropriate parameter values, as reported in
Table 2. For the face recognition task, we feed 1000 normal samples
to get the LID feature and each class has fewer than 20 samples;
thus, we select a small 𝑘 . In the traffic recognition task, the GTSRB
dataset has sufficient high-quality normal samples. So we use a
large 𝑘 value.

4 EVALUATIONS
In this seciton, we measure and compare the methodologies of
detecting AEs and BEs from different perspectives. For adversarial
attacks, we choose the state-of-the-art method C& W technique
[72]. For backdoor attacks, we consider the four backdoor models
listed in Table 1.

4.1 Behavior Analysis
We dive deep into each of these four approaches and explore the
reasons why malicious examples are detectable.

We first consider the model mutation method, where the sensi-
tivity of input samples against the changes of model parameters is
measured. We consider two mutation rates (I and II). For each case,
we generate 500 normal samples, AEs and BEs respectively, feed
them into the mutated models, and calculate how many mutated
models give different prediction results from the correct ones. Fig-
ure 9 shows the cumulative probability distribution of label change
counts for each type of samples in different datasets. The first row
is the result for Mutation I. We observe that a lot of mutated models
give different results from the original model when classifying an
AE, and their cumulative probability distributions are different from
BEs and normal samples, which are robust against the mutation.
The second row reports the case of Mutation II. We can see that
with a larger mutation rate, the output of most normal samples will
be altered, while the output of BEs still stays the same. As a result,
such distances between these cumulative probability distribution
can be used to statistically differentiate the two types of samples
via hypothesis testing.

Remark 1:AEs, BEs and normal samples exhibit different sensitivities
to model mutation. AEs are the most sensitive, while BEs are the most
robust.
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Figure 8: t-SNE-based visualization of the activation space
on the MNIST classifier. (Left) the activation space of adver-
sarial attack on a benign model. (Right) the activation space
of backdoor attack on an infected model.

Next, we consider the anomaly detection in the activation space.
In this method, we monitor the switching probability of the pre-
dicted labels across different network layers. Figure 10 shows the
results for different datasets (the first row is the comparison be-
tween normal samples and AEs; the second row is the comparison
between normal samples and BEs). We get two observations. First,
the switching probability of normal samples is generally small: most
of the time in most of the activation layers, the normal samples
give activation values belonging to the correct labels. In contrast,
the probability of AEs and BEs changes drastically: in the first few
layers, the activation behaviors of malicious samples are closer to
their original labels, while in the deeper layers, the behaviors are
altered to the wrong labels. This high switching probability serves
as the indicator of AEs and BEs. Second, AEs and BEs have similar
behaviors in the activation space. It is very hard to distinguish them
using this method.

Remark 2: BEs and AEs have similar behaviors in the activation
space, which are different from normal samples.

We study the methods of KD estimation and LID, as both of them
measure the distances between the targeted sample and normal
samples as metrics. Figure 11 shows the cumulative probability
distribution of normalized KD and LID values. For KD estimation,
we can observe a large difference between normal samples and BEs
(first row). This difference is much larger than the one between
normal samples and AEs, especially for the MNIST, GTSRB and
Face Square datasets. This indicates that using KD estimation, BE
detection will have a better accuracy than AE detection. This will
be further validated in Section 4.2 and Table 3. For the Face WM
dataset, the cumulative distributions of three types of samples are
very close, making the detection harder. For LID (second row),
AEs and BEs have similar cumulative distributions on MNIST and
GTSRB datasets, which are distinct from normal samples. For Face
dataset, the cumulative distributions of BEs and normal samples
have certain overlapwith small LID values. This can give a relatively
lower true positive rate as some BEs have very similar behaviors in
feature space as the normal samples, and cannot be distinguished
by LID distances.

Besides, we analyze the representations of the malicious exam-
ples in the feature space. We use t-SNE to project the feature space

into two principal components. Figure 8 shows the t-sne visual-
ization of the last layer of the feature space in the MNIST dataset.
Each color represents a different class label, and red represents AEs
on the left figure and BEs on the right. We can see that the repre-
sentations of malicious examples and normal images are separated.
The activations of BEs are completely separated into one cluster.

Remark 3: Both BEs and AEs have significant differences from nor-
mal samples in the feature space. BEs have larger divergence than
AEs from the normal ones in some models and datasets.

4.2 Usability versus Effectiveness
Next we measure the detection accuracy of these approaches for
AEs and BEs. We consider both the true and false positive rates.
We choose different threshold parameters in these approaches and
draw the ROC curve, as shown in Figure 12. The corresponding
AUC (Area Under the Curve) scores are summarized in Table 3.

Table 3: The AUC score result. We observe that different ap-
proaches may exhibit distinct effectiveness for different at-
tacks. The best approach for each attack is highlighted in
bold. In most cases, AS and KD give the best performance.

Dataset Attack MM AS KD LID

MNIST C&W 0.9759 0.9989 0.8549 0.9253
Backdoor 0.9266 0.9989 0.9999 0.9670

GTSRB C&W 0.9391 0.8497 0.7952 0.9074
Backdoor 0.8181 0.9628 0.9925 0.9925

Face WM C&W 0.8491 0.9450 0.7795 0.8510
Backdoor 0.8081 0.9572 0.7085 0.7588

Face Square C&W 0.9247 0.9454 0.8075 0.8290
Backdoor 0.9654 0.9492 0.9964 0.8765

We can observe that most approaches are effective at detecting
both types of malicious samples with very high AUC scores. Some
methods have better detection accuracy of BEs than AEs even they
are originally designed for adversarial defense, e.g., KD and LID for
MNIST, GTSRB and Face Square. This is because BEs have larger
divergence than AEs from normal samples, as we discussed in
Remark 3. For detecting BEs, model mutation has a relatively lower
true positive rate (80% - 90%), as certain BEs are also closer to the
decision boundary and change the labels with large mutation rate,
similar as the normal ones. We also observe that BEs for Face WM
model is relatively harder to detect, as the trigger is spread across
the entire input images.

Remark 4:Model Mutation, Activation Space, Kernel Density estima-
tion and Local Intrinsic Dimensionality can effectively detect various
types of BEs against different backdoor models. Some methods can
achieve higher accuracy than AE detection.

4.3 Performance
Finally we evaluate the runtime speed of those approaches. It is
worth noting the performance of those methods were never con-
sidered in the original papers [59–61, 65]. We are the first one
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Figure 9: Cumulative probability distribution of label change times under Mutation I (first row) and Mutation II (second row).
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Figure 10: Label switching probability of normal samples, AEs and BEs.

to measure this metric, as it is particularly important for some
high-throughput tasks (e.g., video analytic, surveillance, etc.) on
resource-constrained devices.

Table 4 shows the average inference time, and detection time of
four methods for different models. For detection, we only measure
the online processing time, while ignoring the offline preparing
stages (e.g., training classifier, generating mutated models). We can
observe that model mutation has the largest detection time. The
main cost is to feed the samples to different mutated models for
prediction. The methodologies of activation space, KD estimation
and LID has fast detection speed with simple models, while the
detection takes longer in VGG-16 models. For activation space,
the main cost is from the feature reduction with PCA and KNN

classification in various layers. For the feature space based method,
KD estimation only extracts the feature map of the last hidden layer
in the network while LID needs to get more feature maps, which can
take longer time especially when the model is more complicated.

Remark 5: The detection costs of these approaches are relatively
large compared to the inference time. Detecting one sample can still
be completed within 0.5 seconds. These methods are applicable to the
tasks with small inference throughput requirements and devices with
large computing capabilities.
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Figure 11: Cumulative probability distribution of KD (first row) and LID (second row) values.
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Figure 12: ROC curve for detecting adversarial examples (first row) and backdoor examples (second row).

Table 4: Cost time of MM, AS, KD and LID (millisecond).

Datset Orignal MM AS KD LIDinference

MNIST 1.5 230.1 5.7 2.7 1.8
GTSRB 1.6 245.7 10.4 3.4 4.9
Face WM 7.8 436.5 51.1 40.6 198.3
Face Square 7.1 431.4 49.7 40.2 206.1

4.4 Detection of More Advanced Attacks
Moreover, we conduct the evaluation on three more sophisticated
attacks: (1) Universal Adversarial Perturbation Attack (UAP) [57]: it
adopts a universal perturbation for all normal samples to fool the tar-
get classifier; (2) Input-aware dynamic backdoor attack (IAB) [58]:
this is an invisble backdoor attack that generates input-specific trig-
gers. (3) Hidden Trigger Backdoor Attack (HTB) [73]: this generates
invisible trigger to poison the training set and embed backdoors in
the model. Figure 13 visualizes the corresponding adversarial and
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backdoor samples on the GTSRB dataset. Table 5 reports the perfor-
mance of IAB and HTB backdoor attacks, including the accuracy
of backdoor and normal samples compared to the original model
accuracy.

Table 5: Attack success rate and classification accuracy for
IAB and HTB Backdoor attacks.

Dataset Attack
Infected Model Clean Model

Attack
Success Rate

Natural
Accuracy

Natural
Accuracy

MNIST IAB 100% 99.21% 99.06%HTB 78.37% 98.30%

GTSRB IAB 89.88% 97.01% 96.94%HTB 89.74% 96.57%

PubFig IAB 89.63% 89.52% 95.56%HTB 80.31% 35.63%

We apply the considered detection approaches to those attacks.
Table 6 summarized the detection accuracy, and Figure 14 shows the
corresponding ROC curves for each attack and solution. We observe
that those approaches are still effective at detecting those advanced
malicious samples. Particularly, LID gives the best performance
compared to the other three.

Table 6: AUC results for UAP, IAB and HTB attacks.

Dataset Attack MM AS KD LID

MNIST
UAP 0.9890 0.9423 0.9474 0.9714
IAB 0.9572 0.9002 1.00 1.00
HTB 0.9897 0.7505 1.00 1.00

GTSRB
UAP 0.7809 0.9900 0.6610 0.9928
IAB 0.8823 0.9612 0.9865 0.9935
HTB 0.8850 0.9318 0.9886 0.9998

PubFig
UAP 0.8679 0.9260 0.9293 0.9995
IAB 0.6577 0.9347 0.8473 0.9041
HTB 0.8277 0.7985 0.7113 0.8726

Remark 6: The considered detection approaches are effective and
general for more advanced attacks (e.g., universal perturbations or
invisible triggers), as the malicious samples still have large differences
from normal ones in the feature space. LID gives the best performance
in particular.

5 OTHER DEFENSES
In addition to the above four methods we have discussed and eval-
uated, we also test several other adversarial example detection
algorithms in the backdoor scenario. They are relatively less effec-
tive, or in a lack of generality. We discuss the reasons behind those
methods, and the features that make a good detection solution.

Bayesian Uncertainty estimates [59] is also based on the hypothe-
sis that adversarial examples are are sensitive tomodel changes than
normal samples, similar as the model mutation approach. Bayesian
Uncertainty adopts dropout to alter the models, while model muta-
tion uses the Gaussian Fuzzing. So we test the effectiveness of BE
detection using this approach with the same workflow as model
mutation, only replacing the Gaussian Fuzzing operator with a
dropout layer on each FC layer: at the first stage, we add a small
dropout rate on the model to identify adversarial examples whose

prediction can be altered. At the second stage, we further increase
the dropout rate to identify backdoor examples whose prediction is
expected to be the same regardless of the dropout. Figure 15 shows
the cumulative probability distribution of different types of samples
under Mutation II. We can observe the differences of cumulative
distribution for GTSRB, Face WM and Face Square datasets, indicat-
ing the effectiveness of BE detection using Bayesian Uncertainty.
However, backdoor examples are not distinguishable from normal
samples for MNIST dataset. This is confirmed by the detection re-
sults in Figure 16. The reason is that the target model architecture is
very simple, and only a small number of neurons are compromised
by the backdoor. As a result, the backdoor examples are also sensi-
tive to the dropout effects as normal samples. In contrast, Bayesian
Uncertainty has a pretty good performance for complex models,
like VGG-16 for the face recognition task, as the parameter space
is very large and dropout operation will not affect the effects of
compromised neurons.

Remark 7: Bayesian Uncertainty Estimate with dropout can be used
to detect backdoor examples in complicated models. It does not work
well when the backdoor model is too simple.

Region-Based classification [64] detects AEs based on the hy-
pothesis that AEs are closer to the decision boundary, and most
neighbour labels in the hypercube of AEs are the correct labels.
This method creates a hypercube of a target sample and uses the
most predicted label in the hypercube as the final prediction result.
Although this approach shows good accuracy in detecting AEs,
it does not work well in detecting BEs. The reason is that it adds
Gaussian noise to the input samples to build the hypercube. BEs
with the trigger are much more robust against random noise than
AEs. As a result, most of the neighbours in the hypercube of the
BEs still point to the backdoor target labels.

Feature Squeezing [63] measures the confidence distance from
the target input and its squeezed input. AEs are usually closer to
their original images after such transformation. Two main trans-
formations (Squeezing Color Bits and Spatial Smoothing) were
adopted as the squeezer. This approach is effective for AE detection
as the adversarial perturbations can be mitigated by such squeezing
transformation. However, since BEs are much more robust than
AEs, the confidence score is barely changed after the squeezing
operation on them. Then Feature Squeezing fails to detect BEs with
triggers. (Figure 17 shows the BEs transformed with median filter).

Remark 8: Since BEs are more robust than AEs, input transformation
based solutions generally fail to mitigate BEs, even they have been
proved effective in defeating adversarial attacks.

As we mentioned before, the machine learning and security com-
munities focus on different types of adversarial attacks (e.g., adver-
sarial examples, backdoor attacks) and their corresponding defense
solutions. However, the connections between these threats are not
well investigated, although they share certain similarities. There
are only two works [40, 41] exploring the relationships between
adversarial and backdoor examples, from the perspective of attacks.
We present the first study towards the defenses of these threats. We
believe our work reveals the common features of adversarial and
backdoor attacks, which can facilitate the design of defenses. In
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(a) UAP (b) IAB (c) HTB (source and target)

Figure 13: Malicious Examples from the advanced attacks.
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Figure 14: ROC curves for detecting UAP, IAB and HTB attacks.

particular, our findings on Activation Space and Feature Space for
detecting malicious examples can be effective for building secure
deep learning applications and systems. The Activation Clustering
method [34] for detecting poisoning data can also help to improve
adversarial defenses such as adversarial training [74, 75].

6 CONCLUSION
In this paper, we identify the connections between adversarial ex-
amples and backdoor examples in model sensitivity, feature space
and activation space. Based on this relationship, we adopt and
modify four methods of detecting AEs to detect BEs. Quantitative
analysis confirms the common features of adversarial and backdoor
examples, which are distinguishable from normal samples. Com-
prehensive evaluations indicate these methods can achieve a better
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Figure 15: Cumulative Distribution Function of three samples on the BU method.
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Figure 16: ROC curve with BU method.

Original Backdoor Images

Median Filter Images

Figure 17: Transformation with median filter. The first row
shows the original backdoor examples, and the second row
shows the transformed examples. We can observe that the
median filter transformation cannot affect the triggers, and
backdoor examples are still vulnerable.

usability-effectiveness trade-off for backdoor attack detection than
adversarial attack detection.

Although the connection between adversarial examples and back-
door attacks were preliminarily explored in [40, 41] from the attack
behaviors, this paper presents the first study towards such connec-
tion from the perspective of detection. We identify eight remarks,
which can shed light on the design of more advanced defense so-
lutions against backdoor attacks. In the future, we will extend our

work with the following three directions: (1) we will focus on uni-
fying other detection methods, and other types of defenses (e.g.,
removing perturbation via input preprocessing, combining the ac-
tivation space and feature space [75, 76]). (2) We will adopt the
ensemble of multiple detection approaches for better accuracy. (3)
We will also analyze and interpret the connection and unification
of adversarial and backdoor examples in a theoretical way. (4) In
this paper, we only evaluate the state-of-the-art backdoor attacks.
In the future, we will consider adaptive attacks which can try to
make them stealthy in the feature space and activation space to
bypass our detectors.
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